
PHYSICAL REVIEW A 107, 033505 (2023)

Unconditional remote entanglement using second-harmonic
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We propose a photonics-based, continuous-variable (CV) form of remote entanglement utilizing strictly
second-order nonlinear optical interactions that does not require the implementation of a state-projective
measurement (i.e., remote entanglement without conditioning). This scheme makes use of two separate down-
converters, wherein the corresponding nonlinear crystals are driven by strong classical fields as prescribed by the
parametric approximation, as well as a fully quantum-mechanical model of nondegenerate second-harmonic gen-
eration (SHG) whose evolution is described by the trilinear Hamiltonian of the form Ĥshg = ih̄κ (âb̂ĉ† − â†b̂†ĉ).
By driving the SHG process with the signal modes of the two down-converters, we show entanglement formation
between the generated second-harmonic mode (SH mode) and the noninteracting joint-idler subsystem without
the need for any state-reductive measurements on the interacting modes.
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I. INTRODUCTION

Remote entanglement can encompass a broad range of
techniques in which separate parties can be made to be
entangled without ever directly interacting with one an-
other and serves as an important tool in the development
of future quantum networks where entanglement between
spatially separated parties beyond the reach of direct transmis-
sion becomes especially important [1–3]. One such example
of this is the original entanglement swapping experiment
performed by Pan et al. [4] using spontaneous paramet-
ric down-conversion (SPDC) sources. In their experiment
they subject two pairs of polarization-entangled photons to a
Bell-state measurement, projecting the remaining photons
into an entangled state. Similarly, and more recently, Park
et al. [5] devised an entanglement swapping scheme using two
pairs of polarization-entangled photons generated via spon-
taneous four-wave mixing (SFWM) in a Doppler-broadened
87Rb atomic ensemble. They went on to show a violation of a
Clauser-Horne-Shimony-Holt (CHSH) Bell’s inequality using
the entanglement-swapped pair of photons. Two-photon in-
terference has also been exploited in entanglement-swapping
schemes to entangle spins [6], atoms [7], and using photons
generated via quantum dots [3].

We propose a means of forming unconditional entan-
glement (i.e., without heralding or postselection) between
noninteracting optical modes using a second-order nonlin-
ear interaction. More specifically, we consider performing
(spatially) nondegenerate second-harmonic generation (SHG)
using the signal modes of independent two-mode squeezed
vacuum states generated via SPDC. We show entangle-
ment formation between the SH mode and the spatially
separated noninteracting joint-idler subsystem. This entan-
glement occurs without the need for any state-projective

measurements, persists for experimentally accessible interac-
tion times, and scales reasonably with input average photon
number.

There has been extensive work done detailing a quantum
model of SHG. Typically one considers the degenerate case
in which two photons of frequency ω, occupying the same
optical mode, are annihilated to produce a single photon
with frequency 2ω. The corresponding Hamiltonian driv-
ing this interaction is of the form Ĥshg = ih̄κ (â2ĉ† − â†2ĉ)
which has no exact solution,1 nor can a direct application
of the Perelomov formalism be applied [8], owing to the
lack of a finite-dimensional Lie algebra [9]. Still, SHG has
been studied perturbatively [10,11], numerically [12] result-
ing in the generation of sub-Poissonian light [13,14], in
terms of a factorization of photon-number moments [15,16]
and within the analogous case of the Dicke model [17].
For our purposes, however, the interaction we consider is
the (spatially) nondegenerate case in which two photons,
each with frequency ω, are annihilated from two differ-
ent spatial modes to generate a second-harmonic photon of
frequency 2ω.

In this model of SHG, the trilinear Hamiltonian that drives
the interaction between the three field states is given by

ĤI = ih̄κ (âb̂ĉ† − â†b̂†ĉ), (1)

where {â, â†} and {b̂, b̂†} operate on the two input modes
while {ĉ, ĉ†} operates on the SH mode and where the

1Although the SHG Hamiltonian cannot be completely diagonal-
ized, individual eigenstates can be found without truncating the state
space. Consider for example, the Bell-state superposition between
(two photons in â and none in ĉ) and (no photons in â and one in ĉ).
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parameter κ is a coupling constant proportional to the χ (2)

nonlinear susceptibility [18].
Although a complete quantum model characterizing in-

teractions driven by the trilinear Hamiltonian is generally
computationally intractable [19–21], it has been investigated
numerically as early as the 1960s both in the context of SPDC
[22–27] as well as emission from super-radiant Dicke states
[28,29]. The former [22–27] investigated the eigenvalues of
the tri-diagonal matrix representation of Eq. (1) in the com-
putational “logical” basis |n〉L formed from the three modes
of a down-converter |n〉L = |np0〉p |n〉s |n〉i, where np0 are the
initial number of photons occupying the pump mode. The lat-
ter [28,29] employed the Schwinger realization of the SU(2)
Lie algebra [30] to convert the pump-idler modes into the
spin-boson representation such that the trilinear Hamiltonian
can be written as ĤI = ih̄κ (Ĵ (p,i)

+ â − Ĵ (p,i)
− â). They went on

to develop differential-difference equations for the state prob-
ability amplitudes cn =L 〈n|e−iĤI t/h̄|ψin〉 of the output state
|ψ〉out = ∑∞

n=0 cn |n〉L.
The trilinear Hamiltonian can also be expressed in terms

of the SU(1,1) Lie algebra, whereby the signal-idler modes
are written in terms of the SU(1,1) ladder operators K (s,i)

+ =
â†b̂† and K̂ (s,i)

− = âb̂ [30] such that Eq. (1) becomes ĤI =
ih̄κ (ĉ†K̂ (s,i)

− − ĉK̂ (s,i)
+ ). This was the form of the interaction

Hamiltonian considered by Nation and Blencowe [31] and
Alsing [32] in their long-time approximation of the state
statistics with a pump field taken as an arbitrary pure state.
Simulations of nondegenerate parametric down-conversion
were performed by Ding et al. [33] using a linear trapped
three-ion crystal simulating light-atom interactions described
by the Tavis-Cummings model. Moreover, Yanagimoto et al.
[34] explored the dynamics of broadband parametric down-
conversion in the context of nonlinear nanophotonics in the
regime in which the pump occupation is very small (few
photons). They went on to demonstrate Fano interference
in linearly coupled χ (2) waveguides. In an effort to circum-
vent the intractable nature of the Hamiltonian due to the
immense size of the Hilbert space, they provided a diag-
onalized form of the trilinear Hamiltonian in a truncated
space in which single-photon down-conversion occurs. The
fully quantum model of nondegenerate SHG has also been
utilized by Qin et al. [35] to demonstrate squeezing beyond
the 3 dB limit for cavity fields. The authors went on to
apply their scheme to nondemolition qubit readout where
they report an exponential increase in signal-to-noise ra-
tio with higher degrees of squeezing, corresponding to an
improvement of the measurement error by many orders of
magnitude.

Second-order nonlinearities have also been utilized in the
context of entanglement formation. Podoshvedov et al. [36]
devised a means of heralding macroscopic entanglement from
a coherent pump beam; while more recently, Birrittella et al.
[37] considered coherently stimulated down-conversion with
a quantized pump field and investigated the phase-dependent
photon statistics of, and entanglement properties between,
the three fields. Entanglement formation between noninter-
acting modes has also been studied in evanescently coupled
χ (2) waveguides operating in the degenerate down-conversion
regime [38,39].

This paper is organized as follows: In Sec. II we discuss the
setup and provide a perturbative analysis of the time-evolved
system. We also include a qualitative analysis of the photon
statistics of the second-harmonic and signal modes as well
as a numerical and qualitative analysis of the entanglement
properties within the system. We close the paper in Sec. III
with a brief discussion of our findings and some closing
remarks. For completeness, we also include a derivation of
the state-evolution for short interaction times in Appendix A
and as well as an investigation into the effect of heralding
on the second-harmonic mode on the entanglement formation
between the noninteracting idler modes in Appendix B. In
this section, we show that entanglement can form between
the noninteracting idler modes through heralding on a single
photon in the second-harmonic mode, albeit for low initial av-
erage photon number in the signal fields. This scheme is more
akin to the usual entanglement swapping schemes discussed in
the literature. To aid in motivating the timescales used in our
findings, in Appendix C we discuss experimentally reasonable
values of the scaled dimensionless time τ by deriving an
approximate range for the coupling constant κ .

II. FORMATION OF UNCONDITIONED REMOTE
ENTANGLEMENT

A. The two-mode squeezed vacuum state

As is well known, nondegenerate parametric down-
conversion has been for years a reliable source of two-mode
nonclassical states of light in the laboratory [40]. In the para-
metric approximation wherein the pump field is assumed un-
depleted, the interaction Hamiltonian for the down-conversion
process is given by [40,41]

Ĥsq = ih̄(γ âb̂ − γ ∗â†b̂†). (2)

The parameter γ is proportional to the second-order non-
linear susceptibility χ (2) and to the amplitude and phase of
the pump-laser field, assumed here to be sufficiently bright
to be treated as a classical amplitude such that depletion and
fluctuations in the field can be ignored. The quantized field
modes a and b are taken to be the signal and idler fields,
respectively. The two-mode squeeze operator Ŝ(z) is realized
as [40,41]

Ŝ(z) = e−iĤsqt/h̄ = er(âb̂e−2iφ−â†b̂†e2iφ ), (3)

where we have written γ = |γ |e2iφ and where r = |γ |t is the
squeezing parameter. Typically the signal and idler beams are
initially in vacuum states, and thus the output state will be the
two-mode squeezed vacuum state (TMSVS) |ξ 〉 given by

|ξ 〉 = Ŝ(z) |0〉a |0〉b = (1 − |z|2)1/2
∞∑

n=0

zn |n〉a |n〉b

= 1

cosh r

∞∑
n=0

(−1)ne2inφ tanhn r |n〉a |n〉b . (4)

Note that γ and 2φ are the amplitude and phase of the
classical pump field, respectively, and z = ei2φ tanh(r) con-
strained to 0 � |z| � 1. The total average photon number is

033505-2



UNCONDITIONAL REMOTE ENTANGLEMENT USING … PHYSICAL REVIEW A 107, 033505 (2023)

FIG. 1. A schematic representation of the procedure being imple-
mented. Two down-converters, each producing a two-mode squeezed
vacuum (TMSV) state as defined by Eq. (4), are oriented such that
the signal modes of each are driving the spatially nondegenerate SHG
process. For our purposes, the second-harmonic b mode is initially in
a vacuum state.

given by

n̄total = 〈ψin|Ŝ†(z)(â†â + b̂†b̂)Ŝ(z)|ψin〉
= 〈ψin|[(â†â + b̂†b̂) cosh 2r

−(e2iφ â†b̂† + e−2iφ âb̂) sinh 2r + 2 sinh2 r]|ψin〉, (5)

where we have used the operator relations

Ŝ†(z)

(
â
b̂

)
Ŝ(z) =

(
â cosh r − e2iφ b̂† sinh r
b̂ cosh r − e2iφ â† sinh r

)
, (6)

obtained by use of the Baker-Hausdorff lemma [42]. For the
case of an input double vacuum state |ψin〉 = |0, 0〉a,b the total
average photon number is that of the TMSVS, given by n̄ =
2 sinh2 r, which is notably independent of the pump phase.
The Fock states of each mode are tightly correlated and the
state as a whole is highly nonclassical due to the presence
of squeezing in one of the two-mode quadrature operators.
The joint-photon number probability distribution for finding
n1 photons in the a mode and n2 photons in the b mode is

P(n1, n2) = | 〈n1, n2|ξ〉 |2 = tanh2n1 r

cosh2 r
δn1,n2 , (7)

such that only the diagonal elements satisfying n1 = n2 are
nonzero. The photon-number statistics are super-Poissonian
in each mode; tracing over either mode yields a single-mode
mixed state with a thermal distribution [43,44].

B. Short-time approximation of the state,
post-second-harmonic generation

A schematic of the proposed setup can be seen in Fig. 1. We
start with a pair of TMSVS, |ξ j〉, j = 1(2), of equal average
photon numbers such that the signal modes of each are given
by n̄s1 = n̄s2 ≡ n̄s. The signal modes are then used to seed
SHG (with the SH mode initially in a vacuum state). We
develop the theory assuming an initial state given by

|�(0)〉 = |ξ1〉s1,i1 ⊗ |ξ2〉s2,i2 ⊗ |φ〉b

=
∞∑

n=0

∞∑
n′=0

∞∑
m=0

C(0)
n,n′,m |n, n′, m〉s1,s2,b ⊗ |n, n′〉i1,i2 ,

(8)

where the s j, i j modes denote the signal and idler modes of the
jth down-converter and the b mode represents the SH mode.

The state coefficients in Eq. (8) above are given by

C(0)
n,n′,m = (1 − |z|2)zn+n′

λm, (9)

where we have used the TMSVS coefficients of Eq. (4) setting
z1 = z2 ≡ z, without loss of generality. In writing Eq. (8) we
allowed for the possibility of an arbitrary pure state seeding
the SH mode; for the case we are considering (i.e., the SH
mode initially in a vacuum state), the coefficients in Eq. (9)
are given by λm = δm,0. The Hamiltonian that drives the three-
field interaction is given by

ĤI = ih̄κ (âs1 âs2 b̂† − â†
s1

â†
s2

b̂) = ih̄κĤ, (10)

where τ = κt is the scaled dimensionless time and where
b̂ (b̂†) is the annihilation (creation) operator acting on the SH
mode. For a more comprehensive discussion on what physical
factors determine τ , see Appendix C. The full state after SHG
is then |�(τ )〉 = ÛT |�(0)〉, where the time evolution operator
is the usual ÛT = e− it

h̄ ĤT = eτĤ. While an exact solution for
the time-evolved state can be worked out numerically, some
insight into the short-time state evolution can be gleaned from
perturbation theory. The state to lth order O(τ l ), can be writ-
ten as

|�l (τ )〉 	
l∑

k=0

τ k

k!
Ĥk |�(0)〉 =

l∑
k=0

τ k

k!
|ψk〉 , (11)

where |ψ0〉 = |�(0)〉 and, by definition, |ψk+1〉 = Ĥ |ψk〉.
This can be written in a compact form in terms of the kth-order
corrections to the joint-idler subsystem as

|�l (τ )〉 	
∞∑

n,n′,m

l∑
k=0

τ k
∣∣(k)

n,n′,m

〉
i
⊗ |n, n′〉s ⊗ |m〉b , (12)

where the designations i → i1, i2 and s → s1, s2 have been
made for notational convenience; the corrections to the time-
evolved state are explicitly worked out in Appendix A.
Tracing out the signal modes, we find for the reduced i1i2; b
system to lth order

ρ
(l )
i1,i2,b

(τ ) 	 Trs[|�l (τ )〉 〈�l (τ )|]
Tr[|�l (τ )〉 〈�l (τ )|]

	
∞∑

n,n′

∞∑
m,m′

l∑
k+k′=0

τ k+k′

× ∣∣(k)
n,n′,m

〉
i

〈


(k′ )
n,n′,m′

∣∣ ⊗ |m〉b 〈m′| , (13)

where δq,q′ is the usual Kronecker δ function and where the
multiplicative factor normalizing the reduced density matrix is
understood to be time dependent. The short-time state statis-
tics can be investigated numerically through computation of
the Mandel Q factor given for the jth mode by

Qj = �2n̂ − 〈n̂〉
〈n̂〉 = �2n̂

〈n̂〉 − 1, (14)

where Qj = 0 denotes Poissonian statistics and Qj < 0, Qj >

0 denotes sub- and super-Poissonian statistics, respectively.
At short interaction times, the term in Eq. (10) responsible for
generating a photon at second-harmonic frequency dominates
the evolution and the SH mode begins to thermalize, resulting
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in a photon number distribution with super-Poissonian pho-
ton statistics. Consequently, the signal modes, which remain
peaked at the vacuum, becomes less super-Poissonian. For
very large interaction times, outside what is experimentally
accessible with current technologies, the Q factors for both
the signal modes as well as the SH mode fluctuate around a
fairly linear increase; thus the modes will ultimately become
broader (more super-Poissonian). For short interaction times
however, the SH mode sharply becomes super-Poissonian as
the distribution begins to look thermal-like. It is also worth
noting that all modes remain Gaussian as a result of this
evolution (i.e., all modes have positive Wigner functions).

C. Entanglement properties of the system

As a means of quantifying entanglement between the
SH mode and the joint-idler subsystem, we consider the
logarithmic negativity [45], which for a bipartite division of
subsystems A and B is given by

EN (ρA,B) = log2[1 + 2N (ρA,B)] = log2||ρTB
A,B||, (15)

where N (ρa,b) is the negativity, which stems from the pos-
itive partial transpose (PPT) criterion for separability [46],
expressed as

N (ρA,B) =
∣∣∣∣ρTB

A,B

∣∣∣∣ − 1

2
=

∑
i

|λ(−)
i |. (16)

where ||ρTB
A,B|| is the trace norm of the partial transpose with

respect to the B subsystem of the density operator ρa,b and
where λ

(−)
i represents the negative eigenvalues of ρ

TB
A,B.

The negativity, and subsequently the logarithmic negativ-
ity, does not increase under local operations and classical
communications (LOCC), making it an entanglement mono-
tone [47,48]. However, the negativity does not constitute
an entanglement measure because it is zero for entangled
states that have a positive partial transpose. Note though
that entanglement measures are in general NP-hard to com-
pute. For reference, between the signal and idler modes of a
TMSVS, there is a logarithmic negativity of EN (ρ) = log2e2r

where r is the squeeze parameter, related to the average
photon number of the two-mode state by n̄tmsvs = 2 sinh2 r.
Note that, for the pure two-mode squeezed vacuum state, the
entanglement can be derived directly from the marginal eigen-
values, where the photon number basis is the Schmidt basis,
and the probabilities P(n, n) from Eq. (7) are the Schmidt
eigenvalues. Since the distribution of Schmidt eigenvalues is
geometric, the entropy of entanglement can be found to be
E = (cosh2 r)h2(tanh2 r), where h2(x) is the binary entropy
function.2 In the limit of large squeezing, this becomes E ≈
log2(e/4) + log2(e2r ), which is the logarithmic negativity up
to a constant offset.

The partial transpose with respect to the SH mode of
the reduced density matrix of Eq. (13) amounts to flipping
the indices on the b mode |m〉b 〈m′| → |m′〉b 〈m|. The par-
tially transposed reduced density matrix is given explicitly

2The binary entropy function h2(x) is given by −x log2(x) − (1 −
x) log2(1 − x) and is defined for x ∈ [0, 1].

FIG. 2. A comparison of the i1i2; b logarithmic negativity ob-
tained through full numerical computation of the state and first-order
state perturbation with initial average photon numbers n̄s1 (0) =
n̄s2 (0) = 1.5.

in Eq. (A8). Note that tracing over the SH mode yields two
separable thermal states in the idler modes; to first order, this
corresponds to the simplification

∑
m αn,n′,m,m ≡ 0 and like-

wise to second order
∑

m βn,n′,m,m ≡ 0 and
∑

m �n,n′,m,m ≡ 0
(see Appendix A). In fact, this will be true for all corrections to
the joint-idler subsystem: the SHG interaction alone is not suf-
ficient enough to entangle the idler modes. We do note that the
idler modes can be made to be entangled with a single-photon
number resolved (1-PNR) detection, without the need for any
local operations, but only for very short interaction times and
low initial average photon numbers and with a very low prob-
ability of detection. For all intents and purposes, a projective
measurement alone will not result in entanglement between
idler modes. We briefly discuss in Appendix B a means of
remotely entangling the idler modes, through a projective
measurement on the SH mode. However, this requires beam
splitting the signal modes, effectively introducing correlations
between the two down-converters prior to performing SHG.

The i1i2; b logarithmic negativity is plotted in Fig. 2 using
first-order perturbation for initial average photon numbers
n̄s1 (0) = n̄s2 (0) ≡ n̄s = 0.5. Interestingly, first-order perturba-
tion is sufficient to accurately witness, and capture the trend
of, the i1i2; b entanglement for fairly reasonable interaction
times of around τ ≈ 0.04. We plot the logarithmic negativity
based on a full numerical computation of the state in Fig. 3
for different values of initial average photon numbers and for
several different bipartite divisions of modes. We find the peak
of the i1i2; b logarithmic negativity very nearly corresponds
to the minimum in the s1; i1 (s2; i2) logarithmic negativity
(not explicitly shown in Fig. 3); this can be interpreted as an
example of entanglement redistribution as the inherent entan-
glement between the two modes of a TMSVS is leveraged to
entangle the generated second-harmonic field with the non-
interacting spatially separated joint-idler modes. Note from
Fig. 3 that the entanglement is not perfectly redistributed,
however, a measure of entanglement (rather than a monotone)
may yet show full equivalence. The drawback to this approach
is that measures are NP-hard to compute in general. An argu-
ment can be made on the interplay of entanglement between
these two bipartitions by defining the entanglement measure
between these two subsystems as Eτ (i1i2|s1s2b). Since the
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FIG. 3. Full numerical computation of the logarithmic negativity
for several bipartite divisions of modes for the cases of n̄s1 (0) =
n̄s2 (0) = 2.5. The i1i2; b entanglement is enhanced with increasing
initial average photon numbers as evinced by the solid-cyan and
dashed-cyan curves. Note that, for n̄s(0) = 0.5, the s1; i1 (s2; i2)
entanglement (not shown) remains nearly constant at the value
≈ log2 e2r1 (≈ log2 e2r2 ) for the time frame of the figure, where r1

(r2) is the squeeze parameter of the first (second) TMSVS.

trilinear Hamiltonian is local with respect to the s1, s2, b
modes, the entanglement between this bipartition must remain
constant, i.e.,

Eτ (i1i2|s1s2b) = const. ∀ τ. (17)

Given the initial state is a product of two TMSVSs, we can
expand Eq. (17) at τ = 0, where Eτ=0 ≡ E . Accordingly,

E (i1i2|s1s2b) = E (i1i2|b) + E (i1i2|s1s2)

= E (i1i2|b) + E (i1|s1) + E (i2|s2)

= E (i1i2|b) + 2E (i1|s1), (18)

where here, these approximate relations come from the hypo-
thetical entanglement measure Eτ being additive over tensor
products (the state factors this way at τ = 0), and many en-
tanglement measures have this property. To the extent that
this relation holds for later times τ > 0 will depend on how

well the correlations can be decomposed in this way. From
this, a reasonable yet approximate argument can be made as
to why the logarithmic negativity for the two bipartitions in
the last line of Eq. (18) appear strongly correlated in Fig. 3.
Most notably is that the i1i2; b entanglement is also enhanced
by increasing values of initial average photon numbers. In
Fig. 4 we plot the i1i2; b logarithmic negativity as a function
of scaled time τ for different values of initial signal average
photon number up to n̄s1(2) = 7 and show how the logarithmic
negativity increases near linearly as a function of initial av-
erage photon number. Stated differently, the negativity grows
exponentially as a function of initial average photon number.
For low average photon numbers these two bipartitions consti-
tute the only entanglement within the system, while for larger
initial averages, entanglement between the joint-signal modes
and the SH mode begins to form at shorter times. However,
this entanglement remains small relative to the i1i2; b and
s1(2); i1(2).

The counterintuitive nature of this i1i2; b entanglement for-
mation should not be overlooked. Interaction between the
signals and SH mode, initially in a vacuum state, does not
produce entanglement between the signal modes, between the
joint-signal and SH modes (for short times), nor between ei-
ther signal mode and the SH mode. Instead, the entanglement
that forms is between the SH mode and the noninteracting
idler modes. Interestingly, for no times τ nor for any value
of initial average photon number will the SH mode become
entangled with either idler mode individually, i.e. i1; b (i2; b)
entanglement never forms, at least as indicated by the neg-
ativity which cannot identify entanglement for states with a
positive partial transpose.

Other entanglement metrics have successfully been able to
detect the i1i2; b entanglement such as the reduction criterion
[49] which requires computation of the spectrum for the quan-
tity ρi1,i2 (τ ) − ρi1,i2,b(τ ); i1i2; b entanglement is necessitated
by the presence of negative eigenvalues, which occur for all
times τ > 0. Similarly we consider the difference in purity be-
tween the two reduced systems γ (i1, i2, b) − γ (i1, i2), where
the purity is given by the usual γ ( j) = Tr[ρ2

j ], because deter-
mining the purity requires fewer resources than the reduction
or PPT criterion. Note that by virtue of the initial state being

FIG. 4. (left) Logarithmic negativity plotted against scaled time τ for initial signal average photon numbers n̄s1 (0) = n̄s2 (0) = n̄s(0) =
{0, . . . , 7}. (right) The logarithmic negativity plotted at time τ = 0.05 corresponding to the black dotted points in the left plot. The degree of
entanglement as measured by the logarithmic negativity increases nearly linearly (i.e., the negativity increases exponentially) as a function of
initial average photon number and persists for feasibly large initial squeezing.
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FIG. 5. Purity difference between reduced density matrices
ρi1,i2,b and ρi1,i2 for several different initial average photon numbers
n̄s(0). Values >0 indicate entanglement between the joint-idler sys-
tem and the SH mode. For short time evolution, larger initial averages
correspond to greater purity differences.

composed of a tensor product of two TMSVS, the reduced
density matrix ρi1,i2,b already represents a mixed state; how-
ever, the (positive) nonzero difference seen for increasing
values of n̄s1 (0) = n̄s2 (0) = n̄s(0) in Fig. 5 indicates a higher
degree of mixedness for the joint-idler system when tracing
out the SH mode. This is sufficient enough to conclude en-
tanglement between the SH mode and the joint-idler system.
Note that, when it is straightforward to obtain and compute
the eigenvalues of the partial transpose, the negativity will
encompass all states whose entanglement is witnessed by the
purity difference [50]. However, this is at the cost of requiring
more resources to determine.

III. CONCLUSION

We have demonstrated a form of passive remote entangle-
ment using continuous-variable (CV) states of light utilizing
second-order nonlinear interactions whose evolution is de-
scribed by the trilinear Hamiltonian that does not require the
implementation of any state-reductive measurements. More
specifically, our scheme allows for the formation of entan-
glement between the generated second-harmonic field and
the noninteracting spatially separated joint-idler fields. We
have verified this entanglement through both a perturbative
treatment of the state evolution as well as through full nu-
merical calculation of the state. We note this entanglement
persists for experimentally accessible interaction times and
scales reasonably with initial average photon numbers seeding

the interaction. Experimental applications for leveraging this
form of unconditional remote entanglement is still a subject
of ongoing research.

We note that while this scheme is not akin to the usual
entanglement swapping schemes discussed in the literature,
it does carry utility in determining, for example, how the
generation and detection of a photon at second-harmonic fre-
quency may change the statistics and quantum properties of
the noninteracting idler modes. To bring our scheme more in
line with what is typically studied, we consider in Appendix B
the case in which we introduce quantum correlations prior to
SHG via a beam splitter and then herald off the generation of
a photon at second-harmonic frequency. Our findings indicate
that remote entanglement between idler modes is possible,
albeit with low heralding probabilities, for experimentally
feasible interaction times.
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APPENDIX A: SHORT-TIME TRILINEAR STATE
EVOLUTION VIA PERTURBATION

Here we provide a more thorough description of the per-
turbative approximation employed in describing the state
evolution driven by the trilinear Hamiltonian of Eq. (10).
The time-dependent state is given by |�(τ )〉 = ÛT |�(0)〉,
where τ = κt and where the time evolution operator can be
expanded out as

ÛT = e− it
h̄ ĤT = eτĤ 	 1 + τH + 1

2!
τ 2H2 + · · · . (A1)

Action of the Hamiltonian H on an arbitrary term comprising
the initial state Eq. (8) can be worked out straightforwardly as

C(0)
n,n′,mH |n, n′, m〉s,b ⊗ |n, n′〉i =

√
nn′(m + 1)C(0)

n,n′,m |n − 1, n′ − 1, m + 1〉s,b |n, n′〉i

−
√

(n + 1)(n′ + 1)mC(0)
n,n′,m |n + 1, n′ + 1, m − 1〉s,b |n, n′〉i

=
√

(n + 1)(n′ + 1)mC(0)
n+1,n′+1,m−1 |n, n′, m〉s,b |n + 1, n′ + 1〉i

−
√

nn′(m + 1)C(0)
n−1,n′−1,m+1 |n, n′, m〉s,b |n − 1, n′ − 1〉i

= [√
(n + 1)(n′ + 1)mC(0)

n+1,n′+1,m−1 |n + 1, n′ + 1〉i

−
√

nn′(m + 1)C(0)
n−1,n′−1,m+1 |n − 1, n′ − 1〉i

] ⊗ |n, n′, m〉s,b = ∣∣(1)
n,n′,m

〉
i
⊗ |n, n′, m〉s,b ,

(A2)
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where the designations i → i1, i2 and s → s1, s2 have been made for notational convenience and where the term in the square
brackets constitutes the first-order correction to the joint-idler modes for the initial state

|(1)
n,n′,m〉

i
=

√
(n + 1)(n′ + 1)mC(0)

n+1,n′+1,m−1 |n + 1, n′ + 1〉i −
√

nn′(m + 1)C(0)
n−1,n′−1,m+1 |n − 1, n′ − 1〉i

= An,n′,m |n + 1, n′ + 1〉i + Bn,n′,m |n − 1, n′ − 1〉i . (A3)

In working out the state perturbatively, we note that all
higher-order corrections can be cast in terms of the first-order
corrections derived in Eq. (A3). Following Eq. (11), and uti-
lizing the relation |ψk+1〉 = H |ψk〉 we can write

C(0)
n,n′,mH2 |n, n′, m〉s,b |n, n′〉i = H

∣∣(1)
n,n′,m

〉
i
|n, n′, m〉s,b

= ∣∣(2)
n,n′,m

〉
i
|n, n′, m〉s,b , (A4)

where the second-order correction can now be written in terms
of the first-order correction as

|(2)
n,n′,m〉

i
=

√
(n + 1)(n′ + 1)m

∣∣(1)
n+1,n′+1,m−1

〉
i

−
√

nn′(m + 1)
∣∣(1)

n−1,n′−1,m+1

〉
i
. (A5)

In similar fashion the third-order correction can be found
via H |(2)

n,n′,m〉
i
|n, n′, m〉s,b = |(3)

n,n′,m〉
i
|n, n′, m〉s,b, or, more

generally,

H
∣∣(k)

n,n′,m

〉
i

∣∣n, n′, m
〉
s,b

= ∣∣(k+1)
n,n′,m

〉
i
|n, n′, m〉s,b . (A6)

Combining terms, we write the time-evolved state to lth order
in the compact form

|�l (τ )〉 	
∞∑

n,n′,m

l∑
k=0

τ k
∣∣(k)

n,n′,m

〉
i
⊗ |n, n′, m〉s,b , (A7)

where the zeroth-order correction is clearly given by
|(0)

n,n′,m〉
i
= C(0)

n,n′,m |n, n′〉i. This is leading to the derivation
of the perturbed state of Eq. (12). For first-order corrections
to the state, we can work out the partial-transposed reduced
density matrix in the Fock basis to find

ρ
(1)Tb
i1,i2,b

(τ ) 	
∞∑

n,n′

∞∑
m,m′

[ ∣∣(0)
n,n′,m

〉
i

〈


(0)
n,n′,m′

∣∣ + τ
( ∣∣(1)

n,n′,m

〉
i

〈


(0)
n,n′,m′

∣∣ + ∣∣(0)
n,n′,m

〉
i

〈


(1)
n,n′,m′

∣∣ ) + τ 2
∣∣(1)

n,n′,m

〉
i

〈


(1)
n,n′,m′

∣∣ ] ⊗ |m′〉b 〈m|

	
∞∑

n,n′

∞∑
m,m′

[(
C(0)∗

n,n′,m′C
(0)
n,n′,m + τ 2�n,n′,m,m′

) |n, n′〉i 〈n, n′| + τ (αn,n′,m,m′ |n + 1, n′ + 1〉i 〈n, n′| + α∗
n,n′,m′,m |n, n′〉i

× 〈n + 1, n′ + 1|) + τ 2(βn,n′,m,m′ |n + 2, n′ + 2〉i 〈n, n′| + β∗
n,n′,m′,m |n, n′〉i 〈n + 2, n′ + 2|)] ⊗ |m′〉b 〈m| , (A8)

where the correction coefficients are given by

�n,n′,m,m′ = An−1,n′−1,mA∗
n−1,n′−1,m′ + +B∗

n+1,n′+1,m

× B∗
n+1,n′+1,m′ ,

αn,n′,m,m′ = An,n′,mC(0)∗
n,n′,m′ + B∗

n,n′,m′C(0)
n,n′,m,

βn,n′,m,m′ = An+1,n′+1,mB∗
n+1,n′+1,m′ . (A9)

Note that second-order corrections of the form
∝ |(2)

n,n′,m′ 〉i
〈(0)

n,n′,m′ | and its Hermitian conjugate do not
contribute to the logarithmic negativity and have thus been
disregarded in writing Eq. (A8). This is the form of the state
used in the approximation of the logarithmic negativity and
purity-difference plots in the main body of the text.

APPENDIX B: REMOTE ENTANGLEMENT BETWEEN
IDLER MODES

Usual methods of CV entanglement swapping that em-
ploy two SPDC sources require one mode (signal) from each
source to first fall upon a beam splitter. Subsequently, opposite
quadratures are measured from each output port of the beam
splitter, {x̂s1 , p̂s2}, and then one of the remaining (idler) modes
is displaced by β = x̂s1 + i p̂s2 . This results in the teleportation
of the initial SPDC entanglement. Such a scheme is typically

used in conjunction with continuous-variable measurement-
device-independent quantum-key-distribution (cv-mdi-qkd)
protocols [51]. More recently, a similar scheme was proposed
using two-mode squeezed coherent states [52]. They went on
to find that photon subtraction of the source states dramati-
cally enhanced transmission distances while suffering only a
slight decrease in the maximum achievable secure key rate.

Other works investigating CV entanglement swapping us-
ing SPDC sources are Jia et al. [53], who considered the use
of two nondegenerate optical parametric amplifiers (OPAs)
and employed a Bell-state measurement on one mode from
each source, entangling the remaining optical modes. They
report quantum correlation degrees of 1.3 dB (1.12 dB) be-
low the standard quantum limit for the amplitude (phase)
quadratures resulting from this unconditional entanglement
formation. Furthermore, Takei et al. [54] used Einstein-
Podolsky-Rosen (EPR) states generated via beam splitting
two opposite-quadrature-squeezed optical parametric oscilla-
tors (the output of which is the single-mode squeezed vacuum
state; upon beam splitting, the two-mode state is the two-mode
squeezed vacuum state) to demonstrate teleportation of entan-
glement. Their detection scheme likewise employed Bell-state
measurements. For a more comprehensive reference on CV
entanglement swapping, see Marshall and Weedbrook [55].
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While our proposed scheme for i1, i2; b entanglement does
not result in true entanglement swapping since the modes
that are subsequently entangled are not teleported as a con-
sequence of this interaction, remote entanglement does form
between the joint-idler and SH modes, as discussed in Sec. II.
A natural extension to the aforementioned entanglement for-
mation would be to apply our system to a well-known CV
entanglement swapping protocol that uses SPDC sources
[51,52]. To start, consider a 50 : 50 Ĵy-type beam split-
ter B̂y [30] (which can be realized experimentally using a
Mach-Zehnder interferometer with a variable phase between
beam paths) with a scattering matrix resulting in the boson
operator transformation

�̂aout = B̂†
y
�̂ainB̂y = Û �̂ain →

[
âs1

âs2

]
out

= 1√
2

[
1 1

−1 1

][
âs1

âs2

]
in

,

(B1)

resulting in a transformation of the trilinear Hamiltonian of
Eq. (10) given by

Ĥ ′
I = B̂†

yĤI B̂y = ih̄κ (B̂†
y âs1 âs2 B̂yb̂† − B̂†

y â†
s1

â†
s2

B̂yb̂)

= ih̄κ (B̂†
y âs1 B̂yB̂†

y âs2 B̂yb̂† − B̂†
y â†

s1
B̂yB̂†

y â†
s2

B̂yb̂)

= ih̄
κ

2

[(
â2

s2
− â2

s1

)
b̂† + (

â†2
s1

− â†2
s2

)
b̂
] = Ĥ (s2 )

shg − Ĥ (s1 )
shg ,

(B2)

where Ĥ ( j)
shg = ih̄κ (â2

j b̂
† − â†2

j b̂) is the degenerate SHG
Hamiltonian in which two photons are annihilated from the
j mode to create a second-harmonic photon (and conjugate
operation corresponding to the reverse process). This makes
Eq. (B2) a sum of degenerate SHG terms each with κ/2
efficiency. This transformation is realized physically by beam
splitting the signal modes prior to seeding the nonlinear crys-
tal such that

|�(t )〉 = e−i
t
h̄ ĤI B̂y |�(0)〉 = B̂yB̂†

ye−i
t
h̄ ĤI B̂y |�(0)〉

= B̂ye−i
t
h̄ B̂†

y ĤI B̂y |�(0)〉 = B̂ye−i
t
h̄ Ĥ ′

I |�(0)〉 , (B3)

or B̂†
y |�(t )〉 = e−i

t
h̄ Ĥ ′

I |�(0)〉. This amounts to placing a beam
splitter between the output signal modes, which in turn does
not affect entanglement formation between the idler modes
(but does affect the entanglement between s1(2); i1(2)). For
this reason, we neglect the beam splitter operation in the
last line of Eq. (B3) and instead work with the transformed
Hamiltonian of Eq. (B2), in our analysis.

The effect of initially beam splitting the signal modes
prior to SHG is to create cross correlations between the two
down-converters. More specifically, for a 50 : 50 beam split-
ter, entanglement is formed between the two TMSVSs in the
form of s1i1; s2i2 entanglement and s1i2; s2i1 entanglement.
Note that neither the signal nor idlers will be entangled after
beam splitting. This can be demonstrated via computation of
the purity as shown in Fig. 6.

For a fully transmitting beam splitter, tracing out either
of the TMSVSs results in unit purity, as the TMSVS is pure
and initially not entangled with the second TMSVS. However,
once the signals mix at the beam splitter, tracing out one
TMSVS results in a mixed reduced density matrix for the

FIG. 6. Purity γ ( j) for several different reduced density matrices
of the composite |ξ1〉s1,i1 ⊗ |ξ2〉s2,i2 system after beam splitting of the
signal modes. Note that, for a reflectivity R = sin2 θ

4 = 0.5, corre-
sponding to a beam splitter angle of θ = π/2, the reduced density
matrix ρs1(2) i1(2) is as mixed as ρs1 i2 and ρs2 i1 . The average photon
number for each signal mode is n̄s(0) = 1.5.

remaining TMSVS. While the beam splitter will not create
entanglement between the signal modes nor the idler modes,
it does create entanglement between the composite states of
the individual down-converters. This should not be confused
with the classical correlations that beam splitting creates via
computation of the state covariances.

For the case of equal initial averages, no correlations ex-
ist between the signal modes nor between the idler modes
for any beam splitter angle. However, signal mode correla-
tions (s1; s2) will manifest for unequal initial averages such
that |cov(X̂s1 , X̂s2 )| = |cov(Ŷs1 , Ŷs2 )| = |n̄s1 − n̄s2 | for a 50 : 50
Ĵy-type beam splitter. Here, X̂k, Ŷk are the usual quadrature
operators X̂k = 1

2 (âk + â†
k ) and Ŷk = i

2 (âk − â†
k ), respectively.

We are interested in investigating the potential entangle-
ment formation between the spatially separated noninteracting
idler modes upon performing a state-projective measurement
on the SH mode. We consider both a “click” detection cor-
responding to the projection operator P̂C = ∑∞

n=1 |n〉b 〈n| as
well as a 1-PNR detection with corresponding projector P̂1 =
|1〉b 〈1|. In Fig. 7 we plot the i1; i2 logarithmic negativity
heralded from both a click detection as well as a 1-PNR
detection. We also include the heralding probability for ref-
erence. For short interaction times, both detection methods
are in agreement owing to the probability of obtaining >1
photons in the SH mode being effectively zero. As the SH
mode becomes more populated, the click probability increases
though at the expense of smaller degrees of entanglement
formation between modes. We do point out, however, that
this only occurs for experimentally inaccessible interaction
times; for realistic interaction times, the heralding proba-
bility is closer to ≈0.5%. Further still, this entanglement
formation is a low-average photon number effect wherein
the entanglement scales poorly with initial average photon
number n̄s(0). Unlike the previously mentioned CV entan-
glement swapping schemes [51–53,55], no postprocessing of
the measurement results needs to be performed for our pro-
posed experimental setup. If such an experiment were to be
performed, entanglement forms upon either a click or 1-PNR
detection.
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FIG. 7. (left) Logarithmic negativity between i1; i2 modes and (right) the corresponding heralding probability. Both figures are based on a
numerical computation of the state evolution for n̄s1 (0) = n̄s2 (0) = 2.5 for both click-detection (dashed) and 1-PNR detection (solid).

APPENDIX C: PHYSICAL DETERMINATION OF SCALED
DIMENSIONLESS TIME τ

As discussed shortly after Eq. (10), the full state after SHG
is |�(τ )〉 = ÛT |�(0)〉, where

ÛT = e− i
h̄

∫ T
0 dt ′ĤI . (C1)

Using the formalism in Ref. [56] describing the
Hamiltonian in χ (2) nonlinear-optical interactions, we can
obtain a more verbose trilinear Hamiltonian coupling modes
(s1, s2) to modes b:

ĤI = 2ideff

√
h̄3ωbωs1ωs2

2ε0L3
z n2

bn2
s1

n2
s2

(�kz )e−i�ωt âs1 âs2 b̂† + H.c.,

(C2)

where (�kz ) is the spatial overlap integral:

(�kz ) ≡
∫

d3r
(
χ̄

(2)
eff (�r)gs1(x, y)gs2(x, y)g∗

b(x, y)e−i�kzx
)
.

(C3)

From this, we see that much of ĤI is consolidated into the
coupling constant κ

κ = 2deff

√
h̄ωbωs1ωs2

2ε0L3
z n2

bn2
s1

n2
s2

(�kz )e−i�ωt (C4)

so that

ĤI = ih̄κ (âs1 âs2 b̂† − â†
s1

â†
s2

b̂). (C5)

Where t is effectively the duration over which the pulse of
signal light interacts with the nonlinear medium, we have
sufficient information to determine the scaled dimensionless
time τ = κt .

For completeness, we define the rest of our parameters:
i. χ̄

(2)
eff (�r) is a scaled function for the nonlinearity of the

material. It is zero outside the material and is assumed to be
unity inside the material for a constant nonlinearity overall.
If the material is periodically poled, then χ̄

(2)
eff flips between 1

and −1 within the material as the poling flips.
ii. gb(x, y) is the transverse-mode amplitude of the SHG

mode (b). It is normalized so that its magnitude square
integrated over all transverse space gives unity. gs1 (x, y)

and gs2 (x, y) are similarly defined for signal modes s1 and
s2. We will typically take these to be simple Gaussian
functions with effective diameter corresponding to the ef-
fective diameter of the beam of light incident on or exiting
the crystal.

iii. �kz is the longitudinal momentum mismatch such that
�kz = kbz − ks1z − ks2z, where these momentum values are
dependent on the frequency of the light and the dispersion of
the material. Similarly, we have that �ω = ωb − ωs1 = ωs2 .

iv. deff is the effective nonlinearity of the material, which
is a constant of the material when accounting the orientation
of the crystal axes relative to the polarization of the incident
and generated light.

v. Lz is the length of the nonlinear medium through which
the light is propagating.

vi. nb, ns1 , and ns2 are the indices of refraction at the SHG
frequency and at the signal mode frequencies, respectively.

vii. For SHG, we have that the two signal angular frequen-
cies ωs1 and ωs2 are equal to each other, and to half the SHG
angular frequency ωb.

Because we are performing SHG, we have that �ω = 0,
making ĤI constant in time.

Using the assumption that the spatial modes are Gaussian
with radii σs1 = σs2 = σb

√
2, and that for SHG ωs1 = ωs2 =

ωb/2, we can solve the overlap integral to find

κ = deff

2σb

√
h̄ω3

b

πε0Lzn2
bn2

s1
n2

s2

sinc

(
�kzLz

2

)
. (C6)

If we further consider only pairs of frequencies that are nearly
perfectly phase-matched, we may approximate the sinc func-
tion as unity.

In this simplified case, we can find a typical value3 of
κ ranging from 103 to 106, which, when multiplied by a pulse
duration t of 1 ns produces scaled dimensionless times τ of
the order 10−6 to 10−3.

3Typical values used deff from 1–30 pm/V; used Lz from 1–10 mm;
used λb = 775 nm; used nb = ns1 = ns2 = 1.8; and used σb from
20–200 microns.
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