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Gravitational-wave-to-matter coupling of superfluid Fermi gases near unitarity
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It is well known that gravitational waves distort equilibrium matter globally, making them amenable to
detection with laser interferometers. Less well known is the fact that gravitational waves create local nonequi-
librium stresses inside matter, which could conceivably lead to alternative detection methods. The gravitational
wave-to-matter coupling κ is a transport coefficient depending on the material and is poorly known for most
substances. In the present work, we calculate κ for a superfluid Fermi gas near unitarity using large-N techniques,
finding κ = n

12m , with n the number density and m the mass of the fermion, matching the result for free Dirac
fermions at zero temperature. Our prediction is amenable to nonperturbative theoretical as well as experimental
tests.
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I. INTRODUCTION

Detection of gravitational waves using laser interferome-
ters is by now a mature field with observed binary black hole
signals, black hole-neutron star signals, and binary neutron
star signals [1–4]. In a historical context, however, this is an
extremely recent development, given that gravitational waves
were predicted by Einstein in 1916 [5] and that there were
many unsuccessful attempts to detect gravitational waves for
a century after the prediction was made.

Now that we have observational proof that gravitational
waves do exist, it may be time to study their effects on phys-
ical systems in a more detailed manner, even though these
effects will invariably be extremely weak.

The focus of this work is one such effect, the coupling
of gravitational waves to matter. Similar to electromagnetic
fields leading to effects in matter such as polarization, gravi-
tational fields produce local stresses in an otherwise isotropic
medium. Historically, this effect was first identified as a
mathematical consequence of requiring consistent field equa-
tions for fluid dynamics [6,7], requiring a contribution to the
stress tensor

T i j = κ[R〈i j〉 − 2Rt〈i j〉t ], (1)

where the R′s denote the Ricci and Riemann curvature ten-
sors, respectively, 〈〉 denotes symmetric traceless projection,
i = {x, y, z}, and t denotes the time-component.1 Because the
curvature tensors are sensitive to the passing of a gravitational
wave, (1) unequivocally implies that a medium will respond
with a local nonvanishing stress T i j as long as κ �= 0. For this
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1While (1) is required for consistency, this does not preclude the

possibility of κ = 0 for certain material conditions.

reason, we refer to κ as the (material-dependent) gravitational-
wave to matter coupling.

Besides controlling the coupling of gravitational waves
to matter, κ possesses a dual role as a second-order trans-
port coefficient. In general, transport coefficients control the
real-time response of a system subject to a perturbation,
with familiar examples being conductivities, diffusion co-
efficients and viscosities. However, these familiar examples
encode only the linear (first-order) response of the system to
a perturbation, whereas for real systems nonlinear contribu-
tions (second-order, third-order, etc.) will also be present, and
can be important when gradients are large. The gravitational
wave to matter coupling κ is an example of a second-order
transport coefficient, controlling the strength of the system’s
response to second order in a perturbation in flat space. At
first glance, such a dual role of a transport coefficient for
seemingly unrelated phenomena (coupling to gravitational
waves and second-order flat-space perturbation) may seem
strange, but we remind the reader of the more well-known
example of the Einstein relation which also serves such a
dual purpose (controlling both the diffusion coefficient and the
conductivity). For the purpose of this work, the dual role of κ

can be exploited to easily obtain κ by calculating flat-space
correlation functions to second order in gradients.

A nonvanishing value for κ was calculated for N = 4
Super-Yang-Mills at large ’t Hooft coupling [6,8–10], and

more recently, κ = − 13Nm2
B

2520π2 with mB the in-medium boson
mass was found analytically for the large-N limit of the inter-
acting O(N ) model [11]. As for theories that actually occur
in nature, results for κ have been reported for Yang-Mills
theory [12,13], free bosons, and free Dirac fermions both at
zero chemical potential [14,15] and zero temperature [16].

Curiously, κ is not known for nonrelativistic two-
component fermions near unitarity. Given the tremendous
success of Fermi gas experiments in obtaining transport prop-
erties [17–27] and the potential application to using said
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experiments as a gravitational-wave detector, this provides
motivation for calculating κ for Fermi gases near unitarity.

Since no information about κ is currently available for
Fermi gases near unitarity, this study is exploratory in nature.
For this reason, we find it acceptable to perform calculations
for κ in the R0 approximation2 that was used to determine
this quantity for the O(N ) model [11,30]. The approximation
scheme is systematically improvable, in principle, should one
desire more accurate results for κ in the future.3 As an al-
ternative to the analytic approach pursued in this work, we
note that it would also be possible to extract κ numerically
by employing techniques suitable to obtain nonperturbative
four-point correlation functions, similar to what has been done
in lattice QCD [13] and for shear viscosity in the unitary Fermi
gas [32], see the discussion in Sec. IV.

Throughout this work we will be using natural units where
h̄ = c = kB = 1, and convert to S.I. units only when dis-
cussing applications of the results that have overlap with
measurable quantities.

II. CALCULATION

Let us consider a Fermi gas in three spatial dimensions with
the Hamiltonian density

H =
∑

s=↑,↓
ψ†

s (x)

(
−∇2

2m

)
ψs(x)

+ 4πas

m
ψ

†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x), (2)

where ψ†
s , ψs are the fermionic creation and annihilation op-

erators for spin (or hyperfine state) s = ↑,↓, respectively, m is
the fermion mass, and as < 0 is the s-wave scattering length.
Being field theorists, we much prefer discussing the proper-
ties of this system in terms of the grand-canonical partition
function, which, in the path-integral formulation, is given by

Z =
∫

Dψ†
s Dψs e−SE ,

SE =
∫ β

0
dτ

∫
d3x

[
ψ†

s (x)

(
∂τ − ∇2

2m
− μ

)
ψs(x)

+ 4πas

m
ψ

†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x)

]
, (3)

where β,μ are the inverse temperature and chemical potential
of the system, respectively, and where we employ Einstein’s
sum convention for the spin index s. The ψ†

s and ψs now
refer to Grassmann numbers and will be used as such from
here on out. The four-Fermi interaction may be resolved by
introducing a complex auxiliary field by inserting

1 =
∫

ζ :R4→C
Dζ e

∫
τ,x

m
4πas

ζ ζ ∗
(4)

2Also known as leading large N or mean-field approximation
[28,29].

3In particular, the R4 resummation scheme employed [31] will
resume all contributions to κ of order N−1.

inside the path integral, disregarding the irrelevant normal-
ization. Note that the integral here is taken over all complex
field configurations ζ (τ, x); it may alternately be viewed as
two independent integrations over the real and imaginary (or
holomorphic and antiholomorphic) parts. This converges for
negative scattering length as. We subsequently shift the field
by ζ → ζ − i 4πas

m ψ↓ψ↑ and ζ ∗ → ζ ∗ + i 4πas
m ψ

†
↑ψ

†
↓ to find

Z =
∫

Dψ†
s Dψs Dζ

× e− ∫
τ,x[ψ†

s (∂τ − ∇2

2m −μ)ψs+iζ ∗ψ↓ψ↑−iζψ
†
↑ψ

†
↓−m ζ ζ∗

4πas
]. (5)

A. Thermodynamics

All the fermionic bilinears may be collected in matrix form

upon employing the Nambu-Gor’kov spinor 	s = (
ψ↑
ψ

†
↓

), such

that the effective Euclidean action becomes

SE ,eff =
∫

τ,x

[
	†

(
∂τ − σz

∇2

2m
− σzμ + iζ ∗σ− − iζσ+

)
	

− mζ ζ ∗

4πas

]
, (6)

where σ± = 1
2 (σx ± iσy) and σi denote the Pauli matrices.

Since the fermions are now quadratic, they may be integrated
out, finding

Z =
∫

Dζe
∫
τ,x m ζ ζ∗

4πas
+ln det[−G−1(ζ ,ζ ∗ )], (7)

where G−1(ζ , ζ ∗) = ∂τ − σz
∇2

2m − σzμ + iζ ∗σ− − iζσ+.
So far, no approximations have been made. To perform the

functional integral over ζ , one can expand these fields around
the global zero mode, e.g., ζ (τ, x) = i� + ζ ′(τ, x). Neglect-
ing the contribution from the field fluctuations ζ ′ corresponds
to the R0 approximation [30] (or equivalently the leading large
N approximation in [28]). Assuming � to be real, one finds

ZR0 =
∫ ∞

−∞
d� eβV [ m�2

4πas
+β−1 ∑

ωn

∫
k ln det[−G−1(ωn,k,�)]], (8)

where the sum is over the fermionic Matsubara frequencies
ωn = (1 + 2n)πT with n ∈ Z, V is the volume of the system
and the inverse propagator in Fourier space is given by

G−1(ωn, k,�) = iωn + σz(εk − μ) + �σx, (9)

where εk ≡ k2

2m .
In the large volume limit, the integral over � in ZR0 is given

exactly by the saddle point of the integral. The saddle point
condition is

m�

4πas
+ β−1

∑
ωn

∫
d3k

(2π )3

�

(εk − μ)2 + ω2
n + �2

= 0. (10)

In addition to the trivial solution � = 0, one can look for
nontrivial solutions of this gap equation. In particular, we will
consider the zero temperature case.

For the case of zero temperature, the Matsubara sum turns
into an integral, and the pressure becomes

p = m�2

4πas
+

∫
dωd3k
(2π )4

ln[(εk − μ)2 + ω2 + �2]. (11)
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The frequency integral is divergent, but being field theorists,
we can employ dimensional regularization, which effec-
tively means we are replacing ln[(εk − μ)2 + ω2 + �2] by
ln [(εk−μ)2+ω2+�2]

ω2 because
∫

dω ln ω2 = 0 in dimensional reg-
ularization. In dimensional regularization, one thus finds

p = m�2

4πas
+

∫
d3k

(2π )3

√
(εk − μ)2 + �2. (12)

The integral over momenta is still divergent, but we will again
employ dimensional regularization to extract the physically
meaningful piece. Writing

√
(εk − μ)2 + �2 =

∞∑
n=0

(
1
2
n

)
(−2μεk )n(

ε2
k + μ2 + �2

)n− 1
2

, (13)

all momentum integrals can be done in dimensional regular-
ization, finding [33]

∫
dDk

(2π )D

εα
k(

ε2
k + A2

) β

2

= �
(

D+2α
4

)
�

( 2β−2α−D
4

)
2�

(
D
2

)
�

(
β

2

) (
mA

2π

) D
2

Aα−β.

(14)
Taking the limit D → 3, it is curious to find that the resulting
sum (13) can be evaluated in closed form, so that

∫
d3k

(2π )3

√
(εk − μ)2 + �2 = 2

5

μ(2mμ)
3
2

3π2
g

(
μ√

μ2 + �2

)
,

(15)

where the function g(y) = y− 5
2 [(4y2 − 3)E ( 1+y

2 ) +
3+y−4y2

2 K ( 1+y
2 )], and E , K are the complete elliptic integral

of the first and second kinds, respectively. For the zero
temperature case, in terms of y = μ√

μ2+�2
, the nontrivial

solution to the gap equation thus has to fulfill

y3g′(y) = 15π

8
√

2mμas
. (16)

It is straightforward to check that the nontrivial solution to
(16) has lower free energy than the trivial solution � = 0
for all as < 0. For the unitary Fermi gas, as → −∞, and the
solution to the gap equation requires g′(y) = 0 or K ( 1+y

2 ) =
2E ( 1+y

2 ), for which a numerical solution gives y � 0.652 or
� � 1.1622μ. For small scattering lengths, the solution is
close to y � 1, and we can expand the left-hand side of (16)
near this point to find an analytic solution for the gap

� = e
− π√

8mμa2
s
−2+3 ln 2 × μ, |as| � 1, (17)

which is within ten percent of the numerical solution of (16)
for all as < 0, and which gives �/μ = e−2+3 ln 2 � 1.083 for
the cold unitary Fermi gas limit as → −∞. The presence of

a nonvanishing gap indicates superfluidity and the R0 approx-
imation for � gives the right order of magnitude for the gap
(see [34] for a review on resonantly paired superfluids). To get
an estimate of the accuracy of the approximation, we evaluate
the pressure near unitarity,

p = 2

5

μ(2mμ)
3
2

3π2

E
( 1+y

2

)
y

3
2

∣∣∣∣∣
y=(1+ �2

μ2 )−
1
2

� 2.2 × pfree, (18)

where pfree = 2
5

μ(2mμ)
3
2

3π2 is the pressure of a noninteracting
cold Fermi gas. Since it is known that the pressure at uni-
tarity must be equal to p = pfreeξ

− 3
2 with constant Bertsch

parameter ξ [35], we find ξR0 = yE− 2
3 ( 1+y

2 ) � 0.59 for the R0
approximation, which should be compared to the established
value ξ � 0.38 [21,36].

From the pressure, one can define the number density of
the Fermi gas near unitarity

lim
as→−∞ n(μ) = ∂ p

∂μ
= (2mμ)

3
2

3π2
ξ− 3

2 , (19)

which, in turn, is used to define the so-called Fermi
momentum

kF ≡ [3π2n(μ)]
1
3 . (20)

B. Transport coefficient from stress tensor correlators

As stated above, (1) implies that a gravitational wave
passing through matter will create a local nonvanishing ex-
pectation value for the stress tensor, 〈T i j〉. To calculate κ ,
however, it is not necessary to expose a system to an actual
gravitational wave. The reason for this is that the coefficient
of terms such as Eq. (1) in the stress-tensor expectation value
also appear in the stress-tensor correlation function in flat
space. So to calculate κ , we consider the flat-space two-point
correlation function 〈T xyT xy〉, which was calculated previ-
ously in a hydrodynamic gradient expansion. Note that the
corresponding calculation is similar to the spectral function
calculated in the large N approximation in [37].

From [38], Eq. (2.124) one finds the real-time retarded
correlator

CR(ω, k) ≡ 〈T xyT xy〉R(ω, kez )

= p − iηω + κ
2 k2 + (

κ
2 − κ∗)ω2

1 − iτπω
+ O(ω4, k4),

(21)

where p is the pressure, η is the shear viscosity coefficient,
κ is the gravitational-wave to matter coupling sought in this
work, and κ∗ is a second gravitational-wave to matter coupling
coefficient relevant for bulk rather than shear stress. We leave
determination of κ∗ to future work.

Stress-tensor correlators are notoriously difficult to cal-
culate from first principles in general, but the determination
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of κ allows for a tremendous simplification. Namely, one
notes that κ (unlike say the viscosity coefficient η) cou-
ples to the wave number k in (21), so that it is sufficient
to only calculate the zero-frequency correlator CR(ω = 0, k).
This, in turn, means that it is not even necessary to per-
form an analytic continuation to real time, but instead it
is sufficient to obtain κ directly from the Euclidean cor-
relation function evaluated at vanishing external Matsubara
frequency

κ = ∂2

∂k2
CE (ωn = 0, k)|k=0, (22)

cf. [11,15].4

Having thus defined how to obtain κ from flat-space cor-
relation functions, we proceed in the next section to calculate
CE (ωn, k) for the cold superfluid Fermi gas.

C. Stress tensor correlators in the cold superfluid Fermi gas

The Euclidean stress-tensor two-point correlator for the
Hamiltonian (2) is given in the path integral formulation as

CE (x − y) = Z−1
∫

Dψ†
s Dψs e−SE T 12(x)T 12(y), (23)

where we switch the notation from T xy to T 12 and from
{t, x} to four-coordinate x, and drop the spin index for better
readability. To obtain T 12, one can either start with the energy-
momentum tensor for relativistic (four-component Dirac, see,
e.g., [15]) fermions and perform the nonrelativistic limit, or
use the nonrelativistic form derived in, e.g., [39]. In any case,
one finds

T 12(x) = 1

4m
[∂1ψ

†
s ∂2ψs + ∂2ψ

†
s ∂1ψs − ∂1∂2ψ

†
s ψs

− ψ†
s ∂1∂2ψs] − is

4m
∂k�k, (24)

where �k = ψ†σlεkl1∂2ψ − ∂2ψ
†σlεkl1ψ + ψ†σlεkl2∂1ψ −

∂1ψ
†σlεkl2ψ is a spin-current contribution. Here εi jk denotes

the three-dimensional totally antisymmetric Levi-Civita sym-
bol and s = 1

2 for a spin- 1
2 fermion. Disregarding the explicit

spin-current contribution for now, the stress-tensor component
may be rewritten in terms of the Nambu-Gor’kov spinors [cf.

(6)] as

T 12(x) = 1

4m
[∂1	

†σz∂2	 + ∂2	
†σz∂1	 − ∂1∂2	

†σz	

− 	†σz∂1∂2	] − is

4m
∂k�k. (25)

Using the same auxiliary fields as in (6), the fermionic part
of the effective action is quadratic, so that the two-point
stress-tensor correlator may be rewritten in terms of two-point
functions of the fundamental fermion field 	 because of
Wick’s theorem

CE (x − y) = −1

2m2Z

∫
D	†D	Dζe−SE ,eff

× tr
[
∂x

1∂
y
2G(y − x)σz∂

y
1∂

x
2 G(x − y)σz

+ ∂x
1∂

y
1G(y − x)σz∂

y
2∂

x
2 G(x − y)σz

]
+ spin current, (26)

where tr refers to the trace over spinor indices and

〈	(x)	†(y)〉 = G(x − y). (27)

In the R0 approximation, the path integral over auxiliaries
ζ , ζ ∗ simplifies again because only the global zero mode
is kept. As a consequence, the R0-propagator from Eq. (9)
becomes

G(ωn, k) = 1

(εk − μ)2 + ω2
n + �2

×
(

εk − μ − iωn �

� −εk + μ − iωn

)
, (28)

and the Fourier-transformed stress-tensor correlator CE (kE , k)
at zero temperature becomes

CE (kE , k = ke3) = −
∫ ∞

−∞
d�

eβV p

m2Z

∫
d4 p

(2π )4
p2

1p2
2

× tr[G(ω, p)σzG(kE + ω, p + k)σz]

+ s.c., (29)

where the ordinary integral over � will once again restrict
the value of � to the solution of the saddle point condition,
approximately given by (17). Evaluating the spinor trace and
restricting to vanishing external Matsubara frequency kE = 0,
one finds

CE (0, k) = − 2

m2

∫
d4 p

(2π )4

p2
1p2

2[(εp − μ)(εk+p − μ) − ω2 − �2]

[(εp − μ)2 + ω2 + �2][(εp+k − μ)2 + ω2 + �2]
+ s.c., (30)

where the R0-partition function in the numerator and denom-
inator is canceled.

The spin-current contribution can be obtained as follows:
first note that given T 12(x) ∝ ∂k�k , and because ∂1,2eikx = 0

4Note that, unlike for the case of bosonic theories, there is no
additional term in (22) because fermions do not allow for conformal
coupling terms in the action. Also note that the Euclidean correlator
CE (ωn) is minus the retarded real-time correlator CR(ω).

for k = ke3, only T 12(x) = − is
4m ∂3�3 contributes to κ . Using

Nambu Gor’kov spinors, �3 may be written as

�3 = 	σx(∂1 − i∂2)	 + 	†σx(∂1 + i∂2)	†. (31)

Since �3 is linear in either ∂1 or ∂2, linear contributions of
�3 to CE vanish after angular integration. Hence, the only the
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nonvanishing contribution to κ from the spin current is s.c. =
−( s

4m )2∂x
3∂

y
3〈�3(x)�3(y)〉, or in Fourier space

s.c. = s2k2

2m2

∫
d4 p

(2π )4
p2

1tr[σxG(ω, p)σxG(−ω,−p)]. (32)

Taking two derivatives with respect to k and performing the
angular averages gives an integral expression for κ from (22).
Performing the integral over frequencies as well then leads to

κ = 2�2

105m

∫
d3p

(2π )3

× ε2
p

(εp − μ)2(21μ − 5εp) + �2(21μ − 25εp)

[(εp − μ)2 + �2]
7
2

+ 2s2�2

3m

∫
d3p

(2π )3

εp

[(εp − μ)2 + �2]
3
2

, (33)

and the remaining integral over momenta is convergent.
Expanding the numerator in powers of εp, the momentum
integral can be solved using (14) and one finds

κ = (2mμ)
3
2

3π2m
× 2yE

( 1+y
2

) + (1 − y)K
( 1+y

2

)
8y

3
2

∣∣∣∣∣
y= μ√

μ2+�2

×
(

−2

3
+ 4s2

)
, (34)

and where again E , K are the complete elliptic integral of
the first and second kinds, respectively. Close to unitarity,
where the gap equation (16) implies K ( 1+y

2 ) = 2E ( 1+y
2 ), this

simplifies to

lim
as→−∞ κ = (2mμ)

3
2

3π2m

1

ξ
3
2

R0

(
s2 − 1

6

)
, (35)

with ξR0 � 0.59 the Bertsch parameter in the R0 approxi-
mation. Since the only nontrivial dependence of κ on as is
through the Bertsch parameter, we predict that the correct
value of the gravitational-wave matter coupling coefficient for
the cold Fermi gas near unitarity is

lim
as→−∞ κ = (2mμ)

3
2

3π2m

1

ξ
3
2

(
s2 − 1

6

)
. (36)

Yet another way is to employ the number density (19) to find
the surprisingly simple result limas→−∞ κ = n

m (s2 − 1
6 ). For a

spin s = 1
2 fermion we thus have

lim
as→−∞ κ = n

12m
, (37)

for the gravitational-wave matter coupling coefficient of the
cold Fermi gas near unitarity. Eq. (37) is our main result.

III. GRAVITATIONAL WAVE STRAIN RATE

Since a potential application of the result (37) is to detect
gravitational waves, let us quickly review the form of a gravi-
tational strain for an astrophysical system of interest, namely,
that of a binary black hole system.

To get started, one writes the Einstein equations in matter

Rμν − 1
2 gμνR = 8πGT source

μν , (38)

where again Rμν, R are the Ricci tensor and Ricci scalar,
respectively, gμν is the metric field, and T source

μν is the stress
tensor sourcing the gravitational wave, G is Newton’s grav-
itational constant, and μ = {0, 1, 2, 3}. For small deviations
from flat space, one linearizes the Einstein equations in the
metric field gμν around the Minkowski metric. Since we
will be particularly interested in the g12 channel where the
Minkowski metric is zero, we find[ −∂2

0 + ∇2
]
g12(t, x) = −16πT source

12 (t, x). (39)

Now let us consider an astrophysical system that generates
a nontrivial T source

12 (t, x) (we will give more details below). In
this case, the strain rate g12 can be calculated from the retarded
Green’s function of the operator −∂2

0 + ∇2, and we find

g12(t, x) = 4G
∫

d3y
T source

12 (t − |x − y|, y)

|x − y| . (40)

In Fourier space, this becomes

g12(ω, k) = 4G
∫

d3y e−ikyT source
12 (ω, y)

∫
d3x

eiω|x|−ikx

|x| ,

(41)
where one can recognize the Fourier transform of a spherical
wave

∫
x

eiω|x|−ikx

|x| = 4π
k2−ω2 . One thus has

g12(ω, k) = 16πG

k2 − ω2
T source

12 (ω, k). (42)

For a model astrophysical system, consider two equal mass
black holes orbiting each other on a circle with radius R. We
will ignore GR effects for the motion of the black holes, which
is a decent approximation for the in-spiral phase. Without loss
of generality, the locations of black hole one and two are then
given by

�x(1) = R

⎛
⎝cos �t

sin �t
0

⎞
⎠ and �x(2) = −�x(1). (43)

Newton’s equation of motion for the two-body system relate
the orbital frequency � to the mass M and radius R through

� =
√

GM

4R3
. (44)

The stress-tensor component for this system is simply
given by

T source
12 (t, x) = Mẋ(1)ẏ(1)δ(�x − �x(1) ) + Mẋ(2)ẏ(2)δ(�x − �x(2) ),

(45)

where the dot indicates a time derivative. If we consider the
direction of the gravitational wave along the k = ke3 direc-
tion as in the rest of this work, the Fourier transform of T12

becomes particularly simple and one finds

g12(ω, ke3) = −2π2r2
s

R

[δ(ω − 2�) + δ(ω + 2�)]

k2 − ω2
, (46)

where (44) is used and we recognize the Schwarzschild radius
of an individual black hole as rs = 2GM. Note that (46) does
not depend on Newton’s gravitational constant (it is hidden in
the Schwarzschild radius rs of the black hole), and that the
decreasing strength of a spherical wave with distance from its
center is encoded in the factor 1

k2−ω2 .
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Of particular interest then is a potential experimental mea-
surement of

〈T 12(ω, k)〉 = −2CR(ω, k)g12(ω, k) + O[(g12)2], (47)

where g12 is the gravitational wave strain component, CR is
defined in (21) and (47) is nothing but the linear-response
formula connecting the one-point and two-point correlation
function of the energy-stress tensor, cf. [38], Eq. (2.95).
For equilibrium configurations, 〈T 12〉 = 0 as can be quickly
verified from kinetic theory. Therefore, a nonvanishing ex-
perimental determination of 〈T 12〉 in an equilibrium system
provides a potential experimental handle on the gravitational
wave strain g12.

However, thermodynamic fluctuations (aka “noise”) will
also lead to fluctuations in 〈T 12〉. Directly computing the
thermal variance of the stress tensor 〈(T 12)2〉 − 〈T 12〉2 is
technically difficult. The thermal fluctuations may also be es-
timated via the fluctuation-dissipation theorem from the shear
viscosity, bulk visocsity, and heat conductivity; unfortunately
these are not well known in this regime. Instead, to obtain
a simple upper bound on the signal-to-noise ratio sufficient
for detecting a gravitational wave using an experimental mea-
surement of 〈T 12〉, we consider the ratio of gravitational wave
stress (1) to thermodynamic pressure p = pfreeξ

− 3
2 ,

σ ≡ κ[R〈12〉 − 2Rt〈12〉t ]
p

= κ
k2 + ω2

2p
= 5

12ξ

k2 + ω2

2k2
F

. (48)

To give some example numbers, for two solar-mass black
holes orbiting each other at R = 10rs with rs = 2GM the
Schwarzschild radius of a single black hole, one has rs � 3 km
and �

2π
� 175 Hz. The gravitational wave strain (46) will be

peaked around ω = 2� and k = ω, with a wavelength of
2π
k � 1000 km. For a unitary Fermi gas with 2π

kF
∼ 1 µm [40],

we therefore estimate

σ � 10−24, (49)

which is comparable to the required accuracy for detecting
gravitational waves with interferometers, but unrealistic with
current ultracold atom experiments.

IV. DISCUSSION

The result (37) implies a spin-dependent value for the
gravitational-wave to matter coupling κ for superfluid Fermi

gases near unitarity. For a spin- 1
2 fermion, it is useful to com-

pare our finding with that of Shukla for a free Dirac fermion
[16]

κ = 1

24π2

⎡
⎢⎣μR

√
μ2

R − m2 − m2 ln
μR +

√
μ2

R − m2

m

⎤
⎥⎦,

(50)
where μR = m + μ is the relativistic chemical potential. In
the nonrelativistic limit, μ � m, and (50) becomes κ = n

12m
in agreement with our result (37) for a nonrelativistic fermion
near unitarity. As a consequence, for spin- 1

2 nonrelativistic
fermions, the result κ = n

12m is universal both in the free and
unitarity limit (but likely not in between, cf. (34)).

The analytic result (37) is amenable to independent ver-
ification by other theoretical methods. For instance, Monte
Carlo and density functional theory methods that have proven
successful in other applications such as those reported in
[41–43] may be used to test (37), as well as extend it to
the case of finite temperature and/or extend it to the case
of positive scattering length. Another interesting extension
would be to consider calculating κ for polarized Fermi gases
[44], which can be treated in complete analogy to the method
discussed here [28].

Moreover, the result (37) provides a testing ground for
novel methods aiming at beating or ameliorating the so-called
sign problem in fermionic systems, see, e.g., [45,46].

Last but not least, there is the prospect of using the infor-
mation provided by (37) as a means towards designing novel
gravitational-wave detectors using Fermi gases near unitarity.
A crude estimate of the required signal-to-noise ratio in (49)
for using experimental measurements of 〈T 12〉 to detect grav-
itational waves from a solar mass binary black hole merger is
discouraging, but does not preclude the possibility of detec-
tion using more cleverly designed experimental techniques in
the future.
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