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Mechanical squeezing via detuning-switched driving
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The generation of mechanical squeezing has attracted a lot of interest for its nonclassical properties, applica-
tions in quantum information and high-sensitivity measurements. Here we propose a detuning-switched method
that can rapidly generate strong and stationary mechanical squeezing. The pulsed driving can dynamically
transpose the optomechanical coupling into a linear optical force and maintain an effective mechanical frequency,
which can introduce strong mechanical squeezing in a short time. Moreover, we show the obtained strong
mechanical squeezing can be frozen by increasing the pulse intervals, leading to stationary mechanical squeezing
with a fixed squeezing angle. Thus, our proposal provides fascinating insights and applications of modulated
optomechanical systems.

DOI: 10.1103/PhysRevA.107.033508

I. INTRODUCTION

Mechanical squeezed states allow the quantum fluctuation
of a single quadrature below the zero-point fluctuation. The
unavoidable fluctuations limit the precision of measurement
of mechanical quadratures, which then can be surpassed with
mechanical squeezed states [1,2]. Mechanical squeezing was
first considered and realized in parametric resonators [3,4],
the frequency of which was modulated at twice the original
mechanical oscillation frequency. In optomechanical systems,
parametric squeezing can be realized by the modulation of
the optical spring [5–9]. However, the steady-state squeezing
degree is limited to 3 dB due to the divergence of the ampli-
fied quadrature [4]. To obtain strong mechanical squeezing,
additional measurement and appropriate feedback control are
required to suppress the amplification [9–12]. Conversely,
measurements can also be used to prepare quantum states,
especially mechanical squeezed states [13–16]. With suffi-
ciently strong measurements and optimal estimation of the
quadrature, strong mechanical squeezing can be obtained in
a conditional state [17,18]. However, feedback force related
to the estimation results is also required to convert the system
to unconditional squeezing [19–21].

Instead of a long dissipative evolution, strong mechanical
squeezing can also be obtained in nonequilibrium processes,
for example, via rapid [22–25], periodic [26–28], or pulsed
[29,30] modulations of the optical driving and through un-
stable multimode dynamics [31]. Different designs of optical
driving structures can touch different goals, including ul-
traprecise measurements and state preparation without other
assistance or additional feedback. State preparation with fast
pulses has seen great progress in experiment [32,33]. How-
ever, the amplitude-modulated structure requires the cavity

*ycliu@tsinghua.edu.cn

decay rate to be much larger than the mechanical frequency
to keep the pulse durations small after inputting the cavity
[34,35], which precludes further squeezing of the mechanical
mode. Moreover, the mechanical squeezing obtained from
nonequilibrium processes is far from a steady state, and rapid
preparation of stationary mechanical squeezing remains a
challenge.

In this work, we first analyze the squeezing effect of a me-
chanical resonator induced by detuning-switched driving in
an optomechanical system (see Fig. 1). A series of four optical
rotating pulses, which introduces an additional small period to
the optical mode, yields quick measurements of mechanical
position and induces a linear optical force. We can directly
control the effective mechanical frequency and obtain pure
squeezing terms through the optical force. Without additional
readout and feedback control, the mechanical mode evolves
to a deterministic squeezed state in a short time under the
pulsed driving. By increasing the pulse interval, we further
increase or decrease the effective mechanical frequency. In
this way, the squeezed state becomes a thermal coherent state
of the mechanical resonator under effective frequency, and
we obtain stationary mechanical squeezing without a long
dissipative evolution. Stationary mechanical squeezing allows
improved measurement precision of a fixed quadrature which
is not available with conditional or rotated squeezing states.

II. SYSTEM MODEL

In the rotating frame with the frequency of the driving
laser, such an optomechanical model can be well described by
the Hamiltonian H = −�(t )a†a + ωmb†b + ga†a(b + b†) +
�a† + �∗a, where a (a†) and b (b†) are the optical and
mechanical annihilation (creation) operators, respectively. ωm

is the mechanical resonance frequency. g is the single-photon
optomechanical coupling strength. � describes the laser driv-
ing strength, and �(t ) is the time-dependent detuning between
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FIG. 1. Optomechanical model with detuning-switched driving.
(a) Schematic of the optomechanical model in this work. The cav-
ity mode is driven by a detuning-switched laser. (b) The detuning
structure as a function of time with φ ∈ [−π, π ]. A series of four
optical rotating pulses is applied to the optical mode through large
detunings. (c), (d) Sketches of the evolution of optical quadrature
operators in a four-pulse period for φ < 0 (c) and φ > 0 (d). The
straight arrows and curved arrows indicate the evolutions between
and during rotating pulses.

the driving laser and cavity resonance frequency. The optical
(mechanical) decay rate is κ (γ ). Most of the time, �(t ) =
�0 remains a small value (compared with the enhanced op-
tomechanical coupling strength G), except during the rotating
pulse, when the detuning is shifted to a huge value to rapidly
change the relative phase of the cavity field. As the rotating
pulse is very short (compared with the pulse interval), we can
still employ the linearized process, i.e., a → a + α and b →
b + β, where α = 〈a〉 and β = 〈b〉 are the average amplitudes
of the optical and mechanical modes, respectively. Then the
linearized Hamiltonian can be obtained as (see Appendix A
for more details)

HL = −�′(t )a†a + ωmb†b + (Ga† + G∗a)(b + b†), (1)

where �′(t ) = �(t ) − g(β + β∗) is the effective detuning and
G = gα is the enhanced optomechanical coupling strength.

The detuning during each pulse is so large that the evolu-
tion of the mechanical resonator and optomechanical coupling
can be neglected. Then the evolution can be described by the
rotating operators R(θ j ) = eiθ j a†a, where θ j = ∫ jt0+δt

jt0
�′(τ )dτ

is the rotating angle during each pulse and θ j = φ,±π −
φ, φ,±π − φ, . . . (φ ∈ [−π, π ]) in our pulse structure [see
Fig. 1(b)]. As shown in Figs. 1(c) and 1(d), the first two
evolutions between rotating pulses in a four-pulse period yield
a quick measurement and store the information in quadrature
PL, which can then be erased and renewed soon within the
rotating pulses [see Figs. 1(c) and 1(d)]. The rotating pulses
also transpose the information to quadrature XL, which can
react on the mechanical quadratures soon in the later op-
tomechanical coupling. The information transposed by pulses
with rotating angles φ > 0 [see Fig. 1(c)] and φ < 0 [see
Fig. 1(d)] is different, resulting in opposite feedback controls
of the mechanical quadratures. These two sketches are plotted

according to the Heisenberg equations [see Eqs. (9) and (10)
below]. We note that the cavity quadratures will not rotate
following the driving laser if we employ only a sudden switch
of the laser frequency. It also requires a stronger power of the
driving laser to compensate for the larger detuning, and the
phase of the laser driving should also be adjusted. Moreover,
the detuning should not be enlarged arbitrarily fast, but on a
timescale smaller than the round-trip time of the cavity. In this
case, the cavity can still reach a new equilibrium with large
detuning (see Appendix F for more details).

It is convenient to employ the Baker-Campbell-Hausdorff
(BCH) formula here to analyze the whole evolution operator
in a four-pulse period (the total rotating phase of the optical
field in a period is 2π ), which can be written as

U (T ) = [R(π − φ)U (t0)R(φ)U (t0)]2, (2)

where T = 4t0 is the four-pulse period and U (t0) = e−iHLt0

describes the evolution between two pulses. The effective de-
tuning between two pulses is �0 − g(β + β∗) ≡ �′

0. Here we
employ an approximation that the pulse interval is small, i.e.,
ωmt0 	 1. Then the higher-order terms in the BCH formula
can be directly neglected except for the first and second ones,
leading to a Hamiltonian that satisfies U (T ) = e−iH0T . The
Hamiltonian can be written as H0 = Heff + H ′, where

Heff = ωmb†b + σ (b + b†)2, (3)

σ = 1
2 |G|2t0sinφ, (4)

and H ′ = −�′
0a†a + �′

0(μa† + μ∗a)(b + b†) + ωm(μa† −
μ∗a)(b − b†), with μ = 1

4 Gt0(1 + eiφ ) (see Appendix B for
more details). In the strong-coupling and small-detuning
regime that we consider, i.e., |Gsinφ| 
 |�′

0|, ωm, and with
the assumption that |μ| 	 1, the last two optomechanical
coupling terms of H ′ can be neglected. Thus, the first term of
H ′ can be neglected as well, leaving an effective Hamiltonian
that contains pure mechanical squeezing terms b2 + b†2

without any optomechanical couplings.

III. SQUEEZING GENERATION

To understand and quantify the obtained mechanical
squeezing, we further introduce dimensionless quadratures,
defined as XL = a + a†, PL = i(a† − a), XM = b + b†, PM =
i(b† − b), and YM = be−iθ/2 + b†eiθ/2, where YM is the
squeezed mechanical quadrature and θ is the squeezing angle.
So the Hamiltonian in Eq. (3) can be rewritten as Heff + 1/2 =
ωm(X 2

M + P2
M )/4 + σX 2

M . This means that the optomechanical
coupling can be dynamically transposed to a constant mod-
ulation of the potential energy or the spring constant felt by
the mechanical resonator. In other words, such a pulse struc-
ture can rapidly maintain an effective mechanical resonance
frequency as

ωs =
√

ωm(ωm + 4σ ) (5)

in the dynamically stable regime for σ > −ωm/4. Here σ =
−ωm/4 is the threshold condition of the pulsed driving.
Above the threshold, the variance of the amplified mechanical
quadrature increases exponentially. Note that the threshold
exists only when the rotating angle φ < 0 when the effective
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potential energy of the mechanical resonator is reduced to
zero.

It is clearer from the Heisenberg equations of quadratures.
Without losing generality, we assume G is real. Then the linear
Hamiltonian in Eq. (1) can be rewritten as

HL = − 1
4�′(t )

(
X 2

L + P2
L

) + 1
4ωm

(
X 2

M + P2
M

) + GXLXM , (6)

and the Heisenberg equations are given by

ẊL = −�′(t )PL, ṖL = �′(t )XL − 2GXM , (7)

ẊM = ωmPM, ṖM = −ωmXM − 2GXL. (8)

Between two pulses, we have �′(t ) = �′
0 	 G. Equation (7)

can be reduced to

ẊL ≈ 0, ṖL ≈ −2GXM . (9)

During the pulses, �′(t ) 
 G, we have

ẊL ≈ −�′(t )PL, ṖL ≈ �′(t )XL. (10)

Figures 1(c) and 1(d) are plotted according to Eqs. (9) and
(10). As shown in Eq. (9), the optomechanical coupling be-
tween the two nearest pulses generates a measurement on the
mechanical quadrature XM . Then the rotating pulse transposes
the information to another optical quadrature XL and changes
the optical force. The average optical force can be obtained as

Fave = −σXM , (11)

which is proportional to the mechanical quadrature XM . If φ =
0,±π , the average optical force is zero with no squeezing
effect. There are similar quick measurements, but the informa-
tion is stored only in PL and does not react on the mechanical
quadratures. If φ = ±π/2, the information is transposed to-
tally, and the maximal squeezing degree can be obtained.

As an example, for φ = π/2, we plot the detailed Wigner
functions and the evolution of quadrature variances in the first
four-pulse period, starting with both optical and mechanical
modes vacuum states (see Fig. 2 and Appendix C). Without
the pulses, the optomechanical coupling, called X -X coupling,
will lead to large amplification of optical quadrature PL due
to the large optomechanical coupling strength. Additional
pulses turn the trend around and, at the same time, transpose
the information from PL to XL. The latter can react to the
mechanical quadratures, leading to a linear optical force and
an effective mechanical frequency. Moreover, after the four-
pulse sequence, all the mechanical information written on the
optical field is erased, and the mechanical quadratures are cor-
related. This means that the mechanical squeezing obtained is
very pure without measurement.

IV. STATIONARY MECHANICAL SQUEEZING

As the pulsed driving rapidly maintains an effective me-
chanical frequency ωs, the mechanical quadratures will rotate
with the frequency, accompanied by quadrature squeezing
with the periodically changing squeezing degree and squeez-
ing angle. The approximate time evolution of mechanical
quadratures can be derived from the effective Hamiltonian
Heff and corresponding master equations. For σ > −ωm/4
below the threshold, the evolution of the variance of the

FIG. 2. Generation of mechanical squeezing. The Wigner func-
tions of the (a) optical and (c) mechanical modes at certain times
labeled in (b) by black triangles. The vertical axis is Xi, and the
horizontal axis is Pi for i = L, M. (b) The detailed detuning structure
in the first four-pulse period, corresponding to φ = π/2 in Fig. 1(b).
The time evolutions of (d) optical and (e) mechanical quadrature
variances. The initial photon and phonon numbers are both zero.
Other parameters are ωmt0 = 0.01, ωs = 4ωm, and �′

0 = 0,

squeezed mechanical quadrature is given by (see Appendix D
for more details)

δY 2
M (t ) = (1 + 2nth )

×
⎡
⎣1 − 2σ 2

ω2
s

cos2 ωst

⎛
⎝
√

1 + ω2
s

σ 2 cos2 ωst
− 1

⎞
⎠
⎤
⎦,

(12)

where nth is the phonon number of the initial mechanical
state. We have neglected the mechanical decay rate, as we are
interested in only the short-time evolution far from equilib-
rium. The maximal squeezing degree is obtained at half the
evolution period, i.e.,

ts = π

2ωs
. (13)

The minimal variances of the squeezed quadrature are approx-
imately given by

(
δY 2

M

)
min =

{
(1 + 2nth )ωm+4σ

ωm
, −ωm

4 < σ < 0,

(1 + 2nth ) ωm
ωm+4σ

, σ > 0.
(14)

The initial phonon number can be very low (nth � 1) because
we can employ laser cooling before the generation of me-
chanical squeezing. This means that our proposal can squeeze
a mechanical mode with quadrature variance far below the
zero-point fluctuation.

The maximally squeezed state at t = ts is a thermal coher-
ent state of the mechanical resonator with another frequency,
ω′

s = ωm + 4σ . The effective Hamiltonians with these two
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frequencies are given by

Heff = 1

4
ωs

⎛
⎝
√

ωm + 4σ

ωm
X 2

M +
√

ωm

ωm + 4σ
P2

M

⎞
⎠ − 1

2
, (15)

Heff = 1

4
ω′

s

(
X 2

M + ωm

ωm + 4σ
P2

M

)
− 1

2
. (16)

The mechanical quadratures with frequency ω′
s are un-

squeezed at t = ts, i.e., (ωm + 4σ )δX 2
M = ωmδP2

M . This means
that the squeezed state is a thermal state with effective fre-
quency ω′

s and its Wigner function is a circle. The thermal
state will be kept in the later evolution. Consequently, if we
increase the pulse interval for t > ts and thus change the
effective mechanical frequency to ω′

s, the mechanical mode
will remain stationary at the maximally squeezed state, with
both the squeezing degree and the squeezing angle unchanged.
The idea of generating stationary squeezing by changing the
frequency was first proposed in Ref. [36]. Here we can realize
it by increasing the pulse interval. The increased pulse inter-
vals are

t ′ = 2t0

[
1 + |G|2t0

ωm
sin φ

]
. (17)

Detailed pulse structures are shown in Figs. 3(a) and 3(c),
where t1 (t2) is the increased pulse interval for φ = −π/2
(π/2). In Figs. 3(b) and 3(d), we plot the time evolutions of
the mechanical quadratures in the two cases. The mechanical
mode evolves to the maximally squeezed state at t = ts. Af-
terward, we increase the pulse interval and obtain stationary
mechanical squeezing in a short time. In particular, mechan-
ical quadrature PM is squeezed (YM = PM) with squeezing
angle θ = π for φ < 0, while for φ > 0 the squeezed mechan-
ical quadrature is YM = XM with squeezing angle θ = 0.

V. SQUEEZING PERFORMANCE

To verify the accuracy of the approximations made in the
derivation of the effective Hamiltonian, we plot the minimal
variance of the squeezed quadrature YM as a function of G and
t0 for φ = −π/2 [see Fig. 4(a)] and φ = π/2 [see Fig. 4(b)].
Large squeezing degrees can be obtained in a wide range of
parameters, as predicted by Eq. (14). But the approach works
badly with parameters away from our assumptions (ωmt0 	 1,
G 
 ωm, and |μ| 	 1, i.e., |Gt0| 	 1). When |Gt0| � 1, the
optomechanical coupling terms that we neglected will greatly
influence the evolution of the mechanical mode and reduce the
squeezing degree. For φ < 0, the parameter region |Gt0| � 1
is deep into the unstable region, which we are not interested in.
To be clear, we emphasize the contour line of 3-dB squeezing
(black solid lines), which agrees well with the exact values
(blue dots) for appropriate parameters.

Furthermore, in Figs. 4(c) and 4(d), we analyze the influ-
ence of Gaussian errors that may exist in the parameters of
the pulse structure, i.e., φ and t0. The Gaussian errors will in-
fluence the squeezing performance, with minimal quadrature
variances both larger and smaller than the exact result without
the Gaussian errors. Moreover, the average value of minimal
variances is larger than the exact result without Gaussian
errors.

FIG. 3. Stationary mechanical squeezing. (a), (b) φ = −π/2 and
(c), (d) φ = π/2. (a), (c) The detuning structures to realize stationary
mechanical squeezing. The pulse interval is increased to t1,2 after
the maximum squeezing degree is obtained, i.e., t = ts. (b), (d) The
time evolutions of mechanical quadrature variances for ωmt0 = 0.005
and G/ωm = 8. The insets show Wigner functions of the mechanical
mode at three specific times denoted by the arrows. Other unspecified
parameters are the same as in Fig. 2.

VI. CONCLUSION

In conclusion, we proposed a detuning-switched scheme
that can dynamically generate strong and stationary mechan-
ical squeezing in an optomechanical system rapidly. The
detuning-switched pulses can transpose the optomechanical
coupling to a linear optical force felt by the resonator and
maintain an effective mechanical frequency, leading to a pure
squeezing term. The squeezing process originates from a se-
ries of single-quadrature measurements and feedback through
the optomechanical interactions, while the large-detuning
pulses rotate the optical quadratures and allow the infor-
mation of mechanical quadrature to be transferred between,
erased from, and renewed in the optical quadratures. With
this method, a large amount of squeezing can be achieved
rapidly without a long dissipative evolution. Moreover, we
showed that the squeezing degree and the squeezing angle at
the maximally squeezed state can be frozen by increasing the
pulse interval, i.e., further increasing or reducing the effective
mechanical frequency. This method works well with large-
range parameters and is robust to the Gaussian-shaped error
of pulse areas and pulse intervals. Our pulsed scheme can be
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FIG. 4. Influence of parameters and Gaussian errors. The mini-
mal variance of YM as a function of G and t0 for (a) φ = −π/2 and
(b) φ = π/2. The black solid line (blue dots) indicates the contour
line for 3-dB squeezing of numerical (analytical) results. The light
blue (gray) shading indicates the unstable (no-squeezing) region.
Histograms of minimal variances of YM in 400 calculation events
when adding Gaussian error to either (c) rotating angles or (d) pulse
intervals of each pulse. The standard deviations of the Gaussian
errors are both one tenth of the average values, which is φ = π/2 and
t0 = 0.01ω−1

m . The average results are (δY 2
M )min = 0.0746 [red dashed

line in (c)] and (δY 2
M )min = 0.0745 [red dashed line in (d)]. With-

out the Gaussian errors, the minimal variance is (δY 2
M )min = 0.0714

[black dashed lines in (c) and (d)]. Other parameters are �′
0 = 0,

ωs = 4ωm, i.e. G ≈ 27.4ωm.

also applied to other bosonic models that have a similar form
of coupling, providing a unique method to generate stationary
squeezing in these systems.
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APPENDIX A: SYSTEM HAMILTONIAN

We consider a common optomechanical model in which a
Fabry-Pérot cavity with cavity mode a and frequency ωc is
coupled with a mechanical oscillator with mechanical mode
b and frequency ωm. To dynamically generate mechanical
squeezing, a series of four optical rotating pulses with equal
interval t0 is included by rapidly changing the frequency of the
driving laser, i.e., the detuning. The system Hamiltonian can
be written as

HS=ωca†a + ωmb†b + ga†a(b + b†) + (�e−iωL (t )t a† + H.c.),
(A1)

where g is the single-photon optomechanical coupling
strength and � [ωL(t )] is the strength (frequency) of the

optical driving. In the rotating frame with frequency ωL(t ),
the Hamiltonian can be rewritten as

H = −�(t )a†a + ωmb†b + ga†a(b + b†) + (�a† + H.c.),
(A2)

where �(t ) = ωL(t ) − ωc is the laser detuning. We note that
here we have neglected the term containing the time derivative
of the laser frequency, which is nonzero at the beginning and
the end of the large-detuning pulses, because this term will be
canceled out at the beginning and the end of large-detuning
pulses because the pulse duration is extremely small. Between
two pulses, the detuning �(t ) = �0 remains a constant value.
The quantum Langevin equations can be obtained as

ȧ =
[

− κ

2
+ i�(t )

]
a + iga(b† + b) − i� + ain, (A3)

ḃ =
(

− γ

2
− iωm

)
b + iga†a + bin, (A4)

where κ (γ ) is the decay rate of the optical (mechanical)
mode and ain and bin are the corresponding noise operators.
Here we employ the linearization process by replacing optical
and mechanical operators with their average values and fluc-
tuations, i.e., a → a + α and b → b + β, where the average
values satisfy

α̇ =
[

− κ

2
+ i�(t )

]
α + igα(β∗ + β ) − i�, (A5)

β̇ =
(

− γ

2
− iωm

)
β + ig|α|2. (A6)

Note that α and β given by Eqs. (A5) and (A6) are also time
dependent as the detuning is changed periodically. However,
the time-dependent effect can be neglected because the pulse
duration is small. In principle, we can obtain constant solu-
tions if the driving strength is also changed periodically. Then
the quantum Langevin equations become

ȧ =
[

− κ

2
+ i�′(t )

]
a + iga(b† + b) + iG(b† + b) + ain,

(A7)

ḃ =
(

− γ

2
− iωm

)
b + iga†a + i(Ga† + G∗a) + bin, (A8)

where �′(t ) = �(t ) − g(β + β∗) is the effective detuning and
G = gα is the enhanced optomechanical coupling strength
(we assume G is a constant). Considering a small single-
photon coupling strength and strong optical driving, the
nonlinear terms iga(b† + b) and iga†a in Eqs. (A7) and (A8)
can be neglected, and the linearized system Hamiltonian be-
comes

HL = −�′(t )a†a + ωmb†b + (Ga† + G∗a)(b + b†). (A9)

APPENDIX B: BAKER-CAMPBELL-HAUSDORFF
FORMULA AND THE EFFECTIVE HAMILTONIAN

In the Schrödinger picture, the evolution of the optome-
chanical system is described by the operator U (t ) = e−i

∫
HLdt .

Between two pulses, the effective detuning �′(t ) = �0 −
g(β∗ + β ) ≡ �′

0 remains a small and constant value. But
during the rotating pulses, the effective detuning is rapidly
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enlarged to a huge value (on a timescale slower than the
round-trip time but much faster than t0). In this case, the
evolution of the mechanical mode as well as the optomechan-
ical coupling, i.e., the second and third terms in Eq. (A9),
can be neglected. The system is well described by the ro-
tating operator R(θ j ) = eiθ j a†a, where θ j = ∫ jt0+δt

jt0
�(τ )dτ ,

j = 0, 1, 2, . . . , is the rotating angle during every pulse and
θ j = φ,±π − φ, φ,±π − φ, . . . in our pulse structure. We
define four pulses as a period because the total phase (angle)

is 2π after a four-pulse period T = 4t0. The evolution operator
in a period can be described by

U (T ) =[R(π − φ)U (t0)R(φ)U (t0)]2, (B1)

where U (t0) = e−iHLt0 for �′(t ) = �′
0. With the relations

R(θ1 + θ2) = R(θ1)R(θ2) and R(θ )aR(−θ ) = ae−iθ , the left-
hand side of Eq. (B1) can be separated into four parts as

R(π − φ)U (t0)R(φ − π ) = exp{−it0[−�′
0a†a + ωmb†b − (Ga†e−iφ + G∗aeiφ )(b + b†)]}, (B2)

R(π )U (t0)R(−π ) = exp{−it0[−�′
0a†a + ωmb†b − (Ga† + G∗a)(b + b†)]}, (B3)

R(−φ)U (t0)R(φ) = exp{−it0[−�′
0a†a + ωmb†b + (Ga†e−iφ + G∗aeiφ )(b + b†)]}, (B4)

U (t0) = exp{−it0[−�′
0a†a + ωmb†b + (Ga† + G∗a)(b + b†)]}, (B5)

where we have also used the identity R(π ) = R(−π ) because
R(2π ) is trivial in the evolution. In the approximation that
the pulse interval satisfies t0 	 ω−1

m , we can use the two-
order Baker-Campbell-Hausdorff formula eX+Y ≈ X + Y +
1
2 [X,Y ]. Then a Hamiltonian that satisfies U (T ) = e−iH0T can
be obtained as H0 = Heff + H ′, where

Heff = ωmb†b + σ (b + b†)2, (B6)

σ = 1
2 |G|2t0sinφ, (B7)

and H ′ = −�′
0a†a + �′

0(μa† + μ∗a)(b + b†) + ωm(μa† −
μ∗a)(b − b†), with μ = 1

4 Gt0(1 + eiφ ). The second term on
the left in Eq. (B6) is what we are interested in for generating
mechanical squeezing. Fortunately, the last two terms in H ′
can be neglected on the condition that |Gsinφ| 
 |�′

0|, ωm

and |μ| 	 1. This means that our pulsed scheme can
equivalently transpose the optomechanical coupling to a
constant modulation of the potential of the mechanical
oscillator. The mechanical mode will dynamically evolve into
a squeezed state. For σ > −ωm

4 , Eq. (B6) can be rewritten in
the classical view as

Heff = ωs

(√
ωm + 4σ

ωm
X 2

M +
√

ωm

ωm + 4σ
P2

M

)
, (B8)

where XM = b† + b and PM = i(b† − b) are mechanical
quadratures and ωs is the effective frequency, given as

ωs =
√

ωm(ωm + 4σ ). (B9)

For σ < −0.25ωm, the mechanical mode evolves exponen-
tially with an exponential gain as

ε =
√

−ωm(ωm + 4σ ). (B10)

APPENDIX C: QUANTUM MASTER EQUATIONS

In order to numerically analyze the mechanical squeezing,
we write down the quantum master equations as

ρ̇ = i[ρ, HL] + κ

2
(2aρa† − a†aρ − ρa†a)

+ γ

2
(nth + 1)(2bρb† − b†bρ − ρb†b)

+ γ

2
nth(2b†ρb − bb†ρ − ρbb†). (C1)

It is useless and difficult to calculate the whole density matrix.
We are concerned about only the evolution of quadrature
variances, which can be obtained from the average values of
the second-order operators, 〈a†a〉, 〈b†b〉, 〈ab†〉, 〈ab〉, 〈a2〉, and
〈b2〉. They are determined by a system of linear equations as

∂t 〈ôiô j〉 = Tr(ρ̇ôiô j ) =
∑
k,l

ηk,l〈ôk ôl〉, (C2)

where ôi, j,k are operators a, b, a†, and b† and ηk,l can be
obtained from Eq. (C1). Analytical results can be obtained by
replacing HL with Heff in Eq. (C1).

Analytical results can be obtained by replacing HL with
Heff in Eq. (C1). Then the system is governed by

d

dt
〈b†b〉 = −γ 〈b†b〉 − 2iσ 〈b†2〉 + 2iσ 〈b2〉 + γ nm, (C3)

d

dt
〈b2〉 = (−γ − 2iωm − 4iσ )〈b2〉 − 2iσ (〈b†b〉 + 〈bb†〉),

(C4)

where nm is the thermal occupation number of the environ-
ment and the optical mode is neglected. For σ > −ωm

4 , the
exact solution is

〈b†b〉(t ) = −4σ 2

ω2
s

{
a + e−γ t

[
(nth − a)cos(2ωst ) + γ

2ωs
(nm − a)sin(2ωst )

]}
+ (ωm + 2σ )2

ω2
s

[nm + (nth − nm )e−γ t ], (C5)

Re〈b2〉(t ) = 2σ (ωm + 2σ )

ω2
s

{
a − nm + e−γ t

[
(nth − a)cos(2ωst ) + γ

2ωs
(nm − a)sin(2ωst ) + nm − nth

]}
, (C6)
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Im〈b2〉(t ) = −2σ

ωs

{
b

[
1 − e−γ t

(
cos(2ωst ) + γ

2ωs
sin(2ωst )

)]
+ e−γ t

(
nth + 1

2

)
sin(2ωst )

}
, (C7)

with nth being the initial phonon number and

a = Re

(
γ nm + iωs

γ − 2iωs

)
, b = Im

(
γ nm + iωs

γ − 2iωs

)
. (C8)

The quadrature variances satisfy δX 2
M = 1 + 2(〈b†b〉 + 〈b2〉) and δP2

M = 1 + 2(〈b†b〉 − 〈b2〉). The variance of squeezed quadra-
ture YM satisfies δY 2

M = 1 + 2(〈b†b〉 − |〈b2〉|). In the short-time approximation with ωmt0 	 1 and γ nm 	 1, the evolution of
quadrature variances can be obtained as

δP2
M = (1 + 2nth )

[
1 + 2σ

ωm
(1 − cos2ωst )

]
, (C9)

δX 2
M = (1 + 2nth )

[
1 − 2σ

ωm + 4σ
(1 − cos2ωst )

]
, (C10)

δY 2
M = 1 + 2

{
nth + 2

ω2
s

(2nth + 1)sin2(ωst )

[
2σ 2 − |σ |

√
(ωm + 2σ )2 + ω2

s cot2(ωst )

]}
. (C11)

Then the squeezing limit is given by [corresponding to Eq. (9) in the main text]

(δY 2
M )min =

{
(1 + 2nth )ωm+4σ

ωm
, −ωm

4 < σ < 0,

(1 + 2nth ) ωm
ωm+4σ

, σ > 0,
(C12)

which is approached at ωst = nπ + π/2, n = 0, 1, 2, . . . . There is a maximal squeezing degree at the first point of time tm = π
2ωs

if we consider the influence of the decay rates. In the maximally squeezed state, quadrature PM is squeezed for −ωm
4 < σ < 0,

while XM is squeezed for σ > 0.
By contrast, in the long-time approximation, the steady value of quadrature variances reads

δP2
M = (1 + 2nm )

(
1 + 2σ (ωm + 4σ )

γ 2/4 + ω2
s

)
, (C13)

δX 2
M = (1 + 2nm )

(
1 − 2σωm

γ 2/4 + ω2
s

)
. (C14)

The squeezing degree cannot suppress the 3-dB limit in the steady state.
For σ = −ωm

4 , the exact solution is

〈b†b〉(t ) = ω2
m

2γ 2
[γ 2t2(nth − nm ) − (γ t + 1)(2nm + 1)]e−γ t + (nth − nm )e−γ t + ω2

m

2γ 2
(2nm + 1) + nm, (C15)

Re〈b2〉(t ) = ω2
m

2γ 2
[γ 2t2(nth − nm ) − (γ t + 1)(2nm + 1)]e−γ t + ω2

m

2γ 2
(2nm + 1), (C16)

Im〈b2〉(t ) = ωm

2γ
[2γ t (nth − nm ) − (2nm + 1)]e−γ t + ωm

2γ
(2nm + 1). (C17)

Letting γ = 0, we obtain

δY 2
M (t ) = (1 + 2nth )

[
1 − ω2

mt2

2

(√
1 + 4

ω2
mt2

− 1

)]
. (C18)

For σ < −ωm
4 and γ �= ε, the exact solution is

〈b†b〉(t ) = [−ω2
0 + 8σ 2(e2εt + e−2εt )

] nth

4ε2
e−γ t + ω2

0 + γ 2

γ 2 − 4ε2
nm −

[
−ω2

0 + 8σ 2

(
γ

γ − 2ε
e2εt + γ

γ + 2ε
e−2εt

)]
nm

4ε2
e−γ t

+ 8σ 2

γ 2 − 4ε2
−
[

1

γ − 2ε
e2εt − 1

γ + 2ε
e−2εt

]
2σ 2

ε
e−γ t , (C19)

Re〈b2〉(t ) =
[

1 − 1

2
(e2εt + e−2εt )

]
σω0nth

ε2
e−γ t − 4σω0

γ 2 − 4ε2
nm −

[
1 −

(
γ

γ − 2ε
e2εt + γ

γ + 2ε
e−2εt

)]
σω0nm

ε2
e−γ t

− 2σω0

γ 2 − 4ε2
+
[

1

γ − 2ε
e2εt − 1

γ + 2ε
e−2εt

]
ω0σ

2ε
e−γ t , (C20)
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Im〈b2〉(t ) = −(e2εt − e−2εt )
σnth

ε
e−γ t

− 4σγ

γ 2 − 4ε2
nm +

(
1

γ − 2ε
e2εt − 1

γ + 2ε
e−2εt

)
σγ nm

ε
e−γ t

− 2γ σ

γ 2 − 4ε2
+
[

1

γ − 2ε
e2εt + 1

γ + 2ε
e−2εt

]
σe−γ t . (C21)

Letting γ = 0, we obtain

δY 2
M (t ) = (1 + 2nth )

{
1 − 2σ 2

ε2
(1 − e−2εt )

[√
(e2εt − 1)2 + e2εt

ε2

σ 2
− (e2εt − 1)

]}
. (C22)

APPENDIX D: WIGNER FUNCTION

In this Appendix, we provide the detailed calculation of the
Wigner function in which we can see the squeezing dynamics
and performance visually. The initial states of optical and me-
chanical modes are both thermal states, the Wigner functions
of which can be written as

W (q, p) = 1

π (〈n〉 + 1/2)
e−(q2+p2 )/(〈n〉+1/2), (D1)

where 〈n〉 is the average occupation number. In the optome-
chanical system, it is more useful to calculate the Wigner
function in total phase space, including both optical and me-
chanical quadratures, which is

Wtotal(XL, PL, XM , PM , t )

= WL(XL, PL, t ) × WM (XM, PM , t ).
(D2)

Here WL(XL, PL, t ) and WM (XM , PM , t ) are the Wigner func-
tions of the optical and mechanical modes, which can be
obtained from the integral of Eq. (D2) over the other phase
space. The Wigner function of the initial state is

Wtotal(X , 0) =
(

1

π (nth + 1/2)

)2

e−X T X/(nth+1/2), (D3)

where we have defined X = (XL, PL, XM , PM )T and nth is the
initial phonon number. The evolution of the quadrature “vec-
tor” X is described by

X (t ) = U (t )X (0) ≡ AX (0), (D4)

where U (t ) is the evolution operator and A is a matrix that
denotes the linear evolution of X (t ). Then the time evolution
of the total Wigner function can be obtained as

Wtotal(X , t ) =
(

1

π (nth + 1/2)

)2

e−(AX )T AX/(nth+1/2). (D5)

The optical and mechanical Wigner functions are given by

WL(XL, PL, t ) =
∫ ∞

−∞
dXM

∫ ∞

−∞
dPMWtotal(X , t ), (D6)

WM (XM, PM , t ) =
∫ ∞

−∞
dXL

∫ ∞

−∞
dPLWtotal(X , t ). (D7)

APPENDIX E: PARAMETRIC RESONANCE

Another efficient way to generate mechanical squeezing
in the optomechanical system is to consider the mechanical

mode as a parametric oscillator, which can also be used in our
model. Parametric resonance occurs when the external driving
strength is modulated as

�(t ) = �0sin(ωst ), (E1)

with �0 being a constant and ωs given by Eq. (B9), where
we find numerically G ≈ 0.45g�0t0. Note that the average
values α and β are time dependent but can also be calcu-
lated by master equations. In Fig. 5, we plot the evolution of
mechanical quadrature variances in the parametric resonance
case. The squeezing performance is limited by the thermal
occupation number nm. The numerical results agree well with
the adiabatic theory given by Liao and Law [6]. Starting from
the vacuum state, the evolution of squeezed quadrature can be
described by

δY 2
M (t ) ≈ e−(γ+ξ0 )t + γ (2nm + 1)

γ + ξ0
(1 − e−(γ+ξ0 )t ), (E2)

where ξ0 = |ωs − ωm| describes the parametric gain in
parametric resonance. Unlike the large-detuning system
in Ref. [6], ξ0 can be arbitrarily large with appropriate
parameters, i.e., t0 → 0, G → ∞, and φ = π/2, and also has
potential in the generation of strong mechanical squeezing in
the steady state [10].

FIG. 5. The evolution of variances of mechanical quadratures
(a) XM and (b) YM for nm = 0 (in red) and nm = 50 (in blue). In
(b), the theoretical evolution (solid line) given by Eq. (E2) agrees
well with the numerical results (open circles) based on the driving
strength modulated as Eq. (E1).
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APPENDIX F: DISCUSSION OF THE
DETUNING-SWITCHED DRIVING

To obtain the mechanical squeezing with detuning-
switched driving, an important requirement is that the cavity
must oscillate following the laser driving; that is, the cavity
must react to the large detuning. We discuss this requirement
from two different aspects.

First, we consider a general classical Langevin equa-
tion describing a single-mode cavity

ȧ(t ) = (iω0 − κ/2)a(t ) + F (t ), (F1)

where a(t ) is the classical cavity field, ω0 is the cavity reso-
nance frequency, κ is the cavity decay rate, and F (t ) = Aeiωt

is a harmonic drive. The solution after applying the drive
(t > t0) is given by

a(t ) = e(iω0−κ/2)(t−t0 )

[
a(t0) − Aeiωt0

i(ω − ω0) + κ/2

]

+ eiω(t−t0 ) Aeiωt0

i(ω − ω0) + κ/2
. (F2)

Initially, the cavity is driven by a laser F1(t ) = A1eiω1t near the
resonance ω1 ≈ ω0, and the cavity field will reach a steady-
state amplitude | A1

i(ω1−ω0 )−κ/2 |. Assuming that at t = 0 we
suddenly increase the detuning to a large value with driving
F2 = A2eiω2t and the initial condition a(0) = A1

i(ω1−ω0 )+κ/2 , the
following evolution will be

a(t ) = e(iω0−κ/2)t

[
A1

i(ω1 − ω0) + κ/2
− A2

i(ω2 − ω0) + κ/2

]

+ eiω2t A2

i(ω2 − ω0) + κ/2
. (F3)

Consequently, to make the cavity field change from frequency
ω1 to ω2 and acquire the rotating phase we wanted, the driving
laser should satisfy

A1

i(ω1 − ω0) + κ/2
= A2

i(ω2 − ω0) + κ/2
. (F4)

This means that when we increase the detuning of the laser,
we also need to increase the power of the laser accordingly.
Then in the frame with laser frequency, although the op-
tomechanical coupling strength remains constant, the cavity
field will rotate and acquire a phase, and in the frame with
cavity resonance frequency, the cavity field does not rotate,
but the optomechanical coupling strength will rotate, lead-
ing to a different kind of squeezing effect in the mechanical
oscillator.

Second, an optical cavity differs from a cavity described by
the single-mode Langevin equation. An optical cavity is not a
point object and cannot react instantaneously to the sudden
change in a driving laser because everything propagates at the
speed of light. This propagation effect is not captured by the
Langevin equation, which provides only the amplitude-phase
degrees of freedom.

The finite propagation speed of the light can be captured
if multiple azimuthal modes are involved. The frequency-
domain picture of this system is periodic Lorentzian response

functions spaced by the free spectral range (FSR). The in-
verted time-domain response is a periodic near-δ function
spaced by the round-trip time, which captures the round-trip
dynamics of the input pulse bouncing back and forth between
the two mirrors. Therefore, when there is a sudden change in
the input field, instead of immediately forming a new oscil-
lation frequency inside the cavity, it could well be that this
sudden change results in some localized pulse structure in
space and time and the pulse bounces back and forth inside
the cavity for a very long time until the cavity decays to a
new equilibrium state. This is far from what we want in the
squeezing mechanism, in which we want an immediate switch
of the oscillation frequency. Therefore, the cavity field needs
to switch to a new equilibrium instantly.

The frequency-domain picture provides some insights into
how to avoid such a scenario. When there is a sudden switch of
the input laser, this steplike change contains extremely broad
frequency components and can excite multiple optical modes
spanning many FSRs. Such an excitation in the time domain
is the resulting localized intracavity structure that requires a
very long time to reach a new equilibrium. Therefore, the laser
frequency (also amplitude) switching should not be arbitrarily
fast in the sense that other azimuthal optical modes should not
be excited. The switching needs to be slower than the FSR, or
the round-trip time of the cavity, so that the cavity field can
adiabatically reach a new equilibrium during the switching.
Therefore, the requirement for the laser switching scheme is
that it should not be faster than the round-trip time but should
be a lot faster than all the other timescales in the experiment,
e.g., the inverse of G, κ , ωm, etc.

Realistically, this issue might not pose any problem for
optical implementations since the FSR in optical domains
is usually the gigahertz range for well-established platforms.
However, it could be a realistic concern for microwave plat-
forms, for which switching of the microwave fields can be
really fast, faster than the microwave frequency and the fre-
quency spacing to higher-order modes (FSR).

APPENDIX G: EXPERIMENTAL REALIZATION

The optomechanical system we considered is in the strong-
coupling regime (G > ωm), and the squeezing mechanism
requires that the optical cavity can respond quickly to the
detuning of the driving laser, which requires that the cav-
ity decay rate cannot be too small. Such a condition is
possible with an experimental setup of a three-dimensional
microwave cavity [37]. The mechanical frequency is around
ωm ≈ 9.696 MHz, the single-photon optomechanical cou-
pling strength is g ≈ 167 Hz, and the cavity decay rate is κ ≈
1 MHz. To enter the strong-coupling regime, the average intra-
cavity photon number should exceed (ωm/g)2 ≈ 3.37 × 109.
For a detuned cavity, the average intracavity photon number
is given by

ncav = P

h̄ωL

κ

(κ/2)2 + �2
, (G1)

where P is the power of the driving laser. In our model, the
detuning is switched to a large value periodically. So the
intracavity photon number is limited by the detunings instead
of the cavity decay rate. For typical laser detuning � = 10ωm,
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the laser power should exceed 136 µW (at a frequency of
6.5 GHz). Consequently, the squeezing mechanism proposed

here is realizable with existing platforms, and the mechanical
squeezing can be observed through an additional probe beam.
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