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Light bullets in Su-Schrieffer-Heeger photonic topological insulators
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We introduce a different class of thresholdless three-dimensional soliton states that form in higher-order
topological insulators based on a two-dimensional Su-Schrieffer-Heeger array of coupled waveguides. The linear
spectrum of such structures is characterized by the presence of a topological gap with corner states residing in
them. We find that a focusing Kerr nonlinearity allows families of light bullets bifurcating from the linear corner
states to exist as stable three-dimensional solitons, which inherit topological protection from their linear corner
counterparts and, remarkably, survive even in the presence of considerable disorder. The light bullets exhibit
a spatial localization degree that depends strongly on the array dimerization, and may feature large temporal
widths in the topological gap near the bifurcation point, thus drastically reducing the otherwise strong instabilities
caused by higher-order effects.
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I. INTRODUCTION

After the original discovery in condensed matter, topolog-
ical insulators have been encountered in several other areas
of physics, leading to their experimental demonstration in
many systems [1–3], including optical settings [4–6]. An
important property of topological insulators is the existence
of topologically protected edge states with energies resid-
ing inside a topological gap. Recently, a different class of
higher-order topological insulators has been suggested [7–10],
the most remarkable feature of which is their ability to sup-
port topological states with lower dimensions than the bulk
[11,12]. Higher-order topological insulators underlie many
far-reaching concepts, such as higher-order band topology in
twisted moiré superlattices [13], Majorana-like bound states
[14] and their nontrivial braiding [15], or topological lattice
disclinations [16], to name a few.

Optical systems afford the possibility to combine topo-
logical effects and nonlinear self-action, hence enabling a
plethora of phenomena, such as modulational instabilities of
the topological states [17–19], inversion of topological cur-
rents [20,21], nonlinear tuning of the edge state energies [22],
induction of topologically nontrivial phases [23–26], enhance-
ment of parametric interactions [27,28], and rich bistability
effects [29,30]. Advances in the field are reviewed in [31–33].
In particular, nonlinearity allows the formation of so-called
edge solitons—unique states that exhibit topological protec-
tion, that appear in a variety of shapes and feature unusual
interactions. Thus, Floquet edge solitons in helical waveguide
arrays have been theoretically predicted in continuous [18,34–
37], discrete [38–41], and Dirac [42] models. Moreover,
Bragg [43], multicomponent [36,37], valley-Hall edge soli-
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tons [44,45] and solitons in medium with other than Kerr-type
nonlinearity [46] have been addressed. Topological optical
solitons have recently been observed experimentally [47–50],
as well as nonlinear states bifurcating from corner modes in
higher-order topological insulators [51,52]. All such states are
either one- (1D) or two-dimensional (2D).

Three-dimensional (3D) wave packets, referred to as light
bullets [53], are nondiffracting and nondispersing states. They
have attracted continuous attention during several decades
(see [54–56]). However, in contrast to spatial 1D and 2D
solitons, their experimental realization as stable, long-lasting
states remains an outstanding open challenge because of prac-
tical difficulties to fabricate a suitable material structure that
supports stable bullets and also, more fundamentally, because
multidimensional solitons are prone to strong instabilities
[57]. Various theoretical schemes to realize stable multidi-
mensional states have been proposed over the years [55,56],
including parametric mixing in quadratic nonlinear media
[58,59], nonlocal [60,61], competing [62,63], and saturable
[64] nonlinearities, as well as dissipative effects [65–70].
Transversally modulated, nonlinear media, e.g., arrays of
evanescently coupled waveguides, have also been predicted
to support stable light bullets [71–74]. The first experimental
observation of light bullets in a hexagonal fiberlike array with
silica cores was reported in [75], a work that led to the obser-
vation of transient fundamental [76,77] and weakly unstable
vortex [78] light bullets. Later, nonlinearity-induced locking
of long pulses in different modes, resulting in the formation
of spatiotemporal localized states, was observed in graded-
index multimode optical fibers [79]. The recent progress in
the realization of nonlinear photonic topological insulators
in periodic systems raises the question of whether they can
support stable light bullets of topological origin.

In this paper, we explore a 2D Su-Schrieffer-Heeger (SSH)
[80] optical lattice, possessing second-order localized corner
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FIG. 1. Propagation constants of the linear modes of the 2D SSH array vs dimerization parameters � (a). The red line corresponds to
corner topological modes, the blue dots correspond to the modes shown in the bottom row of the figure. Lattice profiles for � = 0.75 (b) and
� = −0.75 (c). Corner modes for � = 0.75 (d) and � = 1.3 (e). Edge states for � = 0.75 (f). An example of a bulk mode in a nontopological
lattice (g) for � = −0.75. Here and below p = 4, d = 3, and σ = 0.4. Here and in all figures below all quantities are plotted in dimensionless
units.

modes, to realize families of stable topological corner 3D light
bullets bifurcating from linear corner states belonging to a
topological gap. Such bullets are localized both in space and
time, and their spatial structure can be controlled by changing
the dimerization of the array, while their temporal localization
depends on their detuning from linear corner states, which al-
lows us to obtain well-localized states with temporal durations
at which higher-order effects can be neglected. They inherit
the staggered spatial structure from corner modes, which dis-
tinguishes them from usual light bullets in periodic optical
potentials. The bullets do not require an energy threshold for
their existence, and can be stable at low and high energies,
even in weak optical potentials. They are robust against con-
siderable disorder introduced into the underlying waveguide
array due to topological protection.

II. THE MODEL

We address the propagation of 3D light beams along the
z axis in a medium with a Kerr χ (3) nonlinearity and an in-
homogeneous refractive index distribution forming a 2D SSH
array of evanescently coupled waveguides. The corresponding
normalized evolution equation for the light field reads as

i
∂ψ

∂z
= −1

2

(
∂2ψ

∂x2
+ ∂2ψ

∂y2

)
− 1

2

∂2ψ

∂t2
− |ψ |2ψ − R(r)ψ.

(1)
Here the transverse coordinates r = (x, y) and the propa-

gation distance z = Z/Zd are normalized to the characteristic
transverse scale w0 and diffraction length Zd = k0n0w

2
0, re-

spectively, where k0 = ω0/c is the wave number, ω0 is the
carrier frequency, n0 is the unperturbed refractive index defin-
ing κ (ω) = n0(ω)ω/c, t = (T −Z/vg)/Ts is the time in the

frame moving with group velocity vg, Ts = w0[−κ (2)κ (ω)]1/2

is the time scaling, κ (2) = ∂2
ωκ (ω) < 0 is the anomalous

group velocity dispersion coefficient. Our 2D SSH array pos-
sesses a square geometry with four waveguides in a unit
cell as depicted in Fig. 1. There are two competing param-
eters in the array: the intracell (d1) and the intercell (d2)
distances between waveguides. They modulate the coupling
strengths between nearest lattice sites, while d1 + d2 = 2d ,
where 2d is the lattice constant. For simplicity, we define
dimerization parameter � = (d1 − d2)/2

√
2, that is, the di-

agonal shift of the waveguides from the equilibrium position
when the distance between neighboring waveguides is equal
to d (for � = 0, the array becomes square with the lattice
constant d). The array is composed of identical waveguides
of width σ placed in the nodes rnm = (xnm, ynm) of the 2D
SSH grid R(r) = p

∑
nm exp[−(r − rnm)2/σ 2] with depth p =

max(δn)k2
0 w2

0 n0, where δn is the refractive index contrast.
Having in mind a potential realization of our system with
fs-laser written waveguide arrays in fused silica [81], we se-
lect the values of the dimensionless parameters to be d = 3,
σ = 0.4, and p = 4. This corresponds to a 60-μm distance
between waveguides at � = 0, a waveguide width of 8 μm
(hereafter, we use the characteristic transverse scale w0 = 20
μm), a refractive index contrast of about δn ≈ 4.2 × 10−4

at λ = 1550 nm (the background refractive index is n0 ≈
1.45); while z = 1 corresponds to about 2.34 mm. The group
velocity dispersion for such a wavelength is of the order
of κ (2) ≈ −28 fs2/mm and the time scaling factor is Ts =
8.1 fs.

III. LINEAR MODES

For the 2D SSH array a topological phase can be intro-
duced by varying the dimerization parameter � (see Fig. 1).
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FIG. 2. Family of light bullets bifurcating from linear topological
corner modes in a 2D SSH array with � = 0.75 and d = 3. Black
branches are stable, while red ones are unstable. Shaded regions
show bulk and edge state bands. In the linear limit, where the prop-
agation constant b tends to a linear propagation constant [red line
in Fig. 1(a)] the bullet energy U and the amplitude as vanish. The
inset illustrates an enlarged image of such a dependence. The dots
correspond to the bullets depicted in Fig. 3.

The examples of arrays with positive and negative � are illus-
trated in Figs. 1(b) and 1(c). The emergence of a topological
phase in the array of this type can be characterized by the
corresponding topological invariants defined for the periodic
nontruncated array—two polarizations

Pj = −S−1
∫∫

BZ

∑
l

All
j dkxdky, (2)

where Anm
j = −i〈φk,n|∂φk,m/∂k j〉 is the Berry connection with

product 〈u|g〉 = ∫∫
unit cell u∗g dxdy, S is the area of the first

Brillouin zone (BZ), k = (kx, ky) is Bloch momentum, ψn =
φk,nexp(ikr + ibz), where φk,n(x, y) = φk,n(x + 2d, y + 2d )
is the Bloch function of the nth band which is periodic along x
and y axes. This Bloch function solves the eigenvalue problem
bφk,n = [(∇ + ik)2/2 + R(r)]φk,n, where ∇ = (∂/∂x, ∂/∂y),
R(r) is the profile of the periodic array, and b is the prop-
agation constant. For the SSH array, the topological phase
corresponds to � > 0 with Px = Py = 1/2 and the trivial
phase is identified by vanishing polarizations Px = Py = 0 for
� < 0 [82–84].

We start elucidating the linear properties of the struc-
ture, as they are central for understanding of the topological
properties of the system. First, we consider a truncated 2D
SSH array with 49 unit cells with different dimerizations �.
The linear eigenmodes propagating in the z direction can
be found as ψ (x, y, z, t ) = w(x, y) exp(ibz) where b is the
eigenvalue (propagation constant) of the mode, while a real
time-independent function w describes the mode profile in
the transverse plane. The dependence of the eigenvalues b on
the dimerization parameter � is shown in Fig. 1(a) for d = 3.
One can see that for positive �, corner states appear in the
topological gap between first and second bands in accordance
with nonzero values of bulk polarizations. The corresponding
corner state is highlighted in red. The bottom row of the
figure shows examples of linear modes in the topological
and nontopological phases. The localization of the topological
corner modes progressively increases with the increase of �

[see Figs. 1(d) and 1(e)]. In addition to corner states, one
can see the appearance of the group of eigenvalues associated

FIG. 3. Spatial distributions at t = 0 (left column) and temporal
profiles at x = −20, y = 20 (right column) for light bullets with (a)
b = 0.2, (b) b = 0.25, (c) b = 0.29, (d) b = 0.34, corresponding to
the dots in Fig. 2. In the left column, the red regions correspond to
high intensities and magenta regions correspond to low intensities.
Light bullets from gap (i) have the structure of tails associated to
topological states, while in gap (ii) the corner bullet acquires in-phase
tails. The temporal width of the bullets increases when b approaches
the bifurcation point from the corner mode. Here � = 0.75.

with edge states, which we will further call the edge state
band [an exemplary profile of such edge state is presented in
Fig. 1(f)]. In the nontopological regime, at � < 0 all modes of
the array are delocalized; one illustrative example is presented
in Fig. 1(g). Below, we will use topological corner states at
� = 0.75 to construct nonlinear 3D light bullets. The corner
states are degenerate for the large array considered here, thus
one can always select linear combinations of such states lo-
calized in only one corner of the structure, as in Fig. 1(d).
Topological protection of linear corner states has been tested
by adding small disorder into waveguide depths and positions,
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FIG. 4. Evolution of light bullets for b = 0.2 (a) and b = 0.34 (b). The case b = 0.34 represents an unstable state, while b = 0.2 is stable.
The evolution of the peak amplitude of the light bullets during propagation is shown on the left, and the isosurfaces (|ψ | = const) at z = 100
and z = 1000 for the unstable and stable cases, respectively are shown on the right. The contours are taken at 1/5 and 1/60 of the maximum
amplitude as. Red curves in (a) show peak amplitude as a function of propagation distance z for b = 0.2 for different realizations of disorder
with δp = 0.03 and δd = 0.1. Here � = 0.75.

which did not lead to appreciable shifts of their propagation
constants. Note that the structure considered here is large
enough, with a well-developed gap, as seen from comparison
with the spectrum of a larger array with 196 cells, shown in
Appendix A.

IV. LIGHT BULLETS

To search for nonlinear bifurcation of the family of
light bullets from linear topological corner states we con-
sider stationary soliton profiles in the form ψ (x, y, z, t ) =
w(x, y, t ) exp(ibz). Substitution of this expression in Eq. (1)
leads to the nonlinear problem

bw = 1

2

(
∂2w

∂x2
+ ∂2w

∂y2

)
+ 1

2

∂2w

∂t2
+ w3 + R(x, y)w, (3)

where b is a propagation constant that defines the energy
of the bullet U = ∫∫∫ |w|2 dxdydt , its amplitude and width.
We solved this equation using a modified squared operator
method [85]. The dependence of U on b that we found is
shown in Fig. 2. The gray areas in this figure correspond either
to the allowed bands of the linear spectrum or to the band,
occupied by the edge states. There are three different regions
in the figure: (i) the part of the topological gap below the band
of edge states, (ii) a topological gap above the band of edge
states, and (iii) a semi-infinite gap. Remarkably, because light
bullets bifurcate from localized corner modes, their energy
vanishes at the b value corresponding to the propagation con-
stant of the corner state. When b approaches the bifurcation
point, the amplitude of the bullet decreases, its spatial width
approaches the width of the corner topological mode, while
the temporal width drastically increases.

In Fig. 3 we show examples of the cross sections at t = 0
and x ≈ −20, y ≈ 20 of solutions from parts (i) [Figs. 3(a)–
3(c)] and (ii) [Fig. 3(d)] of the topological gap. Increasing
the nonlinearity may drive the corner bullets into the band
of edge states, causing their coupling with edge modes. One
can see that in this case the bullet acquires long tails along
the edges of the array [see Figs. 3(b) and 3(c)]. Noteworthy
is that the bullets from region (i) have an out-of-phase tail

in neighboring waveguides to the corner one [see Fig. 3(d)],
while the tails of light bullet from regions (ii) and (iii) are
in phase [see Figs. 3(a)–3(c)]. The temporal width increases
as the propagation constant decreases, as shown in the right
column of the figure. We also found that in region (ii), the
family is divided into two branches. In the semi-infinite gap,
as the propagation constant b increases, the amplitude of the
topological light bullet increases, while the spatial and tempo-
ral widths decrease.

V. STABILITY OF LIGHT BULLETS

We checked the stability of the 3D states via compre-
hensive propagation simulations. We expect that the solitons
corresponding to the stable branches are able to withstand
small perturbations without collapse, whereas linearly un-
stable solitons are expected to either collapse or spread,
depending on the type and strength of the perturbation. We
simulated the evolution of perturbed solitons using the in-
put conditions ψ (z = 0) = w(x, y, t )(1 + nre + inim ), where
nre and nim represent a small noise, whose amplitude is uni-
formly distributed in the interval [−0.05, 0.05]. We found
that stability properties in semi-infinite gap agree with
the Vakhitov-Kolokolov criterion [86] implying stability for
∂U/∂b > 0 branches and instability for branches with nega-
tive slope. In contrast to our 3D solitons, 2D (1D) nonlinear
corner (edge) states in the SSH array exhibit stability through-
out the semi-infinite gap. Stable 3D states in Fig. 2 are shown
in black, while unstable states are shown in red. Both branches
of region (ii) are unstable, however, it should be noted that for
larger depth p of waveguides, it is possible to obtain stable
states from this gap too. Remarkably, the entire branch of
bullets bifurcating from the linear corner state corresponds
to stable states, even when it penetrates into the edge state
band. This suggests that higher-order topological insulators
may allow us to observe stable bullets even with low energies
or peak amplitudes. This is in contrast to usual nontopo-
logical waveguide arrays, where stable 3D states exist only
in a narrow band of energies, limited both from below and
above.
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FIG. 5. Propagation constants b of the linear modes of the 2D
SSH array vs dimerization parameters �. Red dots correspond to
corner topological modes, blue dots correspond to edge modes, and
black dots correspond to bulk modes.

Examples of stable and unstable evolution of topological
light bullets are shown in Fig. 4. The left column of the figure
shows the evolution of the peak amplitude as of the bullets
along propagation, while the right column shows represen-
tative isosurfaces (|ψ | = const) at various z. The amplitude,
temporal, and spatial widths of stable perturbed light bullets
belonging to region (i) oscillate only slightly, and no collapse
or breakup is observed during propagation over considerable
distances [black line in Fig. 4(a)]. In contrast, under the action
of small noise, unstable solitons usually quickly decay, as
shown in Fig. 4(b).

In practice, the impact of higher-order effects is critical
for the excitation of long-lived light bullets. Such effects
occur with ultrashort pulses and quickly destroy the bullets.
However, as the light bullets described here are stable at low
energies, one may excite them with relatively large temporal
width. For instance, a temporal full width at half maximum
(FWHM) of the topological bullet with b = 0.2 shown in
Fig. 3(a) is 14.2, which corresponds to a time duration of
about 115 fs, and the light bullet with b = 0.19 has a FWHM
of 22.6 (183 fs). On the other hand, the spatial localization of
the bullets is dictated by the localization degree of the topo-
logical corner state from which they bifurcate (see Appendix
B), and one can readily control such degree by changing the
dimerization � of the array or the waveguide depth p.

To elucidate the robustness of our light bullets we also
examined how disorder in the underlying array impacts their
propagation. To such end, we consider the propagation of
one of the light bullets from the topological gap in the SSH
lattice with diagonal and off-diagonal uncorrelated disorder.
We assumed that the depths of waveguides take random values
uniformly distributed in the interval [p(1 − δp), p(1 + δp)].
We also changed the spatial position of each waveguide by
a random shift uniformly distributed within [−δd , δd ] along
the x and y axes. Such a disorder broadens the bulk bands
and simultaneously leads to small fluctuations of the propa-
gation constant of the corner states. The evolution of the light
bullet peak amplitude versus propagation distance for several
disorder realizations is depicted by red curves in Fig. 4(a)
for δp = 0.03 and δd = 0.1. One concludes that stable states
are only weakly affected by disorder in the array. Similar
conclusions about robustness of the light bullets were obtained
by considering z-dependent diagonal and off-diagonal disor-

FIG. 6. Spatial field distributions at t = 0 in light bullets with
(a) � = 0.5, (b) � = 0.75, (c) � = 1, and (d) � = 1.50 with fixed
propagation constant b = 0.2. These light bullets have staggered
structure of tails representative for topological states. With increase
of � the spatial width of the bullet gradually approaches the width
of the linear topological corner mode.

der that varies with z not too fast, at the scales substantially
exceeding z = 1.

VI. CONCLUSION

In summary, we have shown the existence of stable 3D
spatiotemporal solitons in a higher-order topological insulator
constructed using a 2D Su-Schrieffer-Heeger optical lattice
with parameters that are experimentally realizable. We veri-
fied the robustness of the 3D states via numerical propagations
in the presence of disorder. The result puts forward a different
approach to tackle the long-standing problem of experimental
formation of long-lived nondiffracting and nondispersing self-
sustained 3D objects in nonlinear optical media, by exciting
them as corner states in a photonic topological insulator.
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APPENDIX A: LINEAR SPECTRUM OF 2D
SU-SCHRIEFFER-HEEGER WAVEGUIDE ARRAY

In the main text of this paper, we use the SSH array with
49 unit cells. To stress that the band-gap structure is similar
in larger arrays and that the topological gap is already well
developed in the array with the 49 unit cells considered in
the main text, in Fig. 5 we present the spectrum (propagation
constants of all linear eigenmodes of array versus dimeriza-
tion parameter �) for a larger array with 196 unit cells. The
red dots in this spectrum correspond to corner states appearing
between the first and second bulk bands at � > 0. They may
partially overlap with bulk band at � < 0.6 as observed also
in [52]. In addition to corner states, one can see the appearance
of the group of eigenvalues associated with edge states (blue
dots). Black dots correspond to delocalized bulk modes. It
can be seen that the boundaries of the gaps and bands from
Fig. 1(a) of the main text agree well with the boundaries in
the spectrum of larger array from Fig. 5, i.e., the gap is well
developed for the array used in the main text.

APPENDIX B: SPATIAL DISTRIBUTIONS OF LIGHT
BULLETS FOR DIFFERENT �

Next, we consider three-dimensional solitons that bifurcate
from linear corner states for different dimerization parameters
�. In the main text, we show that at sufficiently low energies,
when b is close to the bifurcation point, the temporal width of
the soliton drastically increases. Here we confirm that in this
regime the spatial width of the light bullet can be controlled
by dimerization parameter �. In Fig. 6 we show the exam-
ples of the field distributions at t = 0 in light bullets with
a fixed propagation constant b = 0.2 for different � values.
One can see that the spatial width of the bullet decreases
with increasing dimerization parameter. At the same time, one
can clearly see that the field changes its sign in waveguides
belonging to different unit cells, which is a characteristic
feature for these states of topological origin with propagation
constants belonging to the topological gap that clearly dis-
tinguishes them from conventional light bullets with in-phase
tails.
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