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Spatial coherence effects of stochastic optical beams in periodic potentials
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The interaction between a partially coherent field with a one-dimensional periodic photonic environment is
investigated within the framework of Floquet-Bloch modes. To this end, we describe the interplay between
lattice properties and field fluctuations by considering the optical beam as a linear combination of Floquet-Bloch
modes, whose coefficients are described by a stationary random process. It is demonstrated that the propagation
of partially coherent beams depends not only on the average of the excitation of each band but also on the
correlations existent among the various bands supported by the lattice.
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I. INTRODUCTION

Wave propagation through periodic structures has been
extensively studied in diverse physical environments such as
optical lattices, waveguide arrays, and Bose-Einstein conden-
sates, among others. Stemming from the analogy between
electromagnetic waves in a periodic dielectric structure and
electrons in a periodic atomic potential, work based on
Floquet-Bloch (FB) optical modes has flourished since the
advent of photonic crystals [1–4]. One of the most important
features exhibited by wave propagation in periodic media
is the existence of bands and forbidden frequency gaps for
electromagnetic waves, [5,6]. Their existence in the photonic
density of states is of fundamental importance as dispersion
and diffraction are strongly enhanced, modifying severely the
properties of light propagation. Based on these facts, theoreti-
cal and experimental research on modulated photonic lattices
has been developed intensely in the last decades, revealing
rich phenomena [2,7].

However, in real experiments all light sources fluctuate
in the sense that the fields they generate undergo random
fluctuations, and it is well known that the spatial coherence
properties of a source strongly affect the spectrum of the
propagating wave. By coherence here we mean a measure
of correlations between the components of the fluctuating
field at two or more points in the space at the same time.
Coherence is a fundamental concept about the nature of light
and investigating its influence upon optical systems is nec-
essary if one is to achieve spatial coherence control, as it is
required in many practical applications such as imaging [8],
tomography [9], and beam propagation [10], among many
others [11,12]. Therefore, owing to the fact that fluctuations
are always present in real systems, one must include them
in the investigation of periodic systems to find the extent
that they might modify the spectrum dynamics [13]. To this
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end, one may rely on the techniques of statistical optics, also
known as optical coherence theory [14,15].

Based on the above discussion, in this paper we introduce
a method to understand the interaction between a partially
coherent field with a one-dimensional periodic photonic en-
vironment within the framework of Floquet-Bloch modes
together with a space-frequency representation of stationary
random processes. For comparison purposes, we apply our
scheme to the propagation of a deterministic Gaussian beam
as well as the propagation of partially coherent Gaussian-
Schell beams [16]. We choose to work with the FB basis
considering that a FB wave traveling through a periodic
medium is the counterpart of a plane wave traveling through
a homogeneous medium. A FB mode itself is composed of a
group of plane waves. In both cases the final beam is defined
as the linear combination of the FB modes, which are the
eigenvalues of the paraxial equation. In the partially coherent
case, each linear combination is just a member of an ensemble
of possible output beam shapes. The output beam profiles are
determined by the interference among multi FB modes. We
shall describe the role played by band correlations and their
consequences. To this end, in the next section we introduce
our theory in the case of a deterministic beam and apply it
to a wide Gaussian beam. In Sec. III we present the gener-
alization of the deterministic theory to include the statistical
properties of the incident beam, and describe the evolution of
the Gaussian-Schell beam. In Sec. IV we conclude.

II. DETERMINISTIC THEORY

Let us begin by considering a monochromatic realization
of an optical field represented by the slowly varying enve-
lope ψ (x, z) propagating along the homogeneous z direction
through a periodic medium positioned along the transverse
direction x. Its dynamical behavior can be well described by
the normalized paraxial wave equation

i
∂ψ (x, z)

∂z
+ ∂2ψ (x, z)

∂x2
+ V (x)ψ (x, z) = 0, (1)
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where ψ (x, z) represents the normalized electric field enve-
lope. The function V (x + a) = V (x) describes the periodic
lattice and is proportional to the refractive index of the ma-
terial. We suppose that it has the following general form:

V (x) =
∞∑

m=−∞
Vme2π imx/a, (2)

where the parameter a is a positive number representing the
lattice period and Vm represents the mth Fourier amplitude,
which is a complex number, in general.

The eigenstates of the paraxial wave equation are defined
as ψn(x, k) = un(x, k)eiβn (k)z, with k as the Bloch wave num-
ber corresponding to the FB mode un(x, k), which satisfies the
following equation:

d2un(x, k)

dx2
+ V (x)un(x, k) = βn(k)un(x, k); (3)

here, we fix the Bloch wave number within the first Brillouin
Zone (BZ), that is k ∈ [−π/a, π/a]; n is the band index; and
βn(k) is the propagation constant of the FB wave. The FB
modes are the eigenstates of the paraxial wave equation (3).
In a periodic medium they play the same role as plane waves
in a homogeneous medium. They are stationary states just like
in the solid state, except that here in the space description
they are diffractionless solutions, meaning that the intensity
is independent of the propagation direction. These modes are
fully determined by the structure of the lattice and remain
dormant unless they become excited by the incident wave
field. In a linear propagation regime, each FB mode acquires
its own phase, independent of the other modes. Since these
modes remain the same in spite of the different relative phases
acquired during propagation, the beam may have a completely
different profile at the output compared to the input profile
according to the dynamics determined by the band structure,
as we shall demonstrate in the following.

We begin by considering that a general solution for Eq. (1)
can be written as a linear superposition of FB modes, in the
sense that each mode supported by the lattice is a FB wave
with its own propagation constant βn:

ψ (x, z) =
∞∑

n=1

∫ π/a

−π/a
cn(k)un(x, k)eiβn (k)zdk, (4)

where cn(k) is the participation coefficient of band n at wave
vector k. It represents the relative power within the correspon-
dent FB mode with Bloch wave number k and band n. The
envelope profile of the optical field is then determined by the
interference among these modes. These coefficients are fully
defined at the input plane z = 0, and can be calculated from

cn(k) =
∫ ∞

−∞
u∗

n(x, k)ψ (x, 0)dx, (5)

after the orthogonality between FB modes∫ ∞
−∞ u∗

n(x, k1)um(x, k2)dx = δnmδ(k1 − k2) was used, and
ψ (x, 0) describes the beam profile at z = 0. Depending on
the variation of the beam amplitude at z = 0, and also on the
values of the Fourier components Vm, the incident beam may
excite FB modes belonging to more than one band.

Figure 1 displays the first three bands for a periodic lattice
represented by the truncated expansion of Eq. (2), that is,
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FIG. 1. (Top) Propagation constant βn(k) versus Bloch wave
number k for modes n = 1, 2, and 3 and fixed potential amplitude
A = 4. Floquet-Bloch mode amplitudes |u1(x, k = 0)|2 (bottom left)
and |u2(x, k = 1)|2 (bottom right) versus lattice position x. The red
circles in the top panel represent the propagation numbers for each
of the FB modes represented in the bottom panels.

V (x) = A cos2 x, which is the potential used in all subsequent
analysis. More specifically, V0 = A/2 and V±1 = A/4 and
Vm = 0 otherwise. Along with the bands, the figure displays
two FB modes corresponding to Bloch wave number k = 0
(bottom left) and k = 1 (bottom right) for n = 1 and n = 2,
respectively. The zeros of FB modes at the band edges are
characteristic of Hermitian lattices only [17].

Gaussian beam source

Let us now apply the formalism developed above by con-
sidering the propagation of a fully coherent Gaussian beam
described by the incident field amplitude,

ψ (x, 0) = S0e−x2/2σ 2
eiqx, (6)

where σ is the beam width, q the transverse momentum k, and
S0 the field amplitude, at x = 0. To gain physical insight into
the contribution of the Bloch coefficients cn(k), we write the
Bloch mode un(x, k) as

un(x, k) = eikx
∞∑

α=−∞
d (n)

α (k)e2π iαx/a, (7)

where d (n)
α (k) is the αth expansion coefficient of band n and

Bloch wave number k. Next, we substitute (6) and (7) into (5)
to obtain

cn(k) = σS0

√
2π

∞∑
α=−∞

[
d (n)

α (k)
]∗

e−(σ 2/2)(2πα/a+k−q)2

. (8)

Since d (n)
α (k) (for varying α) are the eigenvectors’ coeffi-

cients of the matrix obtained after substituting (7) into (3),
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FIG. 2. Absolute squared Floquet-Bloch coefficients |cn(k)|2
versus wave number k, for fixed A = 4.0 input beam width σ = 7π

and various input wave numbers: (a) q = 0.0 (the inset illustrates the
contribution of the second and third bands), (b) q = −0.5, and (c)
q = −1.0.

Eq. (8) is more suitable from a computational point of view
since one does not need to deal with the integration over the
x axis, as Eq. (5) suggests. Also, for a fixed Bloch wave
vector k and moderate values of A, only a few of d (n)

α (k)
are significantly different from zero, as we show in the ex-
amples discussed below. Figure 2 illustrates the participation
coefficients |cn(k)|2 (normalized by σS0

√
2π ) for the first

three bands n = 1, 2, 3. Figure 2(a) displays the coefficient
profiles for q = 0 (normal incidence) and indicates that most
of the contribution comes from the first band, with a small
fraction of the third band, and as illustrated in the inset an even
smaller contribution of the second band. Part (b) is plotted for
q = −0.5 and shows a similar behavior, with the first band
exhibiting most of the contribution, but now the second band
contribution grows and overcomes the contribution of the third
one.

By simply changing the excitation angle, which determines
the transverse momentum q of a beam, one can dynamically
control its diffraction properties [18]. We turn to Fig. 2(c), the
case q = −1, corresponding to Bragg scattering. We see that
the first two bands exhibit identical contributions to the overall
beam evolution. Since the beam direction is determined essen-
tially by the direction of the group velocity ∇kβn(k), which
is perpendicular to the transmission band, it is expected that
in the Bragg condition the beam evolves mainly along the
z direction, diffractionless as shown in Fig. 1. This claim is
confirmed by Fig. 3(a), which displays the plot of |ψ (x, z)|2,
calculated directly from (4).

z
x c
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)

z

x

|
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)|

2
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FIG. 3. (a) Beam intensity |ψ (x, z)|2. (b) Beam center oscillation
xc(z) versus propagation distance z for input wave number q = −1.0,
input beam width σ = 7π , and potential amplitude A = 4.0.

After a close inspection of Fig. 3(a), one finds that the beam
center oscillates during propagation along z. Let us then define
the beam center as

xc(z) =
∫

x|ψ (x, z)|2dx∫ |ψ (x, z)|2dx
. (9)

Figure 3(b) displays the beam center oscillations xc(z). It
should be pointed out that these oscillations are not cen-
tered around xc = 0. There is a slow rectilinear movement
in the negative x direction superposing the oscillations. This
behavior resembles the quivering of the free Dirac electron,
well known by Zitterbewegung (ZB) [19]. In the context of
photonic systems such oscillations have been reported in the
case of waveguide arrays [20–22].

III. STOCHASTIC THEORY

Random fluctuations are inherent in all optical fields ir-
respective of their origin; whether spontaneous emission,
temperature fluctuations, or mechanical vibrations, among
many others, the fluctuations are always present. Therefore,
to deal with measurable quantities in optical systems one
must incorporate statistical concepts to the theory to char-
acterize, not the field evolution in one space-time point, but
the correlations between two (or more) space-time points.
In second-order classical statistical optics, one characterizes
the two-point correlations by using the cross-spectral density
function. Under general conditions, likely to be valid in many
systems of interest, the cross-spectral density of a statistical
stationary source is defined as

W (x1, x2, z) = 〈ψ∗(x1, z)ψ (x2, z)〉ω, (10)

where 〈·〉ω implies an ensemble average of monochromatic
realizations of the incident optical field.
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A random beam can be generated by choosing the
FB functions as an orthonormal basis to obtain a linear
combination that represents the beam profile inside the pe-
riodic medium, as suggested in the last section. However,
now we suppose that the respective FB coefficients cn(k) are
described by stationary random processes of the FB wave
number so that each mode represents one configuration of the
ensemble. The evolution of the overall field ψ (x, z) depends
not only on the average values of cn(k) but also on the cor-
relations existent between the bands that correspond to the
cross-correlations Cmn(k1, k2) = 〈c∗

m(k1)cn(k2)〉ω. In this way,
one may speak of the correlations between cm(k1) and cn(k2)
and study their influence upon the evolution of a partially
coherent beam. Previous works on the propagation of partially
coherent beams in periodic structures have been published in
nonlinear [23] and linear [24,25] systems. The approach taken
by Hoenders and Bertolotti is very similar to ours, differing in
that they assume a weakly periodic media and a nonparaxial
propagation, which results in a somewhat more involved anal-
ysis of the propagation dynamics.

Thus, in the following we shall be concerned with this
problem: given the initial distribution of field correlations
W (x1, x2, 0), how can one obtain the cross-spectral density
at a given z > 0? The answer to this question lies within the
correlation Cmn(k1, k2) between cn(k1) and cm(k2) that can be
directly evaluated from (5):

Cmn(k1, k2) = 〈c∗
m(k1)cn(k2)〉ω

=
∫∫

um(x1, k1)u∗
n(x2, k2)W (x1, x2, 0)dx1dx2.

(11)

The coefficients Cmn(k1, k2) represent a measure of the corre-
lations between bands m and n for FB wave numbers k1 and
k2. Once the coefficients Cmn(k1, k2) are obtained, and with the
knowledge of the statistical properties at the input, the cross-
spectral density W (x1, x2, z) for z > 0 is readily obtained for
any state of light:

W (x1, x2, z) =
∞∑

n,m=1

∫ π/a

−π/a
dk1

∫ π/a

−π/a
dk2

× Cmn(k1, k2)u∗
m(x1, k1)un(x2, k2)

× e−i[βm (k1 )−βn(k2 )]z. (12)

The averaged intensity is given by S(x, z) = W (x, x, z) =
〈|ψ (x, z)|2〉, that is,

S(x, z) =
∞∑

n,m=1

∫ π/a

−π/a
dk1

∫ π/a

−π/a
dk2

× Cmn(k1, k2)u∗
m(x, k1)un(x, k2)

× e−i[βm (k1 )−βn(k2 )]z. (13)

By inspection of Eq. (13), one can conclude that the
spatial correlation represented by the cross-spectral function
W (x1, x2, z) does induce additional FB modes to the overall
field. One may visualize the correlations through the spectral
degree of coherence, a convenient quantity that measures the
normalized degree of coherence between the modes, defined

here as

μnm(k1, k2) = 〈c∗
n (k1)cm(k2)〉√

〈|cn(k1)|2〉〈|cm(k2)|2〉
, (14)

which satisfies the condition 0 � |μnm(k1, k2)| � 1. When
|μnm(k1, k2)| = 1, the field is fully correlated at wave numbers
(k1, k2) and bands (n, m). In the opposite extreme, the field is
fully uncorrelated, and in between these two extreme cases,
the field is partially coherent. Next, we illustrate this theory,
applying it to the specific case of Gaussian-Schell sources.

Gaussian-Schell sources

Gaussian-Schell models describe an important class of
partially coherent beams that are easily created in the labo-
ratory [26,27]. They are characterized by a spectral degree of
coherence that depends only on the difference between the
location of the two points, x1 and x2. Considering that the
field fluctuations are well described by a stationary process,
one suitable model for the cross-spectral density function for
this class of beams at the input is given by

W (x1, x2, 0) = S2
0e−(x2

1+x2
2 )/2σ 2

e−(x1−x2 )2/2δ2
e−iq(x1−x2 ), (15)

where S0 is the field amplitude, σ is the beam width, δ is
the coherence parameter (δ → ∞ describing a fully spatially
coherent beam), and −q(x1 − x2) is a phase factor related to
the transverse incident wave vector q.

The FB correlation coefficients Cmn(k1, k2) are written in
the same form as in Eq. (8) after substituting (15) and (7) into
(11) to obtain

Cmn(k1, k2) = 2πS2
0δσ

2

√
δ2 + 2σ 2

∞∑
α,β=−∞

d (m)
α (k1)

[
d (n)

β (k2)
]∗

× exp

[
−δ2σ 2

(
k1 + 2π

a α − q
)2

2(δ2 + 2σ 2)

]

× exp

[
−δ2σ 2

(
k2 + 2π

a β − q
)2

2(δ2 + 2σ 2)

]

× exp

{
−σ 4

[
k1 − k2 + 2π

a (α − β )
]2

2(δ2 + 2σ 2)

}
. (16)

Equation (16) is a generalization of the absolute square of
Eq. (8). Note that by taking the limit δ → ∞, with k1 = k2 =
k and m = n, one retrieves Eq. (8). It is easy to see that in
the special case of high coherence, δ → ∞, the coefficients
Cmn(k1, k2) can be written as a product between two indepen-
dent functions of n (m) and k1 (k2), which is indicative of a
full correlation between the modes. Figure 4 illustrates the
mean participation coefficients 〈|cn(k)|2〉 for two FB bands
(n = 1 and 2), for several values of the coherence parameter
δ, and for three incidence wave vectors q = 0, q = −0.5 and
q = −1.0 where all the coefficients are divided by the con-
stant factor multiplying the summation. The arrow in Fig. 4(a)
indicates the growth direction of the coherence parameter, and
this applies to all plots in the figure. It is clear that as the
spatial coherence decreases, the contribution to the overall
beam increases in the sense that many FB modes are now
excited when compared to the fully coherent case. Conversely,
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FIG. 4. Mean absolute squared of the first two FB coefficients
〈|cn(k)|2〉 versus wave number k with input beam width σ = 7π ,
amplitude A = 4.0, and coherence parameter δ ∈ [σ/10, σ ] for var-
ious input wave numbers: (a and b) with q = 0.0; (c and d) with
q = −0.5; and (e and f) with q = −1.0. The arrow indicates increas-
ing δ. The nth column corresponds to the nth mode, n = 1, 2.

as the spatial coherence increases, the broadening that once
occupied the whole Brillouin zone becomes smaller and tends
to localize along a limited band around k = 0, as in the fully
coherent case depicted in Fig. 2. Therefore, it is clear that
the lack of spatial coherence does indeed excite additional FB
modes, broadening the spectrum. The extent of the broadening
can be controlled by the coherence degree, a feature that is
quite interesting from the point of view of applications.

The spectral degree of coherence μnm(k1, k2) as a function
of the coherence parameter δ is displayed in Fig. 5 for some
FB wave numbers k1 and k2 in the Brillouin zone, where we
considered the correlations between the first and second bands
n = 1 and n = 2. Figures 5(a) and 5(d) show an example at
the same FB wave number, k. In the solid state, a transition
between bands at the same k value is considered a direct tran-
sition. Otherwise, it is known as indirect. Here, we adapt this
nomenclature referring to direct points k1 = k2 and indirect
ones k1 
= k2. Therefore, Figs. 5(a) and 5(d) are direct points,
while Figs. 5(b) and 5(c) are indirect points. In both cases,
direct or indirect, as the coherence parameter δ increases,
the correlation between bands also increases, reaching the
unit value asymptotically μ12 → 1 as δ → ∞ as expected.
However, for indirect points the rate at which the coherence
degree increases is much slower than the rate for direct points.

The resulting beam spectral density is plotted in Fig. 6(a)
against the propagation distance z for δ = 0.01σ . As expected,
in this low-coherence regime, the influence of the coherence
parameter upon the propagation causes spreading of the beam

12
(k

1,k
2)

q =0.0
q = 0.5
q = 1.0

(a)

(c)

(b)

(d)

FIG. 5. Spectral degree of coherence μ12(k1, k2) versus the
coherence parameter δ for input beam width σ = 7π and amplitude
A = 4.0 at various incident angles, correspondent to q = −1.0 (solid
line), q = −0.5 (dashed line), and q = 0.0 (dot-dashed line). Several
spectral degrees of coherence between points of the Brillouin zone
are displayed: (a) k1 = k2 = −0.3; (b) k1 = −0.2 and k2 = −0.3; (c)
k2 = −0.3 and k1 = −0.2; and (d) k1 = k2 = −0.2.

intensity all over the BZ, resembling the case where there is
no periodic lattice at all, as illustrated.

Now we turn to Fig. 6(b), where the beam center Xc(z) is
depicted according to the definition

Xc(z) =
∫

xS(x, z)dx∫
S(x, z)dx

. (17)

It can be demonstrated that Eq. (17) has the general
form Xc(z) = Xc(0) + vz + p(z), where p(z) is a periodic

z
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S
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δ = 0.01σδ = σ δ = 0.1σ

FIG. 6. (a) Beam spectral density S(x, z) with coherence pa-
rameter δ = σ/100. (b) Mean beam center oscillation Xc(z) versus
propagation distance z for three coherence parameters: σ , σ/10, and
σ/100. For input wave number q = −1.0, input beam width σ = 7π

and potential amplitude A = 4.0.
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function of z that depends on the correlation between bands
〈c∗

n (k)cm(k)〉 and v denotes the linear ramp which depends
on the average values 〈|cn(k)|2〉 for each band n. They both
also depend on the group velocity dβn(k)/dk. The exact
dependence of Xc(z) on the cross-correlations Cmn(k1, k2) and
the group velocity dβn(k)/dk is so intricate that it will be
investigated in more detail in a future work. Nevertheless,
one finds that for an intermediate regime (δ = 0.1σ ), although
the oscillations executed by the beam center undergo damp-
ing, they do not cease to exist. However, as δ decreases, the
damping effect is more severe and tends to wipe them off to
the extent that only the rectilinear movement is left. This is
expected to occur in view of the previous discussion involving
the direction of the group velocity of a Gaussian wave packet,
which is determined by the band diagram illustrated at the
top of Fig. 1 and by the distribution of the absolute squared
Floquet-Bloch coefficients for each band, like the ones shown
in Fig. 2. Here, the group velocity of the propagating beam
is severely affected when additional FB modes are excited in
various bands due to the low spatial coherence (see Fig. 4) of
the incident beam. As a consequence, the number of modes
belonging to the final superposition increases, changing sub-
stantially the correlations between the various modes. The
consequence is that the averaged group velocity will not main-
tain periodic coherence during propagation.

IV. CONCLUSIONS

We have presented a theory of diffraction of partially
coherent paraxial optical beams propagating through a

periodic medium. Within the framework of Floquet-Bloch
waves, we have considered a linear combination of FB modes
with random coefficients to obtain a general expression for
the cross-spectral density W (x1, x2, z) at propagation distance
z. Considering as input a Gaussian-Schell beam, we have
shown that weak correlations may modify severely the power
distribution of the FB modes by spreading the power among
additional FB wave vectors, in contrast with the fully coherent
beam, whose FB power content is localized within a finite
bandwidth in the neighborhood of the input wave vector. In an
intermediate regime of coherence the modes tend to broaden
up to the point of low coherence, where the power distribution
is extended to all over the BZ and the beam profile can hardly
note the grating.

A knowledge of the changes as light propagates through
the transverse periodic medium in the presence, as well as in
the absence, of field fluctuations is necessary to understand
their influence upon light transport. These properties depend
basically on the band structure. By introducing the statistical
properties of the optical field in the investigation of beam
propagation, one should unravel useful phenomena that will
lead to remarkable techniques that manipulate light using the
notion of coherence.
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