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P-wave Efimov physics implications at unitarity
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Equal mass fermionic trimers with two different spin components near the unitary limit are shown to possess
a universal van der Waals bound or resonance state near s-wave unitarity, when p-wave interactions are included
between the particles with equal spin. Our treatment uses a single-channel Lennard-Jones interaction with long-
range two-body van der Waals potentials. While it is well known that there is no true Efimov effect that would
produce an infinite number of bound states in the unitary limit, we demonstrate that another type of universality
emerges for the symmetry L� = 1−. The universality is a remnant of Efimov physics that exists in this system
at p-wave unitarity, and it leads to modified threshold and scaling laws in that limit. Application of our model
to the system of three lithium atoms studied experimentally by Du et al. [Phys. Rev. Lett. 102, 250402 (2009)]
provides an interpretation of their measured three-body recombination loss rates.
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I. INTRODUCTION

Dilute bosonic and fermionic ultracold gases have ben-
efited tremendously in recent decades from the ability to
accurately tune s-wave scattering lengths or p-wave scattering
volumes at two-body Fano-Feshbach resonances [1]. In the
most-studied scenario, the s-wave scattering length (as) be-
tween each pair of atoms in a system of three identical bosons
diverges to negative infinity and produces the infinite series of
trimer bound or resonance state energies in the now-familiar
Efimov effect [2–7]. From a hyperspherical coordinate per-
spective, the Efimov effect occurs because, at two-body
unitarity, the long-range adiabatic hyper-radial potential curve
is reduced from a repulsive to an attractive asymptotic poten-
tial W (R) → −(s2

0 + 1
4 )h̄2/(2μR2) with s0 ≈ 1. Here R is the

hyperspherical radius and μ is the three-body reduced mass
[8]. Several experimental groups have since demonstrated that
the Efimov effect can be observed in helium trimers [9] and
in some alkali atom trimers [10–16]. Also, for three identical
bosons with orbital angular momentum and parity L� = 0+,
the scaling of three-body recombination has been predicted
and observed [4,17] to vary approximately in proportion to
|as|4 for negative values of as far from resonances.

While the physics of a trimer having s-wave interacting
particles has been successfully tackled by many different
methods, including zero-range models in particular, giving an
excellent understanding by now of the Efimov effect with its
infinity of bound states at s-wave unitarity (as → ∞). For
equal-mass trimers having p-wave interactions, on the other
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hand, zero-range models have experienced difficulties, lead-
ing to predictions of an Efimov effect, e.g., in [18,19], that
were ultimately disproven [20], consistent with Refs. [21,22].
Other interesting scenarios that arise with Efimov physics for
mass-imbalanced fermionic trimers have been considered by
Kartavtsev and Malykh [23] and by Naidon et al. [24], but
our focus here is exclusively on equal-mass trimers. In equal-
mass two-component trimers and in spin-polarized fermionic
trimers, there are no known symmetries having an Efimov
effect at s-wave or p-wave unitarity. The point of the present
study is to show that properties of fermionic trimers can be
reliably predicted using realistic finite-range potentials rel-
evant to current ultracold atomic physics experiments. Our
treatment addresses two main goals: Firstly, (i) We show
that despite the absence of an Efimov effect in fermionic
trimers with p-wave interactions, there is a remnant of
Efimov physics in the sense described in other recent refer-
ences [22,25], namely, that going to s-wave unitarity and/or
p-wave unitarity produces a reduction of the long-range
hyper-radial potential barrier. This reduction results in mod-
ifications of recombination threshold laws and scalings versus
scattering length and volume. Secondly, (ii) We apply our
model to an experimental measurement of three-body recom-
bination in a two-component Fermi gas near unitarity [26] that
has gone more than a decade without any theoretical interpre-
tation. Our treatment shows that the basic physics observed in
that measurement can at last be understood in the framework
presented here.

The scaling law of two-component equal-mass fermionic
three-body recombination rate was predicted by D’Incao and
Esry to be |as|2.455 for as < 0 [27], as well as by D’Incao
and Petrov to be a6

s for as > 0 [27,28]. For the negative
as side, the scaling law of three-body recombination (K3)
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disagrees significantly with the experimental result that was
observed, K3 ∝ |as|0.79±0.14 for as < 0 [26]. One point about
this theory-experiment discrepancy, which is relevant to the
present study, is that those previous theoretical predictions
neglect the interaction between the two spin-up fermions,
which might potentially be responsible for the discrepancy
in the threshold law compared to the experimental results.
However, the experimental temperature was too high [26] for
the theoretical threshold law scaling to apply.

The present article predicts the existence of one p-wave
universal trimer state for two-component equal-mass (m↑ =
m↓) fermionic trimers having the s-wave scattering length
approaching infinity between spin-up and spin-down fermions
and having the p-wave scattering volume (Vp) at the unitary
limit, for the symmetry L� = 1−. Evidence for the universal-
ity of this trimer state has emerged from our tests of different
s- and/or p-wave poles of two-body Lennard-Jones poten-
tials, in addition to various other two-body potentials, e.g.,
Gaussian or Gaussian-type potentials [22,25]. The peak of the
three-body recombination rate indicates the point where the
trimer state becomes bound. The scaling law for the three-
body recombination rate as a function of the p-wave scattering
volume Vp is modified when the opposite-spin fermion inter-
actions are at or near s-wave unitarity. For a two-component
Fermi gas trimer, especially the two spin-up and one spin-
down fermion case, the symmetry L� = 1− dominates near
the three-body dissociation threshold, because the recombi-
nation rate linearly on the collision energy E [29]. However,
K3 ∝ E no longer applies at the s-wave or p-wave unitary
limit for the opposite spin fermions, or if the two spin-up
fermions interact at p-wave unitarity. The calculations pre-
sented here also overcome a longstanding inability of theory
to understand the recombination rate measured in an experi-
ment [26] carried out at very large s-wave scattering lengths.
We do not argue, however, that this approximate agreement
between theory and experiment can be viewed as a confirma-
tion of the universal trimer discussed above.

II. METHOD

The adiabatic hyperspherical representation describes few-
body interactions and collisional phenomena [5,7,30,31] and
is applied here to the three-body quantum problem. The two
spin-up fermions interact with one spin-down fermion (or any
other equal-mass particle) with symmetry L� = 1−, where
� is the total parity. The three-body Schrödinger equation is
rewritten using modified Smith-Whitten hyperspherical coor-
dinates [8,32–34]:[

− h̄2

2μ

d2

dR2
+ Wν (R)

]
Fν (R) +

∑
ν �=ν ′

Wνν ′Fν ′ (R) = EFν (R).

(1)
Here R is the hyperspherical radius, μ = m/

√
3 is the three-

body reduced mass for three equal particles with mass m,
Wν (R) is the effective adiabatic potential in channel ν ob-
tained from the hyperangular eigenvalue equation, Fν (R) is the
hyper-radial wave function, and Wνν ′ (R) is the nonadiabatic
coupling. The full interaction potential energy V is taken here
to be a sum of the two-body potentials, i.e., V = v3(r12) +
v1(r23) + v2(r31), where the ri j are the interparticle dis-

tances. The two-body potential utilized is the Lennard-Jones
potential [35],

vi(r) = −C6

r6

(
1 − λ6

n

r6

)
. (2)

In this paper, in our chosen set of van der Waals units, the
C6 coefficient is set at 16 r6

vdWEvdW, where rvdW is the van
der Waals length rvdW ≡ (mC6/h̄2)1/4/2 (m/2 is two-body re-
duced mass here) and the van der Waals energy unit is EvdW ≡
h̄2/(2μr2

vdW). The parameter λn can be adjusted to produce
any desired s-wave scattering length or p-wave scattering vol-
ume for a chosen pair of fermions. Here the two-body s-wave
scattering length and p-wave scattering volume can be written
at k → 0 as

k2�+1 cot(δ�) → −1/a�
2�+1 + 1

2 r�k2, (3)

where a0(≡ as) is the s-wave scattering length, a1(≡ ap) is
the p-wave scattering length, δ0(k) is the s-wave scattering
phase shift, δ1(k) is the p-wave scattering phase shift, r0 is the
s-wave effective range, r1 is the p-wave “effective range,” and
k is the wave number.

The asymptotic effective adiabatic potentials in the three-
body continuum are accurately characterized at R → ∞ as

Wν (R) → h̄2le(le + 1)

2μR2
, (4)

where le controls the effective angular momentum barrier of
the three free asymptotic particles in the large hyperradius,
R → ∞. The le value also determines the scaling law of the
three-body recombination rate and squared scattering matrix
element, through the Wigner threshold law |SL�

j←i|2 ∝ ki
2le,i+1.

R-matrix propagation is used to solve the radial Eq. (1), and
the three-body recombination rate (KL�

3 ) can be computed in
terms of the scattering S matrix as

KL�
3 =

∑
L,�

∑
i, j

32h̄N!(2L + 1)

μk4

∣∣SL�
j←i

∣∣2
. (5)

Here N is the number of identical particles in the trimer,
k =

√
2μE/h̄2 is the hyperspherical wave number, E is the

three-body collision energy, and i and j label the incident
(three-body continuum) and outgoing (three-body recombi-
nation) channels attached to two-body energies [36,37]. The
situation with two spin-up and one spin-down fermion can
be viewed as two identical fermions plus a third atom of
equal mass, in which case N = 2 in Eq. (5). According to
the Wigner threshold law, the three-body recombination rate
is a power-law function of k =

√
2μE/h̄2 at ultracold energy,

namely,

KL�
3 ∝ k2le−3. (6)

Therefore the coefficient of 1/(2μR2) in the asymptotically
lowest continuum effective adiabatic potential plays a key role
in the behavior of the low-energy three-body recombination
rate.

III. P-WAVE UNIVERSAL TRIMER

Our explorations demonstrate the existence of a p-wave
universal trimer for three equal-mass fermionic atoms at the
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FIG. 1. Shown are p-wave universal trimer state energies for
two spin-up and one spin-down fermion systems (↑↓↑) with vs the
inverse of p-wave scattering length (ap ≡ V 1/3

p ). Circles (solid blue)
show the two-body p-wave bound state. The squares, diamonds,
triangles, inverted triangles, open squares, and open circles repre-
sent, respectively, the trimer energies obtained using different fixed
interactions (scattering lengths) between the spin-up and spin-down
fermions (↑↓) plotted here as functions of the p wave ap between
the two spin-up fermions (↑↑). The respective s-wave values of as in
the order listed above for the different symbols are as = −10 rvdW,
as = −50 rvdW, as = ∞ rvdW, as = 50 rvdW, as = 20 rvdW, and as =
10 rvdW. The inset figure shows the starting value of ap, where two
spin-up and one spin-down fermion first form the trimer state at zero
energy for the corresponding value of the s-wave scattering length
between opposite-spin-state fermions.

s-wave unitary limit, which emerges when the interaction
between the two spin-up atoms is made attractive, specifically
for the symmetry L� = 1−. Figure 1 plots the p-wave trimer
state energy versus the p-wave scattering length (ap ≡ V 1/3

p )
between the identical fermions; this was calculated by includ-
ing 30 coupled continuum channel potential curves. Different
symbols represent the different s-wave scattering lengths
between the opposite-spin-state fermions. As one increases
the attraction in the p-wave potential between spin-polarized
fermion, it is seen that the trimer can be created not only at
the s-wave unitary limit for the opposite-spin fermion inter-
actions, but even at small positive or negative values of the
s-wave scattering length.

In the case where the unequal spin interactions are fixed
at s-wave unitarity and the interactions between like fermions
are at p-wave unitarity, the universal trimer energy is com-
puted here to equal E = −0.136 EvdW, where the two-body
s-wave and p-wave effective ranges are rs ≈ 2.782 rvdW

and rp ≈ −1.727 r−1
vdW, respectively. The resonance energies,

when different spin fermions interact at the first s-wave pole
and two spin-up fermions are at either the second or third
p-wave pole, are both E = −0.129 EvdW. The critical points
where the universal trimer state reaches zero energy and
causes a recombination resonance can be determined from the
axis intercepts in Fig. 1. The inset of Fig. 1 shows those crit-
ical values of Vp as a function of as, as the s-wave scattering
length ranges from −10 rvdW to ∞ and on to 10 rvdW. For this
as regime, there is no additional p-wave two-body resonance,
nor has a p-wave Feshbach molecule been created. The inset

FIG. 2. Our numerically computed three-body recombination
rate is shown as a function of the p-wave scattering volume Vp for the
symmetry L� = 1−. The interaction between opposite spin fermions
is fixed at unitarity. This plot represents the three 6Li atoms with two
spin-up and one spin-down state (↑↓↑) at the temperature E/kB ≈
150 nK. The peak of the recombination rate at Vp ≈ −12 r3

vdW is
close to the previously discussed starting point where the universal
trimer first becomes bound, near the first p-wave pole of two-body
Lennard-Jones potential. Moreover, the dashed line asymptote shows
the expected scaling law of the recombination rate for the computed
value of le, namely, for this symmetry K3 ∝ |Vp|1.182. The x and y axis
are both logarithmic scales, base 10.

figure suggests how experiment can find the recombination
resonance associated with the universal trimer state, when
the different spin fermion interactions differ from the s-wave
unitary limit.

IV. MODIFIED WIGNER THRESHOLD
LAW AT UNITARITY

Measuring the three-body recombination rate gives a way
to find values of the two-body scattering parameters where
the universal trimer state hits zero energy. Consider next
the situation where unlike spins have their interaction fixed
at s-wave unitarity, as the p-wave scattering volume Vp is
varied between the same spin fermions. Figure 2 plots the
three-body recombination rate versus Vp for two spin-up and
one spin-down (↑↓↑) 6Li atom with symmetry L� = 1−. The
resonant peak of the recombination rate corresponds to the
creation of the universal trimer state, predicted here to occur
when the p-wave scattering volume is Vp ≈ −12 r3

vdW. This
recombination rate was calculated by including six atom-
dimer channels for recombination channels and 14 continuum
channels. This Vp is close to its value predicted in our inset of
Fig. 1, Vp ≈ −11.06 r3

vdW (including 14 continuum channels
and no atom-dimer channels). The slight difference between
the resonant value of Vp in our true bound state and scattering
calculations arises because the number of fragmentation chan-
nels is different in these two calculations that are so different.
In one case the state of interest is a bound state extrapolated
to zero energy, while in the latter case it is a resonance in
the predissociative continuum. Still, the difference gives some
insight into the size of expected departures from universality.
Note the dramatic dependence on Vp: the peak value of K3
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being around five orders of magnitude higher than the K3 value
at zero p-wave scattering volume. The asymptotic behavior of
the recombination rate K3, for |Vp|  r3

vdW , has been modified
to |Vp|(2le+1)/3 → |Vp|1.181 since the value of le controlling
the large-R adiabatic potential is modified to le = 1.272 by
Efimov physics for the two-component fermion system in the
s-wave unitary limit.

The Efimov physics modification [22,25], for this two-
component Fermi trimer at s-wave unitarity in the symmetry
L� = 1−, can be obtained by solving the transcendental
equation for zero-range interactions, as in Refs. [38,39]. We
confirm numerically that the lowest le value, which sets the
long-range barrier of the three-body effective potential, con-
trols both the Wigner threshold law Eq. (6) and the scaling of
the three-body recombination rate with the p-wave scattering
volume. In the bosonic Efimov effect, there are an infinite
number of Stückelberg minima occurring as as grows arbi-
trarily large and positive. However, there is no true Efimov
effect in the present fermionic case; thus the phase difference
between pathways does not necessarily complete even a single
full cycle, as Vp is varied over the range plotted in Fig. 2. There
is no Stückelberg minimum in the range we have considered,
but one would be expected if the recombination rate were
computed to much higher energies.

V. THREE-BODY LOSS RATE OF A TWO-COMPONENT
FERMIONIC TRIMER AT S-WAVE UNITARITY

In this section the three-body recombination K3 are calcu-
lated and discussed by adding the p-wave interaction between
two spin-up fermions while the opposite-spin-state fermion is
close to s-wave unitarity with L� = 1−. The detail of reason
of the loss rate increasing when s-wave scattering from small
negative to negative infinite, then from positive infinite to
small positive, will be discussed in the following sections.

A. Three-body loss rate compared with experiment

The thermally averaged three-body recombination rate is
written (after correcting a typo in Eq. (4) of Ref. [40]) as

〈K3〉(T ) = 1

2(kBT )3

∫
K3(E )E2e−E/(kBT )dE . (7)

Our computed recombination rate shows rough agreement
with the ternary loss rate measurement carried out by the
group of Thomas [26] for a two-component gas of fermionic
6Li. Figure 3 compares theory and experiment in a plot of the
thermally averaged atom-loss rate 〈L3〉(T ). This quantity is re-
lated to the event loss rate K3 through the equation 〈L3〉(T ) =
3〈K3〉(T )/2 [17], where the brackets denote thermal averag-
ing. The computed results in Fig. 3 are for the recombination
of two spin-up and one spin-down 6Li atom in the sym-
metry L� = 1− and are shown as a function of rvdW/as,
which controls the interaction of opposite-spin-state fermions.
Moreover, the p-wave scattering volume between two spin-up
fermions has been fixed [41] at Vp ≈ −1.8 r3

vdW. For two 6Li
atoms, the van der Waals length is equal to rvdW = 31.26 aB

and the van der Waals energy is EvdW/kB = 29.47 mK, where
aB and kB are the Bohr radius and the Boltzmann constant,
respectively [42]. The open circles were calculated using the

FIG. 3. Comparison of the theoretical thermally averaged three-
body loss rate for 6Li with the Du et al. experiment [26] at large
scattering length |as| using the two spin-up and one spin-down (↑↓↑)
model with trimer orbital angular momentum L� = 1−, and the
temperature range is from T ≈ 15.66 µK to T ≈ 17.82 µK. The filled
circles (red) represent the experimental data from T ≈ 15.66 µK to
T ≈ 17.82 µK, and the filled triangles (blue) are the experimental
data at lower temperature from T ≈ 6.93 μK to T ≈ 7.83 μK. The
open circles (black), open triangles (orange), and inverted triangles
(cyan) are our numerical calculations of the thermally averaged
three-body loss rate for two different Hamiltonians, as explained in
the text.

three-body Born-Oppenheimer potential curves obtained for
a Hamiltonian that includes deep p- and f -wave atom-dimer
recombination channels only, and the inverted triangles were
obtained using the same potential curves but at lower tem-
perature to make comparison with experimental data. The
open triangles were calculated instead for a Hamiltonian
that possesses deep atom-dimer recombination channels, from
s wave to g wave.

Our study concentrates on the recombination into deep
atom-dimer channels for the recombination process; recom-
bination into the shallow s-wave atom-dimer channel at large
positive values of the s-wave scattering length is omitted
from the theoretical results shown in Fig. 3 because of the
extremely small binding energy of those universal dimers for
the positive scattering lengths used in that experiment, with
binding energies smaller than the trapping potential and the
gas temperature. A recombination event thus does not eject
any atoms from the trap, and also the dimer will be dissociated
rather quickly after it is formed. Parenthetically, we note that if
recombination into the weakly bound universal s-wave dimer
is included, the recombination would be a6

s for as > 0 [27,28]
and the rate would be several orders of magnitude higher than
the largest experimental rate shown in Fig. 3, but this is not
our justification for omitting those from our calculated rate to
compare with experiment.

In Fig. 3 the (red) circles represent the experimental three-
body loss rate coefficient as a function of the s-wave scattering
length (as) which is taken from Table I of Ref. [26], with as

rescaled into units of the van der Waals length. The triangles
(blue) show the experimental three-body atom loss rate at
lower temperatures. The calculations omit recombination into
the weakly bound universal s-wave dimer; the p-wave theory
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TABLE I. Shown are the s-wave and p-wave effective ranges (second and fourth row) with respective to s-wave scattering length and
p-wave scattering volume, which are associated with Fig. 3. The as are s-wave scattering lengths between spin-up and spin-down fermions,
and the Vp is p-wave scattering volume within two spin-up fermions with angular momentum L� = 1−.

as (rvdW) −86.37 −179.14 −236.72 −351.89 −1023.67 1151.63 351.89 204.73
s-wave reff (rvdW) 2.85 2.82 2.81 2.80 2.79 2.78 2.77 2.76
Vp (r3

vdW) −1.8
p-wave reff (r−1

vdW) 44.43

gives reasonable agreement with the two points on the positive
1/as side (agreeing better at the lower temperature measured).
For our model that only includes recombination into deep
s-wave dimers, there is one point close to the experimental
result at higher temperature, but this agreement could be
fortuitous. Table I shows the s- and p-wave effective ranges
corresponding to the situation of Fig. 3; the s-wave effective
range was calculated by using the method from Ref. [43].

B. Born-Oppenheimer potential curves

The lowest several hyperspherical Born-Oppenheimer po-
tential curves for the three-fermion system with symmetry
L� = 1− are shown in Fig. 4, which enables an interpretation
of the difference between the three-body loss rates computed
using the two different Hamiltonians described in relation to
Fig. 3 of the main text. The long-range effective adiabatic
potential curve representing the highest atom-dimer channel
can be represented asymptotically as

Wν (R) −−−→
R→∞

Uν (R) = Eνl + h̄2l ′(l ′ + 1)

2μR2
. (8)

Here Eνl is the rovibrational dimer energy, l represents the
dimer angular momentum, and l ′ is the angular momentum
of the third particle relative to the dimer. For the three-body
hyperspherical calculations shown in Figs. 4(a) and 4(b), the
s-wave two-body potential depth has been chosen to yield the
stated values of the scattering lengths (as) between spin-up
and spin-down fermions, in the vicinity of the second s-wave
pole (i.e., there exists a single deep s-wave dimer, in addition
to deep p, d, f , and g dimers, plus a weakly bound s-wave
dimer when as > 0), while the p-wave scattering volume be-
tween two spin-up fermions was set at Vp = −1.8 r3

vdW (no
p-wave dimer exists in this two-body potential).

The insets show that the potential barrier exhibits a lo-
cal maximum (at R ≈ 5 rvdW) in the entrance recombination
channel, and tunneling through that barrier to reach smaller
hyper-radii plays a key role in determining the experimental
three-fermion recombination loss rate into an atom and a deep
dimer. The barrier decreases gradually as the s-wave scatter-
ing length is decreased from a small negative value to −∞
and as as continues to decrease from +∞ to small positive
values (as = −86 → ∞ → 205 rvdW), i.e., as the interaction
potential between opposite spin fermions gets increasingly
attractive. Since three-body recombination into deep dimers
in this low energy range requires the system to tunnel through
that barrier, the gradual decrease of that hyper-radial barrier
height, as the opposite spin dimer interaction gets more at-
tractive, produces an enhancement of the partial three-body
recombination rate.

Similar reasoning applies to the other two figures,
Figs. 4(c) and 4(d), the only differences being that: (i) the
s-wave interaction between opposite-spin-state fermions has
been chosen near the first s-wave pole and (ii) the p-wave
interaction between same-spin-state fermions is still fixed at
Vp = −1.8 r3

vdW but with a deeper vdW potential that supports
both deep p-wave and f -wave bound states. Interestingly,
one sees that the computed hyper-radial barrier heights in the
entrance channels of Figs. 4(c) and 4(d) are about 30% higher
than those plotted in Figs. 4(a) and 4(b).

Observe that the open circle recombination rate calcula-
tion shown in Fig. 3 involves an s-wave scattering length as

between opposite-spin-state fermions that was computed at
or near the first s-wave pole and where only the two spin-up
fermion can form deep dimers of p-wave and f -wave angular
momentum. In this case, the more weakly bound f -wave
deep dimer partial recombination rates are computed to be
slightly higher than the p-wave partial recombination rates.
The relevant hyper-radial Born-Oppenheimer potentials for
those cases, with as = −86 rvdW and as = 205 rvdW, are those
displayed in Figs. 4(c) and Fig. 4(d), respectively.

VI. WIGNER THRESHOLD LAW IN TWO-COMPONENT
FERMION AT UNITARITY

The Wigner threshold law for the three-body recombi-
nation in a low energy collision of two spin-up and one
spin-down fermion with symmetry L� = 1− is K3(E ) ∝ E
[29], for interactions not at unitarity. The power law of the
three-body recombination depends on the number of identi-
cal particles and the system’s angular momentum. However,
when the two-body interaction is strong enough, i.e., the two-
fermion interactions reside at the s-wave or p-wave unitary
limit, the power law of the recombination becomes modified
because there is a modified centrifugal barrier asymptotically.
In particular, the asymptotic le value of the lowest three-
body continuum channel changes at unitarity, in a remnant
of the Efimov effect [22,25]. Figure 5 shows that in the
very-low-energy limit, the threshold law of the three-body
recombination rate into deep dimers does exhibit the expected
linear dependence on the energy, K3(E ) ∝ E , for collision
energies from 0.03 µK to 1 µK . However, the figure docu-
ments that the power law dependence of the recombination
rate changes to K3(E ) ∝ E−0.227 when the temperature is in
the range from 10 µK to 104 µK. The main point is that while
there is no true “Efimov effect” in this case, there is still
the Efimov physics reduction of the coefficient le which is
reduced by Efimov physics in the s-wave unitarity regime to
1.272 from its noninteracting value of 5/2. This controls the
energy dependence of the recombination rate, which varies
as Ele−3/2 = E−0.227, and this scaling is shown in Fig. 5 to
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FIG. 4. Three-body Born-Oppenheimer potential curves for two spin-up and one spin-down fermion (↑↓↑) with total angular momentum
L� = 1−. The letter represents the angular momentum quantum number l of the dimer, and the number labels the angular momentum between
the third atom and dimer l ′. (a, b) The as are chosen near the second s-wave pole with one deep s-wave bound state, and Vp = −1.8 r3

vdW with
no p-wave bound state. In (c) and (d), the as are chosen near or at the first s-wave pole with no deep opposite spin dimers, and the potential
producing Vp = −1.8 r3

vdW is chosen to have deep p- and f -wave bound states that enable recombination into deep spin-polarized dimers.

hold from approximately 10 μK up to about 10 mK (see the
red dashed line in Fig. 5). If there were no Efimov physics
reduction of the coefficient le controlling the long range hyper-
radial potential curve, the energy dependence would be much
different, namely, K3 proportional to E . The inset of Fig. 5
displays a WKB calculation to analyze the threshold law of
the three-body recombination loss rate. The WKB tunneling
probability at the incident energy E can be written as [7]

P(ν)
x→y = exp

⎧⎨
⎩−2

∫ y

x

√
2μ

h̄2

[
Wν (R) − E + 1/4

2μR2
h̄2

]
dR

⎫⎬
⎭,

(9)

where the ν represents the νth channel, and x and y are the
inner and outer classical turning points, respectively. Here
E is the incident collision energy and h̄2(1/4)/(2μR2) is
the semiclassical Langer correction [44]. The inset of Fig. 5

shows that the WKB probability has been raised to the power
1/1.773 and plotted versus the energy. The demonstrated
proportionality between P(E ) and E1.773 clarifies why the
three-body recombination rate into deep dimers has this non-
standard (Efimov physics modified Wigner threshold law) in
its near-threshold behavior at large s-wave scattering lengths.

VII. LANDAU-ZENER PROBABILITY

If these adiabatic potential curves and their nonadiabatic
couplings are computed out to very large hyper-radii (R 
10as), one could simply solve the coupled one-dimensional
differential equations to obtain the full scattering matrix of
the system. That is impractical here for as > 0 because there
is a crucial avoided crossing between the two potentials
sketched in Fig. 7 out at huge hyper-radii that are beyond our
current computational capabilities. However, we understand
that the nonadiabatic coupling of those two channels can be
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FIG. 5. Shown here is the rescaled recombination rate, E 2K3(E ),
as a function of the total energy E . The interaction between opposite-
spin-state fermions (↑↓) is set at as = 205 rvdW and the interaction
between the two spin-up fermions (↑↑) is equal to Vp = −1.8 r3

vdW,
corresponding to the three-body potential curves that are shown
in Fig. 4(d). The inset confirms that the power law for the WKB
tunneling probability varies linearly with collision energy at very
low energy, consistent with the expected Wigner threshold law for
this symmetry.

approximately modeled as a Landau-Zener avoided crossing.
The nonadiabatic coupling matrices Pνν ′ (R) and Qνν ′ (R) are
defined as

Pνν ′ (R) =
∫

d��∗
ν (R; �)

∂

∂R
�ν ′ (R; �), (10)

Qνν ′ (R) =
∫

d��∗
ν (R; �)

∂2

∂R2
�ν ′ (R; �). (11)

FIG. 6. The lowest two Born-Oppenheimer potential curves
calculated near the first s- and p-wave poles are shown for sym-
metry L� = 1−. The interaction between the spin-up and spin-down
fermions is set at as = 205 rvdW and between the two spin-up
fermions at Vp = −1.8 r3

vdW. The solid line decreases below the three-
body continuum threshold at around R = 240 rvdW, while the dashed
line is the lowest continuum channel potential curve, and the dotted
line is a measure of the nonadiabatic coupling strength, showing a
peak located near R = 619 rvdW. The inset plots the Landau-Zener
probability as a function of the collision energy. Specifically, the
dash-dotted line (black) denotes the diabatic probability, and the
long-dashed line (magenta) is the adiabatic probability.

FIG. 7. Sketch of the Landau-Zener transition between the two
lowest Born-Oppenheimer potential curves at the large positive as,
where the le value of the lower potential curve plays a key role
in controlling the low-energy-threshold behavior of the three-body
recombination rate. The solid curve is the lowest potential curve,
which effectively acts as the three-body entrance channel at R < R0,
even though it goes below the three-body threshold and becomes an
atom-dimer channel at very large R  as. The dashed curve plots the
second lowest potential curve that becomes the second continuum
channel at R < R0 and which serves as the lowest three-body contin-
uum entrance channel at R  R0. The dotted line shows the measure
of nonadiabatic coupling strength f12(R) and its peak position that is
concentrated at R = R0.

The following quantity serves as a useful measure of the
nonadiabatic coupling strength between channels ν and ν ′:

fνν ′ (R) = Pνν ′ (R)2

2μ|Uν (R) − Uν ′ (R)| . (12)

Figure 6 plots the cube root of the lowest two
Born-Oppenheimer potential curves as a function of
hyperradius and compares it with the nonadiabatic coupling
strength. The solid curve (s-wave atom-dimer channels)
goes below the three-body threshold at around R = 240 rvdW

and converges asymptotically to the universal dimer energy
appropriate to a large positive as. The dashed curve is the
lowest three-body continuum channel that converges to 0
asymptotically, and the dotted curve represents the measure
of nonadiabatic coupling strength f12(R) between these two
channels. The peak of the nonadiabatic coupling means the
three-body system has a high chance to cross diabatically
as it moves inward from the continuum channel to the
atom-dimer channel near the hyperradius R ≈ 3as. The inset
of Fig. 6 shows the Landau-Zener transition probability
versus the collision energy. The Landau-Zener probability
to diabatically traverse an avoided crossing centered at the
hyperradius R0 can be represented as [45]

Pdiabatic = exp

{
−2πU 2

12

h̄v| ∂
∂R [U1(R) − U2(R)]|

}
, (13)

where U1(R) and U2(R) are the two hyperspherical poten-
tial curves, v is the semiclassical local hyper-radial velocity,
the minimum potential energy gap is U12 = U1(R0) − U2(R0),
and the slope difference in the denominator of the exponent
is computed near but not exactly at R0. In the inset, the
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Landau-Zener diabatic probability is seen to be close to
unity in this low energy range, namely, Pdiabatic = 0.977, with
the transition centered at R = 619 rvdW for the energy E ≈
15.66 μK in the range of energy and s-wave scattering length
relevant for the experiment [26]. Note that the three-body
recombination loss rate in Fig. 3 has incorporated this dia-
batic probability factor from the Landau-Zener transition for
the calculations performed at large positive s-wave scattering
lengths. Figure 7 illustrates the mechanism of the Landau-
Zener transition between the two lowest potential curves, and
the le value of lowest potential curve has a significant effect
on the threshold law of the three-body recombination rate.

One subtlety in our present calculations that requires expla-
nation is the fact that for the large positive scattering lengths
studied experimentally (in Fig. 3 of the main article), there is
a very weakly bound s-wave dimer of binding energy below
1 μK. Recombination into that dimer is not expected to result
in atom loss. For positive as, therefore, the lowest energy true
three-body entrance channel is the dashed curve shown in
Fig. 7. However, in order to reach small hyper-radii where
recombination into deep dimers can occur, the system must
reach the region left of the potential barrier of the solid (blue)
potential curve in Fig. 7. Because the two potential curves in
the figure have an avoided crossing at R0 ≈ 3as, this provides
a dominant pathway for recombination into deep dimers that
involves the incoming three-body wave that transitions nona-
diabatically into the solid potential curve labeled as the final
entrance channel and can then tunnel to the left of the potential
barrier where recombination subsequently occurs.

This sequence of steps that control deep dimer formation in
such a collision has apparently not been described in previous
studies of three-body recombination. Since as  rvdW in the
range considered here, the solid (blue) potential curve in Fig. 7
is the one that has its le value affected strongly by Efimov
physics, and for Rbarrier � R � as it is reasonably well de-
scribed by a centrifugal barrier whose coefficient is le(le + 1)
with le ≈ 1.273. The tunneling amplitude through that barrier
has an energy dependence described by an Efimov-modified
Wigner threshold law factor kle+1/2, as has been stressed in

recent publications [22,25]. Thus the three-body recom-
bination rate has the following energy dependence: K3 ∝
Ele−3/2 = E−0.227, over the energy range from about 10 μK
up to 5 mK, and the WKB tunneling probability varies with
energy as P ∝ Ele+1/2 = E1.773, respectively (i.e., the expo-
nent is 2–0.227). Previous studies have shown how WKB
tunneling under such a centrifugal barrier is one way of un-
derstanding the origin of the relevant Wigner threshold law
for any given process [46]. Therefore the numerical thermally
averaged three-body loss rate into deep dimer formation can
be described for large positive as in terms of this pathway that
involves the Landau-Zener transition probability followed by
tunneling. This reasoning is not relevant at large negative as,
because in that case the solid (blue) curve of Fig. 7 remains
positive all the way out to R → ∞ and consequently behaves
just as a normal three-body entrance channel, albeit with an
Efimov-physics modified value of its centrifugal barrier equal
to le ≈ 1.273 out to R � |as| (see Refs. [22,25]).

VIII. CONCLUSION

In summary, the Fermi gas with equal-mass atoms in two
spin components has been shown to support a universal trimer
that can be created by tuning the s-wave and p-wave inter-
action simultaneously, and this trimer produces an observable
resonance in the three-body recombination rate. Moreover, the
scaling law of the three-body recombination rate as a function
of p-wave scattering volume is shown to be modified when
the pair of spin-up and spin-down fermions near interacts at
the s-wave unitary limit. The three-body inelastic collision
rates have been computed as a function of the s-wave scat-
tering length, with the interaction between the two equal spin
fermionic lithium atoms included, and it provides a reasonable
interpretation of the recombination rates measured by Du et al.
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