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We propose an evanescent-field interferometer in the Mach-Zehnder configuration, which can provide an
interferometric measure of the phase of evanescent fields and can be used to quantify the Hartman effect.
The phase difference for such tunneled fields saturates to π/2, thus confirming the classic Hartman effect.
An analytical model of the proposed evanescent-field interferometer is presented and validated by numerical
simulations based on the finite-difference time-domain technique. In the numerical treatment, the requisite
elements of the interferometer, such as beam splitters and mirrors, are realized through carefully designed
cavities in a two-dimensional photonic crystal system. The underlying cavity modes are further engineered using
a weak perturbation to spatially maneuver the evanescent field along preferred directions. The evanescent-field
interferometer offers multiple avenues of introducing phase delay and has higher sensitivity that is spatially
delocalized in comparison to the conventional propagating-field interferometers.
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I. INTRODUCTION

Interferometry has been the singular most powerful tool
for sensitive and precision measurements in science. It has
brought about a revolution in our world view—from the fa-
mous Michelson interferometer in search of ether in 1880s
[1] to the discovery of gravitational waves in recent times
[2]. There have been multiple adaptations of interferometers
depending on the specific application, such as the Mach-
Zehnder interferometer, with its spatially separate paths for
sensitive measurement of imbalances between the paths [3],
and the common-path Sagnac interferometer, which is a stable
workhorse for gyroscopes [4]. Cold atoms, electrons, neu-
trons, electromagnetic fields, and Bose-Einstein condensates
have all been subjected to interference in a variety of ge-
ometries of interferometers [5–9], thus pushing the limits
of metrology and simultaneously providing a rich tapestry
of counterintuitive phenomena that furthers our fundamental
understanding of nature. The present scientific literature re-
lated to interferometers is largely limited to the interference
of propagating fields whose dynamical phase evolves along
competing paths of the interferometer [3,10–12]. The fields
evolve along various paths and then are combined together to
create an interferogram that can be analyzed to quantify the
minute differences in the paths.

We propose here an evanescent-field interferometer (EFI),
wherein the evanescent fields along different spatial paths are
combined to create an interferogram. Unlike the dynamical
phase associated with propagating fields, the phase of the
evanescent field is rarely invoked, as evanescent fields do
not propagate [13], thus apparently rendering this proposal
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implausible. However, even though the use of propagating
field has dominated interferometry, there is no fundamental
barrier that prevents evanescent fields from exhibiting inter-
ference. The evanescent field traditionally has been relegated
to merely supporting the propagating modes in waveguides
as they exponentially decay away from the waveguide core.
However, their important characteristic of tunneling through
the cladding regions is widely exploited to achieve desired
evanescent coupling between waveguides [14,15]. A one-to-
one correspondence between evanescent-field tunneling and
quantum tunneling across a barrier is well established [16].
This intriguing feature of tunneling governs the functioning of
the ubiquitous cubic beam splitter, wherein the frustrated total
internal reflection effect is implemented at the cojoined bases
of two prisms [17–19] to control the input-output coupling.

One of the most counterintuitive phenomena associated
with tunneling is the Hartman effect [20–23]. We believe that
the proposed EFI can provide a direct measurement mecha-
nism for the Hartman effect with interferometric accuracy. In
the context of tunneling, the notion of dwell time, or the time
spent by the particle (or wave packet) within the barrier, is the
most pertinent aspect that has been widely explored [24–27].
The exponential decay of the amplitude due to tunneling is the
dominant accompanying attribute. This naturally leads to sig-
nificant pulse-shape distortions and the associated limitations
in the measurement of tunneling time. The EFI configuration
that we propose alleviates this pulse-shape-distortion issue to
a large degree, as we discuss below.

Among the many measurement schemes that have been
utilized to date, almost all schemes suffer from a rather unfair
comparison of a nearly undistorted reference pulse with the
tunneled (signal) pulse that has suffered significant distortion
(including exponential decay of the amplitude and a substan-
tial phase change) [24,28,29]. Such measurements in conven-
tional interferometers are compromised due to poor fringe
visibility, arising from unequal amplitudes of the reference
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and signal pulses. Few research groups have tried to remove
this ambiguity in the measurement of tunneling time and
provided better techniques for measurements [30,31]. In the
proposed EFI, the central drawback related to extreme pulse
distortion is effectively addressed, as both the paths (i.e., the
reference arm and the signal arm) are accessed by the evanes-
cent fields that combine to create the interferogram. Thus,
both the fields suffer nearly identical pulse-shape and ampli-
tude distortions; thereafter, creation of any excess barrier in
one arm can be precisely quantified from the resulting interfer-
ogram. The proposed EFI provides a much improved arsenal
for such studies, and it can be used for both continuous and
pulsed measurements. The outline of the paper is as follows.

We first propose a generic quantum tunneling model of in-
terferometers in the Mach-Zehnder configuration. The model
allows us to obtain the conventional (propagating) field inter-
ferometer and the tunneling-dominant EFI as limiting cases.
The analytical model is then numerically validated in the
photonic crystal system employing the finite-difference time-
domain (FDTD) technique using the software MEEP [32].
We describe the design of the proposed EFI detailing all
the required components such as beam splitters and mirrors
for the evanescent fields. We further couple the two output
ports of the EFI to propagating waveguides to facilitate their
measurement. Incorporating all these elements results in com-
plementary outputs along the two ports of the interferometer
that depend on the phase difference acquired along the two
tunneling pathways.

Photonic crystals (PCs) offer the best platform for imple-
mentation of the EFI because of their intrinsic flexibility and
the control they offer with regard to design. PCs have found
practical implementations in optical communication systems
[33–37] and have also been extensively utilized for tunneling
measurements [24,26] as the dwell time for a photonic band-
gap structure is found to be identical to the associated group
delay.

We provide specific design details for the realization of an
EFI in the Mach-Zehnder geometry implemented in a two-
dimensional (2D) PC structure. We compare the EFI with the
conventional propagating-field-based Mach-Zehnder interfer-
ometer, which again is engineered within a 2D PC structure
to highlight the stark difference between the two. The pro-
posed EFI incorporates localized modes whose spatial field
distribution is engineered to maneuver their evanescent-field
tunneling [38] through various barriers to finally interfere.
This is quite unlike the conventional schemes in which in-
terferometers in PCs have been realized with self-collimated
beams [36,37] that propagate freely and interfere. The main
challenge of this proposal has been the realization of the
requisite mirror and beam-splitter functionalities for spatial
control of the evanescent field. These are realized using de-
fect states, wherein the underlying spatial mode profile is
controlled through incorporation of an appropriate weak per-
turbation confined well within a single unit cell [38]. This
allows controlled manipulation of the spatial structure of the
bound states and thus their accompanying tunneling. A con-
trolled variation of the tunneling barrier height is introduced
by changing the optical depth at suitable lattice sites to mimic
barrier height variation, whose effects are captured in the
resulting interferogram.

FIG. 1. Quantum tunneling-based Mach-Zehnder interferometer.
(a) The interferometer design: BS1 and BS2 are 50:50 beam splitters,
and M1 and M2 are mirrors. The total length of each path of the
interferometer is 2L, and the length of potential barrier is Lb, such
that the length of free propagation in each path is 2(L − Lb). (b) Dif-
ference in two interferometers: The evanescent-field interferometer
corresponds to E < Vb, whereas the conventional propagating-field
interferometer has E > Vb.

II. ANALYTICAL MODEL

We consider a simplified quantum tunneling model which
captures all the pertinent features of a generic Mach-Zehnder
interferometer. We consider the basic Mach-Zehnder interfer-
ometer with two 50:50 beam splitters and two ideal reflecting
mirrors [see Fig. 1(a)], wherein potential barriers are incor-
porated within the arms of the interferometer. The input after
passing through the first beam splitter undergoes transmission
through potential barriers as well as free propagation within
each arm of the interferometer before reaching the second
beam splitter, where the fields are combined together to create
an interferogram. The energy of the input for the EFI is lower
than the height of the potential barrier; thus, the particle expe-
riences tunneling all through the arms of the interferometer.
In contrast, the energy is considered to be higher than the
barrier height for the propagating-field interferometer (PFI),
as illustrated in Fig. 1(b). This is the central distinguishing
feature that significantly separates the two interferometers.
Except for input energy and barrier height, other parameters
such as barrier width and the length of the arms of the inter-
ferometer are kept the same for both interferometers for ease
of comparison.

The field through one arm of the interferometer (see Fig. 2)
results in the following output:

output field (at x = L) = tbeikL, (1)

and the phase accumulated along the path

φ = φt + kL, (2)
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FIG. 2. Arm of the interferometer. Each arm consists of free
propagation (L − Lb) and a section with tunneling or propagation
across a potential barrier of length (Lb).

where φt = tan−1( Im(tb)
Re(tb) ). We similarly construct the ampli-

tude and phase along the two arms and combine them to obtain
the intensities I1 and I2 at the two output ports. The output
intensities for interferometers are given as

I1 = ∣∣rs1tbeikLrm1tbeikLts2 + ts1t ′
beikLrm2tbeikLrs2

∣∣2
I0, (3)

I2 = ∣∣rs1tbeikLrm1tbeikLrs2 + ts1t ′
beikLrm2tbeikLts2

∣∣2
I0. (4)

All the reflection and transmission amplitudes are de-
scribed and tabulated in Table I. In order to capture the
interferometric measure of the tunneling barrier, the barriers
along one path are fixed, and one of the barriers in the other
path is varied. All other parameters that govern the quantum
tunneling interferometer model that are used for intensity and
phase calculations of the interferometric output are included
in Table I. The parameters of one of the potential barriers are
varied in order to create a phase difference between the two
interfering arms. In the analytical model, we consider two
different cases, case A, in which the potential height V ′

b of the
barrier is changed, and case B, in which we change the barrier
width L′

b for both interferometers. The following expressions

provide the transmission amplitudes and phase for the EFI
across the fixed and variable arms of the interferometer. The
transmission amplitude for the fixed barrier is

tb = e−ikLb

cosh (kbLb) + i sinh (kbLb)
( kb

2k − k
2kb

) , (5)

the transmission amplitude for the varying barrier is

t ′
b = e−ikL′

b

cosh (k′
bL′

b) + i sinh (k′
bL′

b)
( k′

b
2k − k

2k′
b

) , (6)

and

φt = −kLb − tan−1

[(
kb

2k
− k

2kb

)
tanh(kbLb)

]
. (7)

Similarly, the transmission amplitudes and phase for PFI are
as follows: The transmission amplitude for the fixed barrier is

tb = e−ikLb

cos (kbLb) − i sin (kbLb)
( kb

2k + k
2kb

) , (8)

and the transmission amplitude for the varying barrier is

t ′
b = e−ikL′

b

cos (k′
bL′

b) − i sin (k′
bL′

b)
( k′

b
2k + k

2k′
b

) , (9)

with

φt = −kLb + tan−1

[(
kb

2k
+ k

2kb

)
tan(kbLb)

]
. (10)

Equations (5)–(10) are obtained by solving the Schrödinger
equation with appropriately imposed boundary conditions.
The propagation constants used in the above equations are

TABLE I. Values of parameters used in the quantum tunneling interferometer model. Case A corresponds to barrier-height variation, and
case B corresponds to barrier-width variation.

Quantity Symbol Value Remarks

Reflection amplitude at BS1 rs1 1/
√

2 50:50 BS, phases in accordance with Ref. [38]
Transmission amplitude at BS1 ts1 −1/

√
2

Reflection amplitude at BS2 rs2 (i − 1)/2
Transmission amplitude at BS2 ts2 −(i + 1)/2

Reflection amplitude at M1 rm1 1
Reflection amplitude at M2 rm2 1
Propagation constant for free particle k

√
2mE/h̄2 Analytical model

Propagation constant in the fixed barrier, EFI kb

√
2m(Vb − E )/h̄2 E < Vb(V ′

b ) for EFI

Propagation constant in the varying barrier, EFI k′
b

√
2m(V ′

b − E )/h̄2

Propagation constant in the fixed barrier, PFI kb

√
2m(E − Vb)/h̄2 E > Vb(V ′

b ) for PFI

Propagation constant in the varying barrier, PFI k′
b

√
2m(E − V ′

b )/h̄2

Case A
Height of fixed barrier, EFI Vb 1.51 (meV) E < Vb for EFI
Input energy, EFI E 1.5 (meV)
Height of fixed barrier, PFI Vb 0.1 (meV) E � Vb for PFI as in real experiments
Input energy, PFI E 180 (meV)

Case B
Height of fixed barrier, EFI and PFI Vb 1 (meV)

Vb − E (EFI) is equal to E − Vb (PFI)
Input energy, EFI E 0.98 (meV)
Input energy, PFI E 1.02 (meV)
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FIG. 3. Case A: Intensity variation versus change in optical
depth. (a) Intensity observed for the evanescent-field interferometer
with variation of the barrier height. (b) Intensity observed for the
propagating-field interferometer with varying barrier height. The
intensity ratio represents Ii/I0, where i = 1, 2. I1 and I2 are the output
intensities of the interferometer, and I0 is the input intensity. The
change in optical depth has units of length squared, with units of
length being arbitrary. Inset: The accumulated phase difference (in
radians) is shown as the optical depth is changed; note that the phase
saturates at π/2 for the EFI.

included in Table I. For EFI, E < Vb, and V ′
b � Vb; in contrast,

for the conventional PFI we have E > V ′
b and V ′

b � Vb, where
Vb and V ′

b are the heights of the fixed and varying barrier po-
tentials along the two arms of the interferometer, respectively.

The optical depth equivalent to the one obtained in the
PC implementation is (

√|E − Vb|/Vb)Lb/k. We plot the
outputs I1 and I2 as a function of the difference in the op-
tical depth along the two arms δd = (

√|E − V ′
b |/Vb)L′

b/k −
(
√|E − Vb|/Vb)Lb/k for both interferometers (see Fig. 3). It

is observed that for the EFI, on increasing the height of the
potential barrier, the detector intensities vary slowly with the
change in optical depth [see Fig. 3(a)] and saturate, whereas
for PFI the detector intensities oscillate with the variation in
optical depth, as observed in Fig. 3(b). For the same changes
in optical depth the phase difference in the two arms of the
interferometer for PFI goes beyond π , whereas for EFI the
change in phase difference is gradual and tends to saturate
close to π/2 (see Fig. 3), which clearly depicts the Hartman
effect.

It may be noted that when the barrier width is changed
while keeping the total arm length fixed, the free-space prop-
agation itself varies in the arm and remains uncompensated.
As a result, for EFI we see intensity oscillations in Fig. 4(a),
and no phase saturation is seen due to the dominance of
the uncompensated dynamical phase in one arm. In order to
observe phase saturation in EFI, we need to ensure that the
free-space length in both arms is balanced [see Fig. 4(b)]. It
may be noted that in EFI for the cases where phase saturation
is observed, the overall phase difference between two paths is
given by

δφ = − tan−1

[(
kb

2k
− k

2kb

)
tanh (kbLb)

]

+ tan−1

[(
k′

b

2k
− k

2k′
b

)
tanh (k′

bL′
b)

]
. (11)

For both cases of phase saturation (i.e., with barrier height
changed and with the change in the barrier width keeping the
free-space length balanced), the second term in Eq. (11) tends
to saturate and reach π/2 on changing barrier parameters, and
it is the first term arising from the fixed barrier which decides
to what value δφ saturates.

In the EFI, in order to have higher output intensities and
better visibility, |E − Vb| should be small, and barrier width
should also be small in order to have sufficient transmis-
sion through the barrier. On the other hand, for PFI, larger
|E − Vb| leads to better visibility. We present the intensity and

FIG. 4. Case B: Intensity variation versus change in optical depth and the corresponding phase difference. (a) EFI with barrier width
changed while keeping the length of the arm fixed, which effectively results in a change in free propagation (uncompensated free propagation).
(b) EFI with both the barrier width and arm length changed such that the free-propagation length remains fixed (compensated free propagation)
and (c) PFI with uncompensated free propagation. The intensity ratio represents Ii/I0, where i = 1, 2. I1 and I2 are the output intensities of the
interferometer, and I0 is the input intensity. (d) Phase difference accumulated between the two paths. The change in optical depth has units of
length squared, with units of length being arbitrary.
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phase-difference variation with the change in barrier width
for both the interferometers (see Fig. 4). For lower values
of the optical-depth change, both EFI and PFI show similar
variations in terms of phase and intensity [see Figs. 4(a)
and 4(c)]; however, at higher change in optical depth, the
intensity continues to oscillate for PFI due to unbound phase
accumulation, whereas for EFI the oscillations die out due
to significantly reduced amplitudes beyond the barriers. It
may also be noted that on changing the optical depth in the
case of EFI, output intensities tend to saturate [see Fig. 4(b)];
however, if we continue to increase the barrier height, one arm
will be completely shut off, and the remaining 50% of the
field is equally divided at the second beam splitter, giving rise
to a 25% output at each detector. Thus, we compare the two
interferometers well below that range wherein a barrier in one
arm completely blocks the field.

III. NUMERICAL DEMONSTRATION OF EFI
IN PHOTONIC CRYSTAL STRUCTURE

In the previous section, we changed the optical depth along
the arms of the interferometer using two methods, i.e., by
changing the barrier height and barrier width. We compared
both interferometers with these two changes and observed that
for EFI the detector intensities and phase difference saturate,
depicting the Hartman effect, whereas for PFI the detector
intensities oscillate and phase difference increases in an un-
bounded manner. Now, we numerically validate these results
seen for both interferometers by changing one of the param-
eters of the barrier, i.e., the dielectric constant or refractive
index of the lattice rod, which is the equivalent of varying the
barrier height.

A. EFI design with optical elements

We consider a system of a 2D PC with dielectric rods of
radius r = 0.2a and ε = 12 arranged on a square lattice with
a periodicity of a, resulting in a complete band gap for the TM
polarization. In order to realize the mirrors and beam splitter
for the evanescent field, we first create a defect that localizes
the field akin to an optical cavity. The cavity modes are further
engineered by weakly breaking the symmetry that alters the
evanescent fields beyond the cavity, and we use this design
tool to realize beam splitters and mirrors for the evanescent
fields. The radius of the main defect rod for creating a cavity
is rd = 0.33a, such that there are doubly degenerate dipole
resonant bound cavity modes. We add a much weaker pertur-
bation rod with a size as small as rp ∼ 0.05a close to the main
defect rod, which lifts the degeneracy of the bound defect
modes and spatially realigns the defect modes [38] along the
direction of the added weak perturbation. It may be noted that
the refractive index of the perturbation rod is higher than the
lattice rods; however, the optical depth of the perturbation
(d = πr2√ε) is still much lower than that of rods which
form the main lattice. Incorporation of a single perturbation
rod at any angular position within the cavity can thus act as
both a beam splitter and a mirror for the evanescent fields,
depending upon its location within the structure, as illustrated
in Fig. 5(a).

FIG. 5. Evanescent-field (Mach-Zehnder) interferometer. (a) A
series of cavities are realized using a central defect rod with the
modes engineered to align along the weak-perturbation rod. These
tailored cavities act as beam splitters and mirrors highlighted within
the red and black boxes, respectively. The optical depth of the rod
circled in blue is varied to change the tunnel barrier along one arm of
the interferometer. (b) Evanescent-field modes are supported along
the two arms of the interferometer. The input and output (to D1 and
D2) waveguides support propagating modes.

We first describe a 50:50 beam splitter that is incorporated
along the input waveguide. After incorporation of the main
cavity, a perturbation rod is added at an angular position of
135◦ with respect to the x axis to realize a beam splitter.
Such a perturbation weakly breaks the symmetry and lifts the
degeneracy of the dipole modes. For convenience we focus
on only the lower-frequency mode in our analysis. The per-
turbation rods with similar angular orientations placed at the
two opposite corners of interferometer [see Fig. 5(a)] make
up the two mirror equivalents that channel the evanescent
fields towards the output beam splitter. The second 50:50
(output) beam splitter is placed close to the output port waveg-
uides. This output beam splitter consists of the main defect
rod with two additional perturbation rods. The orientation
of the perturbation rods is such that the resultant resonant
dipole modes continue to be aligned along the 135◦ angular
position; however, these modes are now designed to be degen-
erate. The evanescent fields along the two arms independently
excite these (appropriately aligned) degenerate modes. This
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degeneracy is critical to the working of the interferometer. It
may be noted that the parameters of these two perturbation
rods need to be carefully varied in order to obtain the same
resonance frequency at each cavity comprising the mirrors and
the beam splitters. Hence, in terms of the modal structure, all
the resonant modes are oriented along 135◦ at every optical
element, as is evident from the mode propagation profile in
Fig. 5(b). Note the critical role of the perturbation rods that
align the cavity modes to equally and preferentially direct the
associated spatial distribution of the evanescent fields along
the arms of the interferometer.

B. Operation of the EFI

When the input signal reaches the first beam splitter, the
resonant mode is excited and decays equally along the arms
of the interferometer and excites the mirror cavity modes. The
spatial orientation of the modes is crucial in determining the
associated evanescent field’s direction of decay. The projec-
tion of the field being equal along the two paths results in
decay-mediated coupling to the mirrors. This in turn excites
the resonant modes at the respective mirror locations, which
further decay along both the x and y axes. Finally, the doubly
degenerate modes of the second beam splitter are excited inde-
pendently by the incoming evanescent fields from both arms
of the interferometer, and these modes interfere to provide
the complementary outputs at detector 1 (D1) and detector
2 (D2) placed at port 1 and port 2, respectively. It should
be noted that the doubly degenerate mode excitation actually
creates a superposition of the respective modes [38] and the
requisite phase difference that results in complementary out-
put at D1 and D2. The phase difference between the modes is
governed by the interfering fields exciting them. This can thus
be controlled by introducing a change in the optical depth of
lattice rods along the path, which is equivalent to changing
the parameters of the potential barrier placed in the arms of
interferometer as described in Sec. II. The important point to
consider here is that the phases acquired in the path of the
interferometer are not dynamical since the resonant modes
tunnel through the arms to reach the second beam splitter.
Hence, it is the phase linked to decaying evanescent fields that
is being modulated, which is captured in the interferogram.

An increase in the refractive index of the dielectric rod
[circled in Fig. 5(a)] results in a positive change in the optical
depth; the output (energy density) at D1 increases, whereas
the output at D2 decreases [see Fig. 6(a)]. Similarly, a negative
change in optical depth is obtained by lowering the refractive
index of the rod, and we obtain the opposite trend, as observed
in Fig. 6(a). A higher change in optical depth along the paths
starts to shift the resonance peaks (sharp resonances for EFI)
of the defect modes along the path where the change is intro-
duced. However, there is sufficient spectral overlap between
two evanescent fields, resulting in significant interference.
However, this shift in resonances may lead to poor evanescent
coupling, thereby leading to reduced output.

We present another set of intensity and energy-density
calculations targeting the higher-sensitivity rod location in
Fig. 6(b). For the less sensitive rod location, the accumulated
phase difference does not provide a high-visibility interfer-
ogram as we vary the optical depth involving positive and

FIG. 6. Energy-density variation at the detectors versus the
change (increase as well as decrease) in the optical depth of the
dielectric rod in one arm of the evanescent-field interferometer.
(a) The optical depth of the dielectric rod is varied at the lower-
sensitivity location. (b) The optical depth of the dielectric rod at the
high-sensitivity location is varied. D1 and D2 represent the com-
plementary outputs at detector 1 and detector 2, respectively. The
change in optical depth has units of length squared. Length is scaled
according to the length of the unit cell; here it is taken as 1μm.
Inset: Intensity variation at the central frequency of interest at the
two detectors; the visibility is obtained from such intensity levels.

negative changes in it. However, for the more sensitive rod
locations both changes in optical depth result in comparable
visibility close to 80%. The freedom to increase and decrease
the optical depth is another approach to obtain better visibility,
wherein optical depth can simultaneously be increased along
one path and decreased along the other. Regarding the detec-
tion process, it may be noted that we present the visibility of
the fringes from the intensity at the detectors. The intensity
is calculated at the central frequency of interest. However,
tracking the electromagnetic energy density also provides
similar dependences (see Fig. 6). Furthermore, we have used
the energy density as a true measure of the detected signal as
it corresponds to the energy deposited in ideal index-matched
detectors placed at D1 and D2 [39].
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FIG. 7. The conventional propagating-field (Mach-Zehnder) in-
terferometer. (a) The main defect rod with the perturbation rod
continues to act as the beam splitter (highlighted within the red
box), and the waveguide bends direct the field along the two arms of
the interferometer, which combine again at the second beam splitter
to form an interferogram. Dielectric rods with very low refractive
index are introduced at the locations marked in blue circle, and
the refractive index of these rods in one of the paths is varied to
change the path length along that path of the interferometer. (b) Mode
propagation profile for the PFI.

IV. COMPARISON OF EFI WITH CONVENTIONAL PFI

We briefly compare the conventional propagating-field
Mach-Zehnder interferometer realized in a 2D PC structure
with the evanescent-field interferometer. In PFI, dielectric
rods are removed along the arms of the interferometer to
create a waveguide and thereby eliminate the tunneling phe-
nomena. Here the beam splitters remain the same as those of
the EFI; however, no mirrors need to be incorporated as the
photonic structure itself guides the propagating fields along
the two paths. It is the band gap of photonic crystal that
is utilized to obtain a controlled flow of light along desired
pathways (see Fig. 7). The input signal is split by the first
beam splitter, and the propagating fields pass through the two
separate paths, finally reaching the second beam splitter and
exciting the doubly degenerate modes independently, which
interfere and provide complementary outputs at detectors D1
and D2, as seen in Fig. 8(b). It may be noted that in order to

FIG. 8. Energy-density variation versus change in optical depth.
(a) The interferogram obtained in the evanescent-field interferom-
eter exhibits saturation of energy density at D1 and D2. (b) The
propagating-field interferometer exhibits the usual oscillatory out-
puts at D1 and D2 as the optical depth along the arms is varied.
D1 and D2 represent the complementary outputs at detector 1 and
detector 2, respectively. The change in optical depth has units of
length squared. Length is scaled according to the length of the unit
cell; here it is taken as 1μm.

create the same change in optical depth as for EFI, we add
dielectric rods of very low refractive index in the middle of
each arm, as marked in Fig. 7, and then increase the refractive
index of these rods in one path to create a phase difference
between interfering arms. We present in Fig. 8 a comparison
of outputs at two detectors for EFI and PFI, corresponding to
the same change in the optical depth.

A. Sensitivity of interferometers

The visibility of the interferogram at D1 and D2 obtained
from intensity calculations depends on the spatial location
and optical-depth change in the barrier lattice rods. Given
the intrinsic exponential spatial dependence of the evanescent
field, it is expected that the sensitivity to changes is spatially
nonuniform, very unlike the conventional propagation-field
interferometer where changes in optical depth remain uni-
formly sensitive only along the interferometer arms. The
sensitivity of the interferometer is defined as the ratio of the
change in detector intensity to the change in optical depth and
is calculated for numerous rod locations spread over a large
area of cross section (see Fig. 9). It is evident that the sen-
sitivity of the EFI is not localized along the interfering paths
like in the conventional propagating-field interferometers. It
is observed that the interferometer is highly sensitive for rod
locations close to resonant cavities [see Fig. 9(a)]; in fact,
in the immediate neighborhood of the cavity, the sensitivity
increases by a factor of 10 at each rod location as we move
towards the cavity.

There is a striking difference between the sensitivities
of the two interferometers as observed in Fig. 9. The sen-
sitivity of locations within the arms of the interferometer
changes quite drastically in the EFI and is spatially delocal-
ized, whereas for the PFI this change is rather uniform along
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FIG. 9. Sensitivity plot for interferometers. (a) The evanescent-field interferometer has higher sensitivity which is spatially delocalized, and
the exponential characteristics of the evanescent fields are captured in the sensitivity plots. (b) The propagating-field interferometer sensitivity
is lower and largely uniform across the arms of the interferometer.

the two arms. As expected, the rods lying within the arms
of the PFI are sensitive to changes in the optical depth, and
the sensitivity decreases rapidly as one moves away from the
interferometric arms. In contrast, for the EFI even the rods
away from the arms (paths) of the interferometer are quite
sensitive. The localized field within the cavities decays in
all directions; hence, any change in optical depth in close
proximity to the cavities significantly alters the output at the
detectors. However, for the PFI it is the propagating field
guided along the waveguide arms which interferes, and hence,
any change in optical depth away from the waveguide arms
does not affect the detector intensities. In terms of the absolute
values of sensitivities too, the EFI has sensitivity larger by an
order of magnitude (∼ 101) in comparison to the conventional
PFI.

B. Hartman effect

The central result of the paper is the proposal for measure-
ment of the phase difference arising purely out of variations
in tunneling strength using the EFI. The energy densities tend
to saturate even as the optical depth in the barrier region is
increased [see Fig. 8(a)], which is a clear signature of the
Hartman effect. On the other hand, for the PFI, Fig. 8(b)
shows that the outputs vary continuously with the change in
the optical depth in one arm. It can be inferred that for the EFI,
the phase difference between the two interfering fields begins
from zero and saturates to π/2 as the detector outputs saturate.
However, in the conventional PFI, for the same change in the
optical depth the phase difference goes beyond π and seems
to be increasing continuously (π → 2π → 3π → · · · ) with
increasing optical depth. Altering the optical depth directly
corresponds to a change in the potential barrier along the path
of the interferometer, thereby leading to changes in tunneling
time through the barrier. These phase changes and saturation
validate the results obtained from the analytical model pre-
sented earlier. This saturation of phase, which is the signature

of the Hartman effect, needs to arise purely due to changes
in the tunnel barrier region, as already discussed in detail in
Sec. II.

The photonic crystal implementation of the EFI pre-
sented here allows for pure variation of the tunneling barrier
height and the resulting phase change captured through an
interferometric protocol. It can most certainly be realized
experimentally, and we envisage multiple dynamic ways of
controlling the barrier height, either by focusing a laser beam
onto a specific spatial spot along one of the interferometric
arms within the path [12], thus inducing a refractive index
change through the Kerr effect [40], or through electro-optic
variation of the refractive index. The experimental challenge
would arise from the detector noise at such low light levels.

V. CONCLUSION

In conclusion, we have proposed an evanescent-field in-
terferometer in the Mach-Zehnder configuration, which was
demonstrated analytically through a simple quantum tunnel-
ing model as well as implemented in a photonic crystal
structure numerically with full-wave FDTD simulations. The
design exploits the band gap of the photonic crystals to create
tunneling barriers and implements mirror and beam-splitter
cavities for the evanescent fields. The respective cavity modes
are controlled further by weak perturbations that allow spatial
mode rotation that steers the evanescent field along the arms
of the interferometer. A detailed comparison with the conven-
tional propagating-field interferometer established the unique
phase saturation in the EFI resulting from tunneling. Thus,
the proposed EFI provides clear evidence of the Hartman
effect, and we believe that this can verify the Hartman effect
with interferometric accuracy. Furthermore, the EFI exhibits
enhanced as well as spatially delocalized sensitivity and can
be utilized for various chemical and biosensing applications.
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spin waves in exchange regime, Sci. Rep. 8, 17944
(2018).

[24] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Measurement
of the Single-Photon Tunneling Time, Phys. Rev. Lett. 71, 708
(1993).

[25] G. M. Gehring, A. C. Liapis, and R. W. Boyd, Tunneling delays
in frustrated total internal reflection, Phys. Rev. A 85, 032122
(2012).

[26] L. Ragni, Group delay of evanescent signals in a waveguide
with barrier, Phys. Rev. E 79, 046609 (2009).

[27] P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dorner, H. G.
Muller, M. Buttiker, and U. Keller, Attosecond ionization and
tunneling delay time measurements in helium, Science 322,
1525 (2008).

[28] S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Super-
luminal optical pulse propagation at 1.5 μm in periodic fiber
Bragg gratings, Phys. Rev. E 64, 055602(R) (2001).

[29] Ch. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, Tunneling
of Optical Pulses through Photonic Band Gaps, Phys. Rev. Lett.
73, 2308 (1994).

[30] A. Fortun, C. Cabrera-Gutiérrez, G. Condon, E. Michon,
J. Billy, and D. Guéry-Odelin, Direct Tunneling Delay Time
Measurement in an Optical Lattice, Phys. Rev. Lett. 117,
010401 (2016).

[31] R. Ramos, D. Spierings, I. Racicot, and A. M. Steinberg, Mea-
surement of the time spent by a tunnelling atom within the
barrier region, Nature (London) 583, 529 (2020).

[32] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D.
Joannopoulos, and S. G. Johnson, Meep: A flexible free-
software package for electromagnetic simulations by the FDTD
method, Comput. Phys. Commun. 181, 687 (2010).

[33] K. Fasihi and S. Mohammadnejad, Orthogonal hybrid waveg-
uides: an approach to low crosstalk and wideband photonic
crystal intersections design, J. Lightwave Technol. 27, 799
(2009).

[34] A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, Ul-
trasmall multi-port channel drop filter in two-dimensional
photonic crystal on silicon-on-insulator substrate, Opt. Express
14, 12394 (2006).

[35] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda,
Control of light emission by 3d photonic crystals, Science 305,
227 (2004).

[36] S.-G. Lee, S.-Y. Jung, J. Lee, J.-M. Park, and C.-S. Kee,
Self-collimation-based photonic crystal Mach–Zehnder demul-
tiplexer, J. Opt. 18, 095103 (2016).

[37] S.-G. Lee, J.-M. Park, C.-S. Kee, and J. Lee, Self-collimation-
based photonic crystal Mach–Zehnder add-drop filters, J. Phys.
D 49, 055101 (2016).

[38] G. Kaur and H. Wanare, Controlling spatial mode superposition
to channel light flow in a photonic crystal, J. Opt. Soc. Am. B
37, 3809 (2020).

[39] L. Nanda, A. Basu, and S. A. Ramakrishna, Delay times
and detector times for optical pulses traversing plasmas
and negative refractive media, Phys. Rev. E 74, 036601
(2006).

[40] V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S.
Taylor, D. M. Rayner, and P. B. Corkum, Optically Produced
Arrays of Planar Nanostructures inside Fused Silica, Phys. Rev.
Lett. 96, 057404 (2006).

033506-9

https://doi.org/10.1103/RevModPhys.39.475
https://doi.org/10.1038/nature01503
https://doi.org/10.1103/PhysRevLett.92.050405
https://doi.org/10.1038/ncomms3077
https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1016/0375-9601(74)90132-7
https://doi.org/10.1364/OL.31.002692
https://doi.org/10.1038/srep17600
https://doi.org/10.1038/ncomms4278
https://doi.org/10.1364/OE.10.001491
https://doi.org/10.1126/sciadv.aav7588
https://doi.org/10.1109/JLT.2012.2218217
https://doi.org/10.1103/PhysRevE.48.632
https://doi.org/10.1364/OL.28.000355
https://doi.org/10.1364/OL.30.002781
https://doi.org/10.1038/srep19975
https://doi.org/10.1063/1.1702424
https://doi.org/10.1016/j.physleta.2005.10.076
https://doi.org/10.1103/PhysRevA.86.053832
https://doi.org/10.1038/s41598-018-35761-1
https://doi.org/10.1103/PhysRevLett.71.708
https://doi.org/10.1103/PhysRevA.85.032122
https://doi.org/10.1103/PhysRevE.79.046609
https://doi.org/10.1126/science.1163439
https://doi.org/10.1103/PhysRevE.64.055602
https://doi.org/10.1103/PhysRevLett.73.2308
https://doi.org/10.1103/PhysRevLett.117.010401
https://doi.org/10.1038/s41586-020-2490-7
https://doi.org/10.1016/j.cpc.2009.11.008
https://doi.org/10.1109/JLT.2008.929422
https://doi.org/10.1364/OE.14.012394
https://doi.org/10.1126/science.1097968
https://doi.org/10.1088/2040-8978/18/9/095103
https://doi.org/10.1088/0022-3727/49/5/055101
https://doi.org/10.1364/JOSAB.404357
https://doi.org/10.1103/PhysRevE.74.036601
https://doi.org/10.1103/PhysRevLett.96.057404

