
PHYSICAL REVIEW A 107, 033507 (2023)

Nonreciprocal slow or fast light in anti-PT -symmetric optomechanics
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Non-Hermitian systems with anti-parity-time (aPT ) symmetry have revealed rich physics beyond conven-
tional systems. Here, we study optomechanics in an aPT -symmetric spinning resonator and show that, by tuning
the rotating speed to approach the exceptional point (EP) or the non-Hermitian spectral degeneracy, nonrecip-
rocal light transmission with a high isolation ratio can be realized. Accompanying this process, nonreciprocal
group delay or advance is also identified in the vicinity of EP. Our work sheds light on manipulating laser
propagation with optomechanical EP devices and, in a broader view, can be extended to explore a wide range
of aPT -symmetric effects, such as aPT -symmetric phonon lasers, aPT -symmetric topological effects, and
aPT -symmetric force sensing or accelerator.
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I. INTRODUCTION

Recently, exotic and often counterintuitive effects emerg-
ing in non-Hermitian systems, especially those with Hamil-
tonians that are invariant under the combined operation of
parity and time inversions, have attracted intense interest
across natural sciences [1–9]. In the parity-time-symmetric
(PT -symmetric) phase, these nonconservative Hamiltonians
can still exhibit entirely real spectra, while by surpassing
the exceptional point (EP), i.e., the non-Hermitian spectral
degeneracy of the system [9,10], radical changes of the prop-
erties of the systems can happen in the PT -symmetry-broken
phase [1]. In practice, PT symmetry has been observed
in diverse systems such as optical microcavities [11–17],
atomic systems [18,19], and acoustic devices [20–22], and
unique EP effects have been demonstrated [3–8,23,24],
such as loss-induced transparency [25,26], single-mode las-
ing [27,28], enhanced light-matter interactions [13,15], and
nonreciprocal laser propagation [11,12], to name only a
few.

Unlike PT -symmetric systems usually requiring gain
mediums [6], purely lossy systems with anti-PT (aPT )
symmetry [29,30], i.e., {PT , HaPT } = 0, have also drawn
much attention, due to their intriguing properties such
as energy-difference conserving dynamics [31,32] and
shorter-length chiral mode switch [33]. In experiments,
aPT symmetry and breaking have been observed in
a wide range of systems, such as radiative plasmonics
[34], thermal or cold atoms [30,35–38], electrical circuits
[32,39], magnonic systems [40,41], optical waveguides or
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microcavities [42–46], and diffusive systems [47,48]. In a
recent work, the possibility of breaking aPT symmetry by
spinning a resonator has been proposed, which is a purely
optical system without considering the coupling of photons
and phonons [49]. Based on this work, here we study the
hybrid optomechanical effects in such an aPT -symmetric
system.

Specifically, we study the process of optomechanically in-
duced transparency (OMIT) in an aPT -symmetric spinning
resonator. OMIT has been observed in many different sys-
tems and led to important applications [16,26,50–63], ranging
from optical communications [64] and light storage [65,66] to
weak force measurements [67] and mechanical cooling [68].
In particular, the abnormal dispersion accompanied by the
OMIT can alter the light group velocity in a radical way [52].
Here we show that nonreciprocal light transmission with high
isolation ratio can be realized by breaking the aPT symmetry.
More importantly, we find the group delay is also nonrecipro-
cal in the aPT -symmetry-broken regime. Our work provides
a promising approach to manipulate light propagation in lossy
devices and can stimulate more works on aPT -symmetric
optomechanics [13–15,24,69–75]. In comparison to the very
recent work using a purely optical system [49], here we
focus on the hybrid optomechanical interaction in an aPT
symmetric system and reveal the possibility of observing non-
reciprocal slow or fast light by breaking the aPT symmetry.

The paper is organized as follows. In Sec. II, we introduce
the model of our aPT -symmetric optomechanical system and
calculate the optical transmission of such a system. Detailed
discussions of the nonreciprocal effects of both the optical
transmission and the group delay or advance in an aPT -
symmetric spinning resonator are given in Sec. III, and finally
we conclude in Sec. IV.
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FIG. 1. aPT -symmetric optomechanics based on a spinning resonator. (a) Schematic diagram and frequency spectrum of the system. The
resonator is driven bidirectionally by pump fields with the same frequency ωl. The spinning of the resonator induces different Sagnac-Fizeau
shift �sag in CW and CCW modes of the resonator. (b) A summary of the experimentally accessible parameters used for the numerical
simulations [76,77].

II. aPT -SYMMETRIC OPTOMECHANICS

We start by considering an optomechanical resonator
which supports two counterpropagating optical whispering
gallery modes (WGMs) and a mechanical breathing mode [see
Fig. 1(a)]. A tapered-fiber waveguide is coupled to the res-
onator, which can give rise to the dissipative coupling between
the optical WGMs also [78]. We note that a spinning resonator
with a stationary waveguide was already experimentally real-
ized [76], and in that experiment, the resonator with the radius
R = 1.1 mm can spin with the stability of its axis, reaching the
maximal frequency of 6.6 kHz. Due to the Sagnac effect, the
clockwise (CW) and counterclockwise (CCW) modes experi-
ence different Sagnac-Fizeau shifts [76,79]: ωc → ωc ± �sag,
where

�sag = nR�ωc

c

(
1 − 1

n2
− λ

n

dn

dλ

)
, (1)

with c (λ) being the speed (wavelength) of light. n and R are
the refractive index and radius of the resonator, respectively.
ωc is the resonant frequency of the optical modes. � is the
spinning speed, and the dispersion term dn/dλ, characterizing
the relativistic origin of the Sagnac effect, is small in typical
materials (up to about 1%) [79].

By fixing the CCW spinning direction of the res-
onator, in a frame rotating at a pump frequency ωl, the
effective Hamiltonian of the optical part can be written
as

H0 =
(

�+ − iγc iκ
iκ �− − iγc

)
, (2)

where

�± = �c ± �sag, �c = ωc − ωl. (3)

γc = (γ0 + γex)/2 is the total optical loss, γ0 = ωc/Q is the
intrinsic loss, and γexis the coupling loss. Q is the optical qual-
ity factor of the resonator. iκ is the dissipative coupling arising

from the taper-scattering-induced dissipative backscattering
[78]. Such a Hamiltonian is aPT symmetric when �c = 0
[49], with the eigenfrequencies

ω± = �c − iγc ±
√

�2
sag − κ2. (4)

Taking into account the mechanical mode with a resonant
frequency ωm and an effective mass m, the total Hamiltonian
of the system is given by

H = H0 + Hint + Hdr,

H0 = p2

2m
+ 1

2
mω2

mx2 + h̄(�+ − iγc)a†
�a�

+ h̄(�− − iγc)a†
�a�,

Hint = ih̄κ (a†
�a� + a†

�a�) + h̄g(a†
�a� + a†

�a�)x,

Hdr = ih̄εp(a†
�e−iξ t − a�eiξ t )

+ ih̄εp(a†
�e−iξ t − a�eiξ t )

+ ih̄εl (a
†
� − a�) + ih̄εl (a

†
� − a�), (5)

where x and p are the position and momentum operators of
the mechanical mode, and a� (a�) and a†

� (a†
�) denote the

annihilation and creation operators of the CW (CCW) mode.
g = ωc/R is the single-photon coupling rate. The amplitudes
of the pump fields at frequency ωl and weak probe field at
frequency ωp are

εl =
√

γexPl/h̄ωl, εp = √
γexPp/h̄ωp, (6)

where Pl is the pump power and Pp is the probe power.
ξ = ωp − ωl is the detuning between probe and pump field.
In order to explore the optomechanical effects of the aPT -
symmetric system, here we set �c = ωm [80]. The Heisenberg
equations of motion (EOM) of this system can be derived from

033507-2



NONRECIPROCAL SLOW OR FAST LIGHT IN … PHYSICAL REVIEW A 107, 033507 (2023)

Eq. (5) as

ẍ = −
m ẋ − ω2
mx − h̄g

m
(a†

�a� + a†
�a�),

ȧ� = −i(�+ − iγc + gx)a� + κa� + εl + εpe−iξ t ,

ȧ� = −i(�− − iγc + gx)a� + κa� + εl + εpe−iξ t , (7)

where 
m is the mechanical damping rate.
The probe light can be taken as a perturbation for εp �

εl, and thus we expand each operator as the sum of its
steady-state value and a small fluctuation around that value,
i.e.,

a�(�) = ā�(�) + δa�(�), x = x̄ + δx, (8)

where the steady-state solutions of the system are

x̄ = −h̄g

mω2
m

(|ā�|2 + |ā�|2),

ā� = (i�− + igx̄ + γc + κ )εl

(i�− + igx̄ + γc)(i�+ + igx̄ + γc) − κ2
,

ā� = (i�+ + igx̄ + γc + κ )εl

(i�− + igx̄ + γc)(i�+ + igx̄ + γc) − κ2
. (9)

To find the OMIT spectrum of this system, we expand
δa�(�) and δx by using the following ansatz:⎛

⎝ δx
δa�
δa�

⎞
⎠ =

⎛
⎝ δx+

δa�+
δa�+

⎞
⎠e−iξ t +

⎛
⎝ δx−

δa�−
δa�−

⎞
⎠eiξ t , (10)

and solve the corresponding EOM. Then we can get the solu-
tions as

δa�+ = AB�V2 + ih̄g2N�
AV1V2 − ih̄g2M

εp,

δa�+ = AB�V2 + ih̄g2N�
AV1V2 − ih̄g2M

εp, (11)

where

A = m(−ξ 2 − iξ
m + ω2
m ),

B�(�) = i(�−(+) − iγc + gx̄ − ξ ),

C∗
�(�) = i(�−(+) − iγc + gx̄ + ξ ),

V1 = B�B� − κ2, V2 = C�C� − κ2,

and

N� =C�B�|ā�|2 + (C�B� − V2)|ā�|2
+ κB�(ā∗

�ā� + ā∗
�ā�),

N� =C�B�|ā�|2 + (C�B� − V2)|ā�|2
+ κB�(ā∗

�ā� + ā∗
�ā�),

M = (B�V2 − C�V1)|ā�|2 + (B�V2 − C�V1)|ā�|2
+ κ (V2 − V1)(ā∗

�ā� + ā∗
�ā�).

The solutions in Eq. (11) correspond to two different inci-
dence directions of the probe light. Then the expectation value
of the output field can be derived by using the input-output

relation [81]

aout
�(�) = ain

�(�) − √
γexa�(�), (12)

with aout
�(�) and ain

�(�) being the output and input field opera-
tors. The transmission rate of the probe light can be obtained
as

T�(�) = |t�(�)|2 =
∣∣∣∣∣
aout
�(�)

ain
�(�)

∣∣∣∣∣
2

=
∣∣∣∣1 − γex

AB�(�)V2 + ih̄g2N�(�)

AV1V2 − ih̄g2M

∣∣∣∣
2

. (13)

As shown in Ref. [49], tuning the spinning speed of a
purely optical resonator will lead to not only the phase tran-
sition but also nonreciprocal light transmission. In order to
explore the similar effect in the optomechanical system, we
define an isolation ratio as [82]

I = 10log10
T�
T�

. (14)

This establishes the basis for our discussion of the impact
of rotation on the nonreciprocal light isolation and the group
delay of the probe light. In Fig. 1(b), we list the experimental
accessible parameters used for numerical simulations in this
work.

III. NONRECIPROCAL LIGHT ISOLATION
AND GROUP DELAY OR ADVANCE

Figure 2 shows the evolution of eigenfrequencies and non-
reciprocal light isolation ratio in aPT -symmetric phase and
aPT -symmetry-broken phase. The evolution of the real and
imaginary parts of eigenfrequencies are shown in Figs. 2(a)
and 2(b), respectively. When �sag is increased and becomes
κ , i.e., � = 21 kHz, this system will exhibit an EP at the
square-root branch point, i.e., the two eigenstates coalesce.
Beyond this point, the system exhibits a transition from an
aPT -symmetric phase to an aPT -symmetry-broken phase,
the real part of the frequency of the two states bifurcates, and
the imaginary part coalesce. In Figs. 2(c) and 2(d), the isola-
tion ratio is plotted as a function of �p = ωp − ωc. Clearly,
nonreciprocal light transmission can be identified in the vicin-
ity of EP. We note that by tuning the speed to move the
system far away from the EP, the influence of the pump fields
on the optical isolation tends to be weakened; in contrast, the
optical isolation of the system can be significantly enhanced
by approaching the EP [see Figs. 2(c) and 2(d)]. The isolation
ratio is plotted as a function of � and �p in Fig. 2(e) to give
a comprehensive view. To see how the isolation ratio varies
with rotation speed, in Fig. 2(f), we plot the isolation ratio as
a function of the rotation speed � when the probe detuning
is chosen to be �p = ±37 kHz. The isolation ratio of this
aPT -symmetric optomechanical system reaches its minimum
and maximum near the EP, and the maximum is located in
the aPT -symmetry-broken phase while the minimum is lo-
cated in the aPT -symmetric phase, due to the different probe
detunings.

We stress that the nonreciprocal light transmission in
this system is due to the interplay of the optomechanical

033507-3



PENG, ZHANG, ZHANG, LU, MIRZA, AND JING PHYSICAL REVIEW A 107, 033507 (2023)

APTB

EP

APTS

(c) (e)

(d) (f)

APTB

EP

APTS

Isolation

(dB)

EP

APTS APTB

c

EP

EP

EP

EP

(a)

FIG. 2. Nonreciprocal light isolation in aPT -symmetric (APTS) phase and aPT -symmetry-broken (APTB) phase. (a and b) The
eigenfrequencies versus the spinning speed �. (c and d) Normalized isolation ratio versus optical probe detuning �p for different spinning
speed �. The maximum isolation ratio reaches its maximum or minimum around � = �EP. The colored solid curves indicate the isolation in
the presence of pump fields, and the colored dashed curves indicate the isolation in the absence of pump fields. (e) Isolation ratio versus optical
probe detuning �p and spinning speed �. (f) For selected �p, the dependence of isolation ratio on spinning speed �. The parameters used are
the same as those in Fig. 1(b).

interaction and the Sagnac effect, which is clearly distinct
from the nonreciprocal effects solely originating from the
optomechanical interaction [58,62,83–86] or the rotation of
the resonator [76].

Accompanied by the transparency window, the fast or slow
light can also be observed, which is characterized by the group
delay of the probe light [52],

τg�(�) = d arg[t�(�)]

d�p
. (15)

The group delays in various situations are analyzed in
detail in Fig. 3. Figure 3(a) shows the group delay τg�(�) as a
function of �p for the system varying from aPT -symmetric
phase to aPT -symmetry-broken phase. Similar to the isola-
tion ratio, the group delay of the left or right input probe field
also reaches its maximum or minimum in the vicinity of EP.
Interestingly, a slow-to-fast light switch can be achieved when
increasing the spinning speed to surpass the EP, for both the
left and right input fields (but in different regimes of �p < 0
or �p > 0):

(i) In the aPT -symmetric regime, e.g., � < 21 kHz, the
group delay τg� of the input from the left-hand side increases
sharply as �p goes up, reaching its peak in �p < 0 regime.

Then τg� decreases till τg� = 0 at a critical value of �p.
Increasing �p beyond this critical value completes the switch
from slow to fast light. After this switch, the advancement of
the pulse increases with increasing �p until it hits its min-
imum value. Then, beyond this point, increasing �p pushes
τg� closer to zero. In contrast, τg� of the input from the
right-hand side can experience an opposite trend.

(ii) In the aPT -symmetry-broken regime, increasing the
value of �p pushes the system into the fast light regime and in-
creases the advancement of the pulse until the minimum value.
Then the advance effect can be weakened by increasing �p,
and finally τg� becomes positive, i.e., shifting the fast light to
the slow light. If �p is further increased, τg� can be increased
significantly till reaching its maximum. For the input signal
coming from the right-hand side, an opposite trend is also
clearly seen for τg�, which is similar to the aPT -symmetric
regime.

In Figs. 3(b) and 3(c), the group delay is plotted as a
function of spinning speed � and probe detuning �p. We see
that the slow-to-fast light switch of the left input field does
not fully coincide with that of the right input field, due to the
different Sagnac-Fizeau shifts in the CW and CCW modes
induced by the spinning of the resonator. The slow-to-fast
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FIG. 3. Nonreciprocal group delay. (a) Group delay versus optical probe detuning �p for different spinning speed �. The solid (dashed)
curves indicate the input from the left (right) side. The group delay of the left input field (b) and the right input field (c) versus optical probe
detuning �p and rotational speed �. (d) and (e) For selected �p, the dependence of group delay on spinning speed �. The parameters used are
the same as those in Fig. 1(b).

light switch is also shown in Figs. 3(d) and 3(e), where the
probe detuning is set to �p = ±37 kHz. By increasing the
value of �, the group delay of the left input probe increases
significantly, till reaching the maximum value. Beyond the EP,
the system enters the fast light regime and the group delay ap-
proaches τg� = 0 [see Fig. 3(d)]. The slow-to-fast light switch
of the left input probe field appears in the aPT -symmetric
phase, while the similar switch of the right input probe appears
in the aPT -symmetry-broken phase [see Fig. 3(e)]. Clearly,
for the spinning optomechanical system, one can not only just
tune the system to switch from slow to fast light, or vice versa,
by controlling � or �p, but also achieve nonreciprocal group
delay by reversing the direction of the input probe field.

We stress that the observation of these interesting effects
is unnecessarily limited to the system as we depicted in
Fig. 1. For example, we can also consider a system con-
sisting of an optical WGM resonator and a nanomechanical
beam 100 μm long, 1 μm wide and 0.1 μm thick [89].
The nanomechanical beam with a high resonant frequency,
extremely small mass, and ultrahigh quality factor (>105)
coupled to an optical resonator was experimentally real-
ized in previous works [71,72,89,90]. For such a system,
we choose experimentally available values [25,87–89], i.e.,
ωc = 193 THz, γc = 1.93 kHz, Pl = 10 pW, ωm = 63 MHz,

m = 63 Hz, m = 10 pg, R = 50 μm, g = 3.86 GHz/nm. As
demonstrated in the experiment [78], the dissipative coupling
originating from taper scattering can be about 8.5 kHz. We
see that similar nonreciprocal light isolation and slow light

effects can also be observed in such a system consisting of
a 100 × 1 × 0.1 μm3 nanomechanical beam and an optical
WGM resonator, as clearly shown in Fig. 4.

In Fig. 4(a), the minimum and maximum isolation ra-
tios both occur in the vicinity of � = �EP and respectively
correspond to the probe detuning �p = ±335 Hz. Moreover,
the slow-to-fast light switch is still present in the vicinity
of � = �EP. This implies that similar performance can be
obtained in such an aPT -symmetric optomechanical system.
The slight difference is that compared with the system with
a mechanical radial breathing mode [see Fig. 3(b)], the maxi-
mum and minimum values of group delay of the system with
a nanomechanical beam are greatly improved [see Figs. 4(b)
and 4(c)].

We note that the OMIT-based slow-to-fast light switch
has been extensively studied in different systems, such as
microcavities [16,61,91], circuits [64], atoms [92,93], and
magnonic systems [94,95]. In particular, for a PT -symmetric
optomechanical system [16], such a switch was predicted by
tuning the gain-loss ratio or pump power. In contrast to these
previous efforts [16,61,91], our work here considers an aPT -
symmetric system, which does not require any gain and thus
provides an alternate route towards realizing such an optical
switch using a purely lossy system. In addition, by tuning
both the probe detuning �p and the rotational speed �, both
nonreciprocal light transmission and nonreciprocal slow or
fast light can be achieved by using a single device. In a broader
view, the spinning technique can be further combined with
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FIG. 4. Nonreciprocal light isolation and group delay in aPT -symmetric optomechanical systems consisting of an optical microsphere
resonator and a nanostring mechanical resonator. (a) Isolation ratio versus optical probe detuning �p and rotational speed �. Group delays of
(b) the left input field and (c) the right input field versus optical probe detuning �p and rotational speed �. Here, we take the experimentally
accessible parameters [25,78,87–89], and �EP = 357 Hz.

other existing methods for the exploration of new effects and
applications, such as enhanced light-matter interactions [96],
on-chip optical storage or processing [97] and asymmetric
optomechanical entanglement [98].

IV. CONCLUSIONS

We have investigated the OMIT and the associated group
delay in an aPT symmetric optomechanical system. We find
that the light propagation becomes highly nonreciprocal by
breaking the aPT symmetry, and the isolation ratio reaches
its maximum by approaching the EP. Similar to the PT sym-
metric system [16], a slow-to-fast light switch can also be
identified in our purely lossy system. In particular, we find
that the group delay can also become highly nonreciprocal
in such a system, enabling the nonreciprocal coexistence of
slow and fast light. Hence, our work provides a promising

way to manipulate or switch both light transmissions and
optical group delay or advance by breaking the aPT sym-
metry without relying on any active gain.

In our future works, more aPT -symmetric optomechanical
effects can be explored, such as the role of aPT symme-
try breaking in mechanical amplification or phonon lasers
[13,15], topological energy transfer [14], OMIT-assisted cool-
ing of mechanical motion [68], ultrasensitive force sensing
[24], and microwave-over-optical quantum transfer [99,100].
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[15] H. Jing, Ş. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and
F. Nori, PT-Symmetric Phonon Laser, Phys. Rev. Lett. 113,
053604 (2014).
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[24] Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü,
C.-W. Li, L. Yang, F. Nori, and Y.-x. Liu, Metrology with PT -
Symmetric Cavities: Enhanced Sensitivity near the PT -Phase
Transition, Phys. Rev. Lett. 117, 110802 (2016).
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