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Energy backflow in unidirectional spatiotemporally localized wave packets
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Backflow, or retropropagation, is a counterintuitive phenomenon in which for a forward-propagating wave
the energy locally propagates backward. In this study the energy backflow is examined in connection with
relatively simple causal unidirectional finite-energy solutions of the wave equation which are derived from
a factorization of the so-called basic splash mode. Specific results are given for the energy backflow arising
in known azimuthally symmetric unidirectional wave packets, as well as in some azimuthally asymmetric
extensions. Using the Bateman-Whittaker technique, a finite-energy unidirectional null localized wave has been
constructed that is devoid of energy backflow and has some of the topological properties of the basic hopfion.
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I. INTRODUCTION

In general terms, the phenomenon of backflow takes place
when some quantity (probability or energy density flow, local
momentum, etc.) in some spatiotemporal region of a wave
field is directed backward with respect to the directions of
all plane-wave constituents of the wave field [1,2]. Position
probability backflow specific to quantum particles, such as
electrons, has been termed “quantum backflow,” and this sub-
ject is actively being studied (see the newest review in [3] and
references therein). A dispute arose recently over the distinc-
tion between the quantum backflow and backflow phenomena
known in classical field theories [2,4]. In our opinion, the
contradistinction here is largely of a terminological nature. At
least nobody doubts that backflow is a wave phenomenon that
may occur in all kinds of wave fields, particularly in those de-
scribable by the Schrödinger, Maxwell, or wave equations in
free space.

Indeed, already a simple field of four appropriately po-
larized and directed electromagnetic plane waves exhibits
prominent energy backflow described by the Poynting vec-
tor whose direction is reversed with respect to the direction
of propagation of the resultant wave [5–7]. In the physical
optics community the energy backflow in sharply focused
light has been known for more than an half a century and
was thoroughly studied theoretically recently [8–10]. In the
context of quantum backflow, monochromatic optical fields
were used for recent experimental verification of the effect
[11,12]. Energy backflow in electromagnetic Bessel beams
was analytically demonstrated in [13,14]. In the context of
our present subject, the theoretical study [15] of backflow in
pulsed electromagnetic X waves, which belong to the class of
so-called localized waves, is important.

*Corresponding author: peeter.saari@ut.ee

Localized waves (LWs), also known as space-time wave
packets, have been studied intensively for the past 30
years (see [16–30] for pertinent literature). They constitute
spatiotemporally localized solutions to various hyperbolic
equations governing acoustic, electromagnetic, and quantum
wave phenomena and can be classified according to their
group velocity as luminal LWs, or focus wave modes; superlu-
minal LWs, or X waves; and subluminal LWs. Further details
can be found in two edited monographs on the subject [31,32]
and in a recent thorough review article [33]. In general, both
linear and nonlinear LW pulses exhibit distinct advantages
in comparison to conventional quasimonochromatic signals.
Their spatiotemporal confinement and extended field depths
render them especially useful in diverse physical applica-
tions. Experimental demonstrations have been performed in
the acoustical and optical regimes [20,22,25,34–38]. Work,
however, was carried out at microwave frequencies recently
[39–41].

An important question—widely discussed, especially in
the early stages of the theoretical study of LWs at the end
of the last century—has been the physical realizability of
localized waves. For example, two- or three-dimensional
electromagnetic luminal localized waves in free space in-
volve the characteristic variables ς = z − ct and η = z + ct
of the one-dimensional scalar wave equation. Consequently,
they contain both forward- and backward-propagating com-
ponents. Tweaking free parameters appearing in the wave
packets can significantly reduce the backward components.
However, whether the plane-wave constituents of the wave
packet propagate only in the positive z direction or also back-
ward is principally crucial. In the first case, not only can the
wave be launched from an aperture as a freely propagating
beam, but also, the very question of energy backflow is mean-
ingful.

In the literature, the LWs with forward-propagating plane-
wave constituents have been called, somewhat misleadingly,
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“causal.” In the following discussion we shall use the term
“unidirectional.” It must be pointed out, however, that, in
general, a wave packet as a whole can propagate in the positive
z direction despite the fact that its plane-wave constituents
are omnidirectional and vice versa: the group velocity of a
packet may have a negative z component despite the fact that
the z components of the wave vectors of all its plane-wave
constituents are positive. Also, for LWs the group velocity
typically differs from the energy velocity (see [42,43]).

Our aim in this paper is to theoretically study several
representatives of a class of causal, purely unidirectional
finite-energy localized waves with particular emphasis on their
energy backflow characteristics. Specifically, we shall try to
ascertain the role of the vector nature and polarization proper-
ties of a light field in the emergence of the backflow effect
and its strength. This paper is organized as follows. In the
next section we consider several finite-energy unidirectional
localized waves known from the literature. Extended unidi-

rectional LWs will be introduced in Sec. III. Section IV is
devoted to a detailed analysis of the backflow characteristics
of a unidirectional vectorial LW derived from the so-called
splash-mode solution of the scalar wave equation. This LW
is a generalization of the unidirectional solution used by
Bialynicki-Birula et al. [2] to demonstrate the existence of the
backflow in electromagnetic fields. Section V is devoted to
the derivation of a finite-energy hopfion-like spatiotemporally
localized wave that is devoid of energy backflow. Concluding
remarks are made in Sec. VI.

II. CAUSAL, SCALAR UNIDIRECTIONAL
LOCALIZED WAVES

The feasibility of a finite-energy, causal, unidirectional lo-
calized wave solution of the scalar wave equation in free space
was first addressed by Lekner [44] using the Fourier synthesis

ψ+(ρ, z, t ) =
∫ ∞

0
dkze

ikzz
∫ ∞

0
dk e−ikct

∫ ∞

0
dκ κ J0(κρ)δ

(−κ2 − k2
z + k2

)
F (κ, kz, k)

=
∫ ∞

0
dk e−ikct

∫ k

0
dkze

ikzz
√

k2 − k2
z J0

(
ρ

√
k2 − k2

z

)
F1(kz, k). (1)

Choosing the spectrum

F1(kz, k) = kze−ka√
k2 − k2

z

, a > 0, (2)

one obtains

ψ+(ρ, z, t ) =
∫ ∞

0
dke−k(a+ict )

∫ k

0
dkzkze

ikzzJ0
(
ρ

√
k2 − k2

z

)
. (3)

Carrying out the integrations, Lekner derived the causal unidirectional solution,

ψ+(ρ, z, t ) = a4̂a

3

3(̂a2 + ρ2)2 − 6z2 (̂a2 + ρ2) − z4 + 8iz(̂a2 + ρ2)3/2

(̂a2 + ρ2)3/2 (̂a2 + ρ2 + z2)3
, (4)

with ã = a + ict . By interchanging the order of integrations
in Eq. (3) and using table integrals from [45] (p. 191, No. 10,
and p. 133, No. 3), we obtained a more compact expression
for the same unidirectional solution:

ψ (ρ, z, t ) = a4̂a(3
√

ρ2 + â2 − iz)

3(ρ2 + â2)3/2(
√

ρ2 + â2 − iz)3
. (5)

A formal study of a causal, unidirectional localized wave was
undertaken by So et al. [46] starting from the finite-energy
luminal splash mode [18,19],

ψ (ρ, z, t ) = 1

[a1 + i(z − ct )][a2 − i(z + ct )] + ρ2
, (6)

where a1,2 are positive free parameters. As mentioned in the
Introduction, this is a bidirectional solution. However, for
a2 � a1, the backward components are significantly reduced.
So et al. [46] decomposed the denominator in Eq. (6) as

follows:

ψ (ρ, z, t ) = 1

z2∗ − S2
= 1

S

(
1

z∗ − S
− 1

z∗ + S

)
= 1

2
(u+ − u−), S =

√
ct2∗ − ρ2,

t∗ = t + i(a2 + a1)

2c
, z∗ = z + i(a2 − a1)

2
. (7)

They proved that the expression u+ = S−1(z∗ − S)−1 satisfies
the wave equation and is a solution propagating in the positive
z direction. On the other hand, u− is a solution propagat-
ing purely in the negative z direction. They did not analyze
whether u+ is unidirectional (causal) in the sense we use here,
that all its plane-wave constituents propagate solely into the
hemisphere with kz > 0.

Independently, Bialynicki-Birula et al. [2] introduced two
luminal unidirectional wave packets,

h± = 1

2

1√
c2(a + it )2 + ρ2

1√
c2(a + it )2 + ρ2 ∓ iz

, (8)
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where a > 0, which they derived by using a Fourier syn-
thesis and limiting the integration in k space to one of the
hemispheres (with kz > 0 or kz < 0). Here, we carry out
the synthesis in a slightly modified version that incorporates
complex values z∗ = z + izs, with zs ≡ (a2 − a1)/2, of the z
coordinate and thus a two-parameter solution like in Eq. (7).
Since the solution is axially symmetric, we base the synthesis
on the zeroth-order Bessel beams; specifically,

h±(ρ, z, t ) = 1

2

∫ ∞

−∞
dkzH (±kz )eikzz

×
∫ ∞

0
dκ κJ0(κρ)e−ict

√
κ2+k2

z G(κ, kz ), (9)

where H (·) designates the Heaviside unit step function which
ensures the integration in only one hemisphere. Choosing the
spectrum

G(κ, kz ) = 1√
κ2 + k2

z

e−ac
√

κ2+k2
z , a > 0, (10)

and introducing the new variable λ = √
κ2 + k2

z , one obtains

h±(ρ, z, t ) = 1

2

∫ ∞

−∞
dkzH (±kz )eikzz

×
∫ ∞

kz

dλJ0
(
ρ

√
λ2 − k2

z

)
e−aλ. (11)

The integration over λ is carried out ([45], p. 191, No. 9),
yielding

h±(ρ, z, t ) = 1

2
√

c2(a + ict )2 + ρ2

×
∫ ∞

−∞
dkzH (±kz )eikzz−|kz |

√
c2(a+ict )2+ρ2

. (12)

Finally, the integration over kz results in the unidirectional
solutions given in Eq. (8), where z is replaced by z∗, while the
restriction | Im z∗| < a avoids singularity. Note that the wave
functions h± given in Eq. (8), but modified in this manner,
are equivalent, respectively, to u+/2 and u−/2 in Eq. (7),
provided that, in addition, a = (a1 + a2)/2.

Without a detailed discussion of its unidirectional features,
a seemingly different type of solution was derived by Wong
and Kaminer in 2017 [47]; specifically,

ψ (ρ, z, t ) = −i
a + ict

k0R̃2

(
1

k0R̃
f −s−1 + s + 1

s
f −s−2

)
,

f = 1 − k0(iz + a − R̃)/s, R̃ =
√

(a + ict )2 + ρ2,

(13)

where k0 = ω0/c = 2π/λ0. This solution can be derived from
the Fourier synthesis in Eq. (1). Assuming, first, the spectrum
F1(kz, k) = F2(kz ) exp(−ak), we obtain

ψ1
+(ρ, z, t ) = 1

R̃

∫ ∞

0
dkze

ikzze−kzR̃F2(kz ). (14)

Next, let kz/k0 = χ/s, and choose the spectrum so that

ψ1
+(ρ, z, t ) = 1

R̃

∫ ∞

0
dχ e−χq χ s

�(s + 1)
,

FIG. 1. Plot of the normalized (c = 1) group speed vs time for
ρ = 0, 2, 4 and parameter value a = 10. Here and in subsequent
figures the parameters, coordinates, and time are given in dimension-
less length units; see also the paragraph following Eq. (26).

q = 1 − k0

s
(iz + a − R̃). (15)

The final solution assumes the form

ψ1
+(ρ, z, t ) = 1

R̃
[1 − k0(iz + a − R̃)]−s−1 = 1

R̃
f −s−1. (16)

The solution given in Eq. (13) results from differentiation of
ψ1

+(ρ, z, t )/k0 with respect to time.
All the unidirectional wave packets discussed in this sec-

tion are finite-energy solutions of the three-dimensional scalar
wave equation in free space. An important question is how do
they propagate in the positive z direction? We shall answer this
question in connection to the Bialynicki-Birula et al. [2] wave
packet, which seems to be the simplest. Consider the part of
the solution involving z and t , specifically,

z = −i
√

c2(a + it )2 + ρ2. (17)

Then, the real group speed is given by

vg(ρ, t ) = Re

{
∂

∂t
z(ρ, t )

}
= c Re

{
c(a + it )√

c2(a + it )2 + ρ2

}
.

(18)

It is seen that the group speed depends both on the radial
distance and time. A plot of the group speed (normalized with
respect to the speed of light in vacuum equal to unity) is shown
in Fig. 1 for three values of ρ. On axis (ρ = 0), vg = 1 for
all values of time. At ρ = 2, the speed is subluminal (but very
close to unity) for small values of time; it becomes luminal at
a value of time slightly larger than 10, becomes superluminal
afterward, and tends to unity for very large values of time. A
similar behavior is exhibited for larger values of ρ.

This behavior is different from a finite-energy unidirec-
tional scalar wave packet moving at a fixed speed. An example
is provided in the Appendix for a solution to the equation of
acoustic pressure under conditions of uniform flow.

III. EXTENDED SCALAR UNIDIRECTIONAL
LOCALIZED WAVES

Courant and Hilbert [48] pointed out that a “relatively
undistorted” progressive solution to the homogeneous three-
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dimensional scalar wave equation in vacuum assumes the
form

ψ (�r, t ) = 1

g(�r, t )
f [θ (�r, t )], (19)

where f (·) is essentially an arbitrary function; θ (�r, t ), referred
to as the “phase” function, is a solution to the nonlinear
characteristic equation(

∂θ

∂x

)2

+
(

∂θ

∂y

)2

+
(

∂θ

∂z

)2

− 1

c2

(
∂θ

∂t

)2

= 0; (20)

and g(�r, t ) is an “attenuation” function. The latter depends on
the choice of θ (�r, t ), but not in a unique manner. Along this
vein, a very general class of solutions to the homogeneous
scalar wave equation in free space is given as

ψ+(�r, t ) = 1

g(�r, t )
f [θ (α, β )],

g(�r, t ) ≡
√

ρ2 − c2(t − its)2,

α(�r, t ) ≡
√

ρ2 − c2(t − its)2 − i(z + izs),

β(�r, t ) ≡ ρ eiφ

ic(t − its) + g(�r, t )
(21)

in polar coordinates. Here, zs and ts are free positive param-
eters. In the following, we shall discuss in detail the specific
azimuthally asymmetric solution

ψ+(ρ, φ, z, t ) = 1

2 g(�r, t )

1

αq(�r, t )
e−pα(�r,t )βm(�r, t ), (22)

where p is a positive free parameter. It should be noted that
for m = 0, p = 0, and q = 1, the solution ψ+(�r, t ) is identical
to the Bialynicki-Birula azimuthally symmetric expression h+
given in Eq. (8) if zs = 0 and ts = a. Also, for m = 0, p = 0,
and q = s + 1, ψ+(�r, t ) is a slight variation of the expression
ψ1

+(ρ, z, t ) in Eq. (16).

IV. ENERGY BACKFLOW IN UNIDIRECTIONAL
SPATIOTEMPORAL LOCALIZED WAVES

A. Scalar-valued wave theory

The energy transport equation corresponding to the (3+1)-
dimensional homogeneous scalar wave equation(

∇2 − 1

c2

∂2

∂t2

)
ψ (�r, t ) = 0 (23)

governing the real-valued wave function ψ (�r, t ) in free space
is given as [49,50]

∇ · �S + ∂

∂t
U = 0, (24)

where

U = 1

2

1

c2

(
∂

∂t
ψ

)2

+ 1

2
∇ψ · ∇ψ (25)

is the energy density (J/m3) and

�S = − ∂

∂t
ψ ∇ψ (26)

is the energy flow density vector (W/m2).

FIG. 2. Plots of the longitudinal component of the energy flow
vector Sz at t = 0.5, with the speed of light normalized to unity.
(a) m = 0, q = 1, p = 0. (b) m = 3, q = 1, p = 0.. For curves 1, 2,
3, and 4, values of the axial coordinate are z = 0.9, z = 1.0, z = 1.1,
and z = 1.2, respectively. The plots are normalized with respect to
their peak intensities at t = 0.

An examination of energy backflow is accomplished by
examining the properties of the z component of the energy
flow vector corresponding to the real part of the extended
unidirectional scalar complex wave function ψ+(ρ, φ, z, t )
given in Eq. (22). Figure 2 shows plots of Sz versus ρ for
four axial positions, first for m = 0, p = 0, and q = 1 in
Fig. 2(a) and then, in Fig. 2(b), for m = 3, p = 0, and q = 1.

For both plots the parameter values are ts = 0.3 and zs = 0.1.
The time is fixed at t = 0.5, with the speed of light of vacuum
normalized to unity. Thus, the parameters and time are given
in dimensionless length units, and therefore, the results are ap-
plicable in not only optical but also microwave, etc., regions.
For example, if the chosen values of the parameters ts and zs,
as well as the time t , were in micrometers, then t = 0.5 would
correspond to 1.67 fs, which would also be approximately
equal to the pulse width. The value t = 0.5 has been chosen
since at t = 0 the backflow is absent but at higher values of
t the pulse would spread out too much and the energy flow
would become negligible.

We studied the simplest case with m = 0, p = 0, and q =
1 in more detail by plotting the local energy transport velocity
vector field, �V = �S/U (see Fig. 3). The plots demonstrate
that at the instant t = 0.5 energy flows backward in the region
(ρ < 0.3, z > 0.5). In a sense the situation resembles the sea-
drawback phenomenon, where the water recedes ahead of a
tsunami wave peak.
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FIG. 3. Energy flow velocity vector field �V (ρ, z) as a ratio of the
energy flow vector �S and energy density U , plotted at 20 × 20 spatial
points in the (x, z) plane, where x = ±ρ represents any transverse
axis. The background image is a grayscale plot (with contour lines)
of

√
U and shows the pulse and its two weaker side maxima at the

instant t = 0.5 of their stage of evolution. The maximum length of
arrows corresponds to c ( or to 1 for the dimensionless velocity).
In addition to the orientation of the arrows, values of the projection
Vz are expressed by colors of the arrows: the color gamut violet-
indigo-blue-cyan-green-yellow-red corresponds to range from +1 to
−1 (cyan corresponds to zero). Other parameters are the same as in
Fig. 2(a).

A complex-valued version of the wave function in Eq. (22)
exhibits practically no backflow effect because for its imag-
inary part the backflow regions have different locations
compared to those of the real part. Therefore, negative values
of Sz from the real part are compensated by much stronger
positive values of Sz from the imaginary part and vice versa
since the energy flow vectors from both parts sum up addi-
tively. The same holds for the wave functions in Eqs. (5) and
(4).

An interesting question is whether the power flux, which is
the integral of the z component of the energy flow vector over
a transverse plane at fixed values of z and t , can be negative,
at least for a small circular disk. Indeed, this is the case. From
Fig. 2(a), we use the dimensionless values z = 0.9 and t =
0.5. The integration results are shown in Fig. 4.

We see that the negative flux increases in absolute value up
to the radius of the disk 
 0.26, in full agreement with Fig. 3.

To conclude, it is somewhat surprising that a scalar solution
to the wave equation exhibits the backflow effect because
earlier studies instilled the opinion that the effect appears
in electromagnetic fields of specific polarization. Our results
indicate that backflow is possible not only in optical fields

FIG. 4. Plot of the numerical evaluation of the power through
a circular disk, with values of the radial coordinate in the range
{0, 0.6} in intervals of 1/100 at the fixed values z = 0.9 and t = 0.5,
with the speed of light normalized to unity. The plot corresponds to
that in Fig. 2(a) for m = 0, p = 0, q = 1 and the parameter values
ts = 0.3 and zs = 0.1.

describable by scalar approximation but also in acoustical
fields.

B. Vector-valued wave theory

Implicit in the study by Bialynicki-Birula et al. [2] is
that the examination of the energy backflow characteristics of
a vector-valued unidirectional localized wave is based on a
complex Riemann-Silberstein vector [51,52] derived from the
vector Hertz potential �� = 2(�ax + i�ay)ψ in Cartesian coordi-
nates, or �� = exp(iφ)(�aρ + i�aφ )ψ in cylindrical coordinates,
where the complex-valued wave function ψ (�r, t ) is a solution
of the (3+1)-dimensional scalar wave equation in free space,
specifically, the function h+ in Eq. (8). The complex-valued
Riemann-Silberstein vector is defined as

�F = ∇ × ∇ × �� + i

c

∂

∂t
∇ × ��. (27)

It obeys the equations

∇ × �F − i

c

∂

∂t
�F = 0, ∇ · �F = 0, (28)

which are exactly equivalent to the homogeneous Maxwell
equations for the free-space real electric and magnetic fields
�E and �B, defined in terms of �F as follows:

�F =
√

ε0

2
( �E + ic �B). (29)

The importance of the specific choice for the vector Hertz po-
tential is that the corresponding Riemann-Silberstein vector,
with the scalar wave function ψ (�r, t ) being any luminal spa-
tiotemporally localized wave [e.g., the splash mode in Eq. (6)],
is null; that is, it has the property �F · �F = 0. Equivalently, the

two Lorentz-invariant quantities I1 = �E · �B and I2 = | �E |2 −
c2| �B|2 are both equal to zero. Under certain restrictions, the
resultant field can be a pure hopfion [53] exhibiting interesting
topological properties, such as linked and knotted field lines,
or a hopfion-like structure, such as the one established by
Bialynicki-Birula et al. [2].
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FIG. 5. Plots of the longitudinal component of the Poynting
vector Sz at t = 0.8, with the speed of light normalized to unity.
(a) m = 0, p = 0, q = 1. (b) m = 3, p = 0, q = 1. For curves 1,
2, and 3, values of the axial coordinate are z = 1.2, z = 1.3, and
z = 1.4, respectively. For both plots the parameter values are ts = 0.2
and zs = 0.1. Both plots are normalized with respect to their peak
intensities at t = 0.

In the discussion below, the formalism described above
will be followed, but will be based on the simpler vector
Hertz potential �� = ψ�az. The Poynting vector, defined in
terms of the real fields as �S = �E × �H , can be written in
terms of the Riemann-Silberstein vector and its complex con-
jugate as follows: �S = −i �F ∗ × �F . An examination of energy
backflow will be accomplished by examining the properties
of the z component of the Poynting vector corresponding
to the extended unidirectional scalar complex wave function
ψ+(ρ, φ, z, t ) given in Eq. (22). Figure 5 shows plots of Sz

versus ρ for three axial positions, first for m = 0, p = 0, and
q = 1 and then for m = 3, p = 0, and q = 1. Note that the
values of t and z, as well as of the parameters ts and zs, differ
from those of Fig. 2. We see that the vector-valued versions
of both waves in a certain spatiotemporal region exhibit the
backflow effect, which is weak but comparable to that of the
scalar-valued waves.

V. UNIDIRECTIONAL HOPFION-LIKE
SPATIOTEMPORALLY LOCALIZED WAVE WITHOUT

ENERGY BACKFLOW

The basic (or pure) hopfion [53] is a finite-energy luminal
spatiotemporally localized solution to Maxwell’s equations in
free space with unique topological properties. Specifically, all
electric and magnetic field lines are closed loops, and any

FIG. 6. Linkages of electric and magnetic field lines at a fixed
value of time, with the speed of light in vacuum normalized to unity.
The parameter values are ts = 0.3 and zs = 0.1.

two electric (or magnetic) field lines are linked once with one
another. However, the basic hopfion has equally distributed
forward (along the positive z direction) and backward com-
ponents. By construction, then, it exhibits energy backflow.
The unidirectional hopfion-like wave structure in [2] shares
some of the topological characteristics with the pure hopfion
but exhibits energy backflow. A unidirectional hopfion-like
wave packet devoid of energy backflow will be constructed
in this section. Toward this goal, a technique due originally to
Whittaker [54] and Bateman [55] (see also [56,57] for modern
applications) will be used. First, the two quantities α(�r, t )
and β(�r, t ), known as Bateman conjugate functions, will be
defined in terms of functions α(�r, t ) and β(�r, t ) in Eq. (21):

ᾱ(�r, t ) = 1

α∗2(�r, t )
, β̄(�r, t ) = β∗(�r, t ). (30)

Any functional of these two functions obeys the nonlinear
characteristic equation (20). Furthermore, these two functions
obey the Bateman constraint,

∇ᾱ × ∇β̄ − i

c

(
∂ᾱ

∂t
∇β̄ − ∂β̄

∂t
∇ᾱ

)
= 0. (31)

Under these assumptions, the complex vector

�F = ∇ᾱ × ∇β̄ (32)

is a null Riemann-Silberstein vector governed by the expres-
sions in Eq. (28) and related to the real electric and magnetic
fields as given in Eq. (29). These fields have some of the
topological characteristics of those associated with a pure
hopfion. Figure 6 shows the linkages of the electric and mag-
netic field lines. Similar linkages characterize any two electric
(or magnetic) field lines. The basic hopfion is characterized
by linked single closed field-line loops. In our case, we have
linked bundles of field lines instead.

The z component of the Poynting vector �S = −i �F ∗ × �F
is plotted in Fig. 7. No energy backflow is present in this
case. The ratio of the Poynting vector and the electromagnetic
volume density is the local energy transport velocity �V (�r, t ) =
�S/U , with the energy density given in terms of the Riemann-
Silberstein vector as U (�r, t ) = �F ∗ · �F . Due to the nullity of
�F , the modulus of the energy transport velocity is equal to
the speed of light c, although �V (�r, t ) may vary in space and
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FIG. 7. Plot of the z component of the Poynting vector versus z and ρ for three values of time t . The parameter values are ts = 0.3 and
zs = 0.1.

time. In the case of the basic hopfion, the local energy velocity
depends on z and t through the combination z − ct ; that is, it
evolves along the z direction without any deformation. Such
a structure is known as a Robinson congruence. In the case
under consideration in this section the local energy transport
velocity is altogether independent of the coordinate z. The plot
in Fig. 8 shows the z component of the local energy transport
velocity versus ρ for three values of time. The absence of
energy backflow is clearly evident.

VI. CONCLUDING REMARKS

As mentioned, whether the plane-wave constituents of a lo-
calized wave packet propagate only in the positive z direction
or also backward is crucial. In the first case, not only can the
wave be launched from an aperture as a freely propagating
beam, but also the very question of energy backflow is mean-
ingful. Since most of the analytically constructed finite-energy
spatiotemporally localized waves (luminal, subluminal, and
superluminal) are acausal in the sense that they include both
forward- and backward-propagating components, several at-
tempts have been made to create close replicas of such waves
that can be causally launched as forward beams from apertures
(see, e.g., [21,58]) or even to derive exact causal unidirectional
wave packets [59,60]. Because they are usually based on the
Huygens principle, dealing with the former is computationally
intensive. On the other hand, the latter are quite complicated

FIG. 8. Plot of the z component of the local energy transport
velocity versus ρ for three values of time, t = 0.1, 1 and t = 3.

analytically. The study of energy backflow in this paper has
been confined to relatively simple causal unidirectional finite-
energy localized waves arising from a factorization of the
basic splash mode [18,19]. Specific results were given for the
energy backflow exhibited in known azimuthally symmetric
unidirectional wave packets, as well as in some azimuthally
asymmetric extensions. Using the Bateman-Whittaker tech-
nique, a finite-energy unidirectional null localized wave was
constructed that is devoid of energy backflow and has some of
the topological properties of the basic hopfion.

The study of energy backflow of the vector-valued uni-
directional localized waves in Sec. IV was based on the
Riemann-Silberstein complex vector that results in electric
and magnetic fields that both have nonzero z components
(non-TE and non-TM). Although specific results have not
been incorporated in this paper, an examination of the Poynt-
ing vectors associated individually with pure TE and TM
fields associated with the scalar unidirectional localized wave
ψ+(ρ, φ, z, t ) given in Eq. (22) showed the presence of en-
ergy backflow. This is altogether different from the cases of
the superposition of four plane waves [5–7], Bessel beams
[13,14], and a pulsed electromagnetic X wave [15], all of
which require a superposition of TE and TM fields for the
appearance of energy backflow.

Finally, some remarks about possible experimental studies
and relation of our results to quantum optics are required.

As stated in Sec. III, the results (including numerical plots)
are applicable irrespective of the frequency range of the EM
field. At low frequencies up to the microwave region, the
measurements for studying the nonstationary behavior of a
Poynting vector in pulsed fields considered here require time
resolution up to the nanosecond range. For that purpose,
known sensor-based techniques developed for monochromatic
fields (see, e.g., [61]) would be applicable. However, to the
best of our knowledge, no experiments have been carried out
for electromagnetic or acoustic energy backflow associated
with pulsed spatiotemporally localized wave functions.

As far as experiments on the electromagnetic energy back-
flow effect in the optical range are concerned, to date a few
studies that include monochromatic fields can be found: in
addition to Refs. [11,12], studies of the effect in nanoscale
focuses [62,63] are appropriate to mention here. Distribution
of the Poynting vector in optical fields can be measured via
the motion of probe Rayleigh particles or via investigation
of polarization in passage through an anisotropic crystal [64].
However, optical experiments on the fields considered in our
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paper are hardly feasible today because they would need near-
single-cycle light pulses and, consequently, subfemtosecond
temporal resolution.

The expressions derived in this paper also apply to quan-
tum optics: as is known, the spatiotemporal dependence
of the (quantum-mechanical) wave function of a single
photon, treated as a particlelike object, is given by the
Riemann-Silberstein vector of the corresponding classical
electromagnetic field. Moreover, as shown in [64], in terms of
weak quantum measurements, the observation of averaged tra-
jectories of single photons can be considered a measurement
of the distribution of the Poynting vector in the corresponding
classical optical field, including backflow effects.

APPENDIX

The equation of acoustic pressure under conditions of uni-
form flow is given as follows:[

∇2 − 1

u2
0

(
∂

∂t
+ �u · ∇

)2
]

p(�r, t ) = 0. (A1)

Here, u0 is the speed of sound in the rest frame of the medium,
and �u is the uniform velocity of the background flow. In the
special case where �u = u�az and u = u0 the resulting equa-
tion for the acoustic pressure simplifies as follows:(

∇2
t − 2

u0

∂2

∂t∂z
− 1

u2
0

∂2

∂t2

)
p(�r, t ) = 0. (A2)

Under this assumption, several exact analytical infinite-energy
nondiffracting and finite-energy slowly nondiffracting spa-
tiotemporally localized wave solutions are supported. One
such solution is the finite-energy unidirectional splash-like
mode,

p(ρ, z, t )= 1

a1 + i(z − 2u0t )

(
a2−iz+ ρ2

a1 + i(z − 2u0t )

)−q

,

(A3)

with a1,2 being positive parameters. This is a finite-energy
unidirectional wave packet moving along the z direction at the
fixed speed v = 2u0.
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[15] M. A. Salem and H. Bağcı, Energy flow characteristics of vector
X-waves, Opt. Express 19, 8526 (2011).

[16] J. N. Brittingham, Focus wave modes in homogeneous Maxwell
equations: Transverse electric mode, J. Appl. Phys. 54, 1179
(1983).

[17] G. Ya. Smol’kov, Modulated Gaussian beams, Radiophys.
Quantum Electron. 26, 1014 (1983).

[18] R. W. Ziolkowski, Localized transmission of electromagnetic
energy, Phys. Rev. A 39, 2005 (1989).

[19] I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, A bidi-
rectional traveling plane wave representation of exact solutions
of the scalar wave equation, J. Math. Phys. 30, 1254 (1989).

[20] J. Y. Lu and J. F. Greenleaf, Nondiffracting X waves—Exact
solutions to the free space scalar wave equation and their finite
aperture realization, IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 39, 19 (1992).

[21] R. W. Ziolkowski, I. M. Besieris, and A. M. Shaarawi, Aperture
realizations of the exact solutions to homogeneous-wave equa-
tions, J. Opt. Soc. Am. A 10, 75 (1993).

[22] P. Saari and K. Reivelt, Evidence of X -Shaped Propagation-
Invariant Localized Light Waves, Phys. Rev. Lett. 79, 4135
(1997).

[23] I. M. Besieris, M. Abdel-Rahman, A. M. Shaaraw, and A.
Chatzipetros, Two fundamental representations of localized
pulse solutions to the scalar wave equation, Prog. Electromagn.
Res. 19, 1 (1998).

[24] J. Salo, J. Fagerholm, A. T. Friberg, and M. M. Saloma, Uni-
fied description of X and Y waves, Phys. Rev. E 62, 4261
(2000).

[25] R. Grunwald, V. Kebbel, U. Neumann, A. Kummrow, M. Rini,
R. T. Nibbering, M. Piche, G. Rousseau, and M. Fortin, Gener-
ation and characterization of spatially and temporally localized
few-cycle optical wave packets, Phys. Rev. A 67, 063820
(2003).

[26] P. Saari and K. Reivelt, Generation and classification of local-
ized waves by Lorentz transformations in Fourier space, Phys.
Rev. E 69, 036612 (2004).

[27] S. Longhi, Spatial-temporal Gauss-Laguerre waves in disper-
sive media, Phys. Rev. E 68, 066612 (2003).

033502-8

https://doi.org/10.1088/1751-8113/43/41/415302
https://doi.org/10.1088/1751-8121/ac65c1
https://doi.org/10.1088/1402-4896/abdd54
https://doi.org/10.1088/1751-8121/acba62
http://arxiv.org/abs/arXiv:2009.04119
https://doi.org/10.1088/1361-6404/ac0106
https://doi.org/10.1098/rspa.1959.0200
https://doi.org/10.1103/PhysRevA.101.033811
https://doi.org/10.1364/OE.391398
https://doi.org/10.1364/OPTICA.371494
https://doi.org/10.1088/1367-2630/aca70b
https://doi.org/10.1088/0963-9659/2/1/006
https://doi.org/10.1364/JOSAA.24.002844
https://doi.org/10.1364/OE.19.008526
https://doi.org/10.1063/1.332196
https://doi.org/10.1007/BF01034667
https://doi.org/10.1103/PhysRevA.39.2005
https://doi.org/10.1063/1.528301
https://doi.org/10.1109/58.166806
https://doi.org/10.1364/JOSAA.10.000075
https://doi.org/10.1103/PhysRevLett.79.4135
https://doi.org/10.2528/PIER97072900
https://doi.org/10.1103/PhysRevE.62.4261
https://doi.org/10.1103/PhysRevA.67.063820
https://doi.org/10.1103/PhysRevE.69.036612
https://doi.org/10.1103/PhysRevE.68.066612


ENERGY BACKFLOW IN UNIDIRECTIONAL … PHYSICAL REVIEW A 107, 033502 (2023)

[28] C. Conti, S. Trillo, P. di Trapani, G. Valiulis, A. Piskarskas, O.
Jedrkiewicz, and J. Trull, Nonlinear Electromagnetic X Waves,
Phys. Rev. Lett. 90, 170406 (2003).

[29] A. P. Kiselev, Localized light waves: Paraxial and exact solu-
tions of the wave equation (review), Opt. Spectrosc. 102, 603
(2007).

[30] M. Yessenov, B. Bhaduri, H. E. Kondaksi, and A. F. Abouraddy,
Classification of propagation-invariant space-time wave packets
in free space: Theory and experiments, Phys. Rev. A 99, 023856
(2019).

[31] Localized Waves, edited by H. E. Hernandez-Figueroa, M.
Zamboni-Rached, and E. Recami (Wiley, Hoboken, NJ, 2007).

[32] Non-diffracting Waves, edited by H. E. Hernandez-Figueroa, E.
Recami, and M. Zamboni-Rached (Wiley, Hoboken, NJ, 2013).

[33] M. Yessenov, L. A. Hall, K. L. Schepler, and A. F. Abouraddy,
Space-time wavepackets, Adv. Opt. Photon. 14, 455
(2022).

[34] K. Reivelt and P. Saari, Experimental demonstration of realiz-
ability of optical focus wave modes, Phys. Rev. E 66, 056611
(2002).

[35] P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, P. Saari,
and R. Trebino, Measurement of the spatio-temporal field of
ultrashort Bessel-X pulses, Opt. Lett. 34, 2276 (2009).

[36] P. Saari, X-type waves in ultrafast optics, in Non-diffracting
Waves, edited by H. E. Hernandez-Figueroa, E. Recami, and M.
Zamboni-Rached (Wiley, Hoboken, NJ, 2013), pp. 109–134.

[37] H. F. Kondakci and A. F. Abouraddy, Diffraction-free space-
time light sheets, Nat. Photonics 11, 733 (2017).

[38] B. Bhaduri, M. Yessenov, and A. F. Abouraddy, Space-time
wave packets that travel in optical materials at the speed of light
in vacuum, Optica 6, 139 (2019).

[39] N. Papasimakis, T. Raybould, V. A. Fedotov, D. P. Tsai, I.
Youngs, and N. I. Zheludev, Pulse generation scheme for fly-
ing electromagnetic doughnuts, Phys. Rev. B 97, 201409(R)
(2018).

[40] D. Comite, W. Fuscaldo, S. K. Podilchak, and V. Gómez-
Guillamón Buenndia, Microwave generation of X-waves by
means of planar leaky-wave antenna, Appl. Phys. Lett. 113,
144102 (2018).

[41] W. Fuscaldo, D. Comite, A. Boesso, P. Baccarelli, P.
Bughignoli, and A. Galli, Focusing Leaky Waves: A Class of
Electromagnetic Localized Waves with Complex Spectra, Phys.
Rev. Appl. 9, 054005 (2018).

[42] P. Saari, Reexamination of group velocities of structured light
pulses, Phys. Rev. A 97, 063824 (2018).

[43] P. Saari, O. Rebane, and I. Besieris, Energy-flow velocities
of nondiffracting localized waves, Phys. Rev. A 100, 013849
(2019).

[44] J. Lekner, Electromagnetic pulses, localized and causal, Proc.
R. Soc. A 474, 20170655 (2018).

[45] Tables of Integral Transforms, edited by A. Erdelyi (McGraw-
Hill, New York, 1954), Vol. 1.

[46] I. A. So, A. B. Plachenov, and A. P. Kiselev, Simple unidirec-
tional finite-energy pulses, Phys. Rev. A 102, 063529 (2020).

[47] L. J. Wong and I. Kaminer, Abruptly focusing and defocusing
needles of light and closed-form electromagnetic wavepackets,
ACS Photonics 4, 1131 (2017).

[48] R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience, New York, 1962), Vol. 2.

[49] H. S. Green and E. Wolf, A scalar representation of electromag-
netic fields, Proc. Phys. Soc. London, Sect. A 66, 1129 (1953).

[50] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1955), p. 288.

[51] H. Weber, Die partiellen Differential-Gleichungen der math-
ematischen Physik nach Riemann’s Vorlesungen (Friedrich
Vieweg, Brunschweig, 1901).

[52] L. Silberstein, Electromagnetische Grundgleichungen in bivec-
torieller Behandlung, Ann. Phys. (Berlin, Ger.) 327, 579 (1907).

[53] A. F. Ranada, Knotted solutions of the Maxwell equations in
vacuum, J. Phys. A 23, L815 (1990).

[54] E. T. Whittaker, On an expressions of the electromagnetic field
due to electrons by means of two scalar potential functions,
Proc. London Math. Soc. s2-1, 367 (1904).

[55] H. Bateman, The Mathematical Analysis of Electrical and Op-
tical Wave-Motion on the Basis of Maxwell’s Equations (Dover,
New York, 1955).

[56] I. M. Besieris and A. M. Shaarawi, Hopf-Ranãda linked and
knotted light beam solution viewed as a null electromagnetic
field, Opt. Lett. 34, 3887 (2009).

[57] H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M.
Irvine, Tying Knots in Light Fields, Phys. Rev. Lett. 111,
150404 (2013).

[58] A. M. Shaarawi, Comparison of two localized wave fields gen-
erated from dynamic apertures, J. Opt. Soc. Am. A 14, 1804
(1997).

[59] C. J. R. Sheppard and P. Saari, Lommel pulses: An analytic
form for localized waves of the focus wave mode type with
bandlimited spectrum, Opt. Express 16, 150 (2008).

[60] M. Zamboni-Rached, Unidirectional decomposition method for
obtaining exact localized solutions totally free of backward
components, Phys. Rev. A 79, 013816 (2009).

[61] C. C. Chen and J. F. Whitaker, An optically-interrogated
microwave-Poynting vector sensor using cadmium manganese
telluride, Opt. Express 18, 12239 (2010).

[62] G. Yuan, E. F. Rogers, and N. I. Zheludev, “Plasmonics” in free
space: Observation of giant wavevectors, vortices, and energy
backflow in superoscillatory optical fields, Light: Sci. Appl. 8,
2 (2019).

[63] V. V. Kotlyar, S. S. Stafeev, A. G. Nalimov, A. A. Kovalev,
and A. P. Porfirev, Experimental investigation of the energy
backflow in the tight focal spot, Comput. Opt. 44, 863 (2020).

[64] K. Y. Bliokh, A. Y. Bekshaev, A. G. Kofman, and F. Nori, Pho-
ton trajectories, anomalous velocities and weak measurements:
A classical interpretation, New J. Phys. 15, 073022 (2013).

033502-9

https://doi.org/10.1103/PhysRevLett.90.170406
https://doi.org/10.1134/S0030400X07040200
https://doi.org/10.1103/PhysRevA.99.023856
https://doi.org/10.1364/AOP.450016
https://doi.org/10.1103/PhysRevE.66.056611
https://doi.org/10.1364/OL.34.002276
https://doi.org/10.1038/s41566-017-0028-9
https://doi.org/10.1364/OPTICA.6.000139
https://doi.org/10.1103/PhysRevB.97.201409
https://doi.org/10.1063/1.5047397
https://doi.org/10.1103/PhysRevApplied.9.054005
https://doi.org/10.1103/PhysRevA.97.063824
https://doi.org/10.1103/PhysRevA.100.013849
https://doi.org/10.1098/rspa.2017.0655
https://doi.org/10.1103/PhysRevA.102.063529
https://doi.org/10.1021/acsphotonics.6b01037
https://doi.org/10.1088/0370-1298/66/12/308
https://doi.org/10.1002/andp.19073270313
https://doi.org/10.1088/0305-4470/23/16/007
https://doi.org/10.1112/plms/s2-1.1.367
https://doi.org/10.1364/OL.34.003887
https://doi.org/10.1103/PhysRevLett.111.150404
https://doi.org/10.1364/JOSAA.14.001804
https://doi.org/10.1364/OE.16.000150
https://doi.org/10.1103/PhysRevA.79.013816
https://doi.org/10.1364/OE.18.012239
https://doi.org/10.1038/s41377-018-0112-z
https://doi.org/10.1088/1367-2630/15/7/073022

