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We investigate a fermionic superfluid with Raman-induced spin-orbit coupling immersed in a Bose-Einstein
condensate. By minimizing the total free energy, we find that, with moderate repulsive interspecies interaction,
a phase separation occurs where the otherwise nontopological uniform phase is divided into two parts: a purely
fermionic one and a Bose-Fermi mix characterized by nontrivial topology with the winding number W = 1.
We verify that Majorana zero modes emerge at the phase interfaces by numerical simulations of the coupled
Bogoliubov–de Gennes and Gross–Pitaevskii equations in real space. The tunability of the phase interfaces
enables a direct manipulation of the predicted Majorana zero modes.
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I. INTRODUCTION

The mixture of binary superfluids belonging to different
statistics, is a long standing research topic in the context
of quantum superfluids. However, the unique mixture of
superfluid bosonic 4He and fermionic 3He [1,2], which is
predicted to undergo a transition between s-wave and p-wave
Cooper pairs, is still out of reach with currently available
cryogenic techniques. Excitingly, superfluid Bose-Fermi mix-
tures (BFMs) in ultracold atomic gases, where bosons form
a weakly interacting Bose-Einstein condensate (BEC) and
fermions form a Bardeen-Cooper-Schrieffer (BCS) superfluid,
have been realized by using the combination of the Fesh-
bach resonance and radio-frequency techniques [3–7]. The
experimental breakthrough completely changes the objective
of studying superfluid mixtures and has drawn lots of theo-
retical attention recently [8–24]. Many fascinating behaviors
due to the interaction between bosons and fermions have
been predicted, including mixing-demixing transitions [8],
dark-bright solitons [9], vortex lattice reformation [10], and
coupled dipole oscillation [13,15] the or enhanced Fulde-
Ferrell-Larkin-Ovchinnikov state [19].

In recent years, we have witnessed outstanding progress in
experimental realization of spin-orbit (SO) coupling of ultra-
cold atoms [25–30]. SO coupling in ultracold atom physics
arises from a synthetic gauge field created by the interaction
between atoms and the Raman laser field. It significantly
changes the Fermi surface and makes nontrivial topologi-
cal phases and relevant intriguing phenomena all possible
[31–39]. However, most of the previous theoretical and ex-
perimental studies on binary superfluids, were concentrating
either on BFMs composed by nontopological superfluids,
or on the mixtures with two species belonging to same
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statistics [40–46]. Topological phases and topological pro-
tected excitations: Majorana zero modes with non-Abelian
exchange statistics [47] in superfluid BFMs, have been less
investigated. Apart from giving rise to the exhibition of fully
phase-separated states [48], the interaction between bosons
and fermions also causes robust self-induced density modu-
lations, and incidental phase interfaces might host Majorana
zero modes. Therefore, it is a natural step to bring these
two exciting developments together and consider BFMs of
ultracold atomic gases with SO coupling.

The goal of this paper is to study a fermionic superfluid
with Raman-induced SO coupling immersed in a BEC and
address the question of how the interaction between bosons
and fermions affect the topological property of BFMs. By
minimizing the total free energy of the system, we observe
that, once the repulsive interspecies interaction is brought
close to the fully phase-separation point, the uniform BFM
becomes unstable and exhibits a purely fermionic phase coex-
isting with a mixed one. Due to the effect of SO coupling,
the system consists of both nontopological and topological
phase and the phase interfaces are predicted to host Majorana
zero modes. The topology of distinct phases are verified by
the winding number and better understood by observing the
close and reopen of the excitation gap. We further give reliable
results by self-consistently solving the coupled Bogoliubov–
de Gennes and Gross–Pitaevskii (BdG-GP) equations in real
space, and present the emergence of Majorana zero modes
at the phase interfaces. In addition, the change of atomic
ratio or interspecies interaction shifts the position of the
phase interfaces and therefore can be used for tuning Ma-
jorana zero modes. The Majorana zero modes at the phase
interfaces should leave signatures in the spatially resolved
radio-frequency spectroscopy, which, in principle, can be de-
tected using existing experimental techniques.

The paper is organized as follows: In Sec. II, we de-
scribe the quasi-one-dimensional (1D) model used in our
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investigation and obtain the total free energy with the in-
troduction of the order parameters for fermions and wave
functions for bosons. Section III presents the possible phases
in superfluid BFM with SO coupling and determines the phase
transition by minimizing the total free energy. In Sec. IV
we restrict the system in a tight waveguide and give reli-
able results by self-consistently solving the coupled BdG-GP
equations for the observation of the associated Majorana zero
modes at the phase interfaces. Finally, in Sec. V we present a
discussion and conclusion of our study.

II. MODEL

We consider a two-component Fermi gas with Raman-
induced SO coupling immersed in a weakly interacting BEC.
The Raman dressing scheme is based on coupling two atomic
internal hyperfine states of the fermions with two counter-
propagating Raman lasers [26]. The mixture in which both
fermionic and bosonic species are superfluids is confined in
a toroidal trap with tight cylindrically symmetric harmonic
confinement of frequency ω⊥ in the transverse direction. The
atoms have an effective quasi-1D behavior if the chemical
potentials are much smaller than the transverse energy h̄ω⊥
[49]. The effective Hamiltonian for the superfluid BFM can
be written as

Ĥ =
∫

dxψ̂†
f [Hs(x) − μf ]ψ̂f + gf ψ̂

†
↑ψ̂

†
↓ψ̂↓ψ̂↑

+
∫

dxψ̂†
b

[−h̄2∂2
x /2mb − μb

]
ψ̂b + gbψ̂

†
b ψ̂

†
b ψ̂bψ̂b

+
∫

dxgbf ψ̂
†
b ψ̂bψ̂

†
f ψ̂f , (1)

where ψ̂f ≡ [ψ̂↑, ψ̂↓]T denotes the field operator for fermions
with pseudospins and ψ̂b is the bosonic field operator. Hs(x) =
−h̄2∂2

x /2mf + iασy∂x − hzσz is the single-particle Hamilto-
nian of fermionic atoms, which has a general form of
Raman-induced SO coupling with strength α. x is the spatial
coordinate along the circumference (of length L). hz is the
effective Zeeman field. The bosonic and fermionic compo-
nents cannot be transformed into each other, each of both has
its own chemical potential μf (μb). The interaction between
atoms are given in terms of corresponding scattering lengths:
gb = 2h̄ω⊥ab, gf = 2h̄ω⊥af , and gbf = 2h̄ω⊥abf .

With the introduction of the order parameter �(x) =
−gf〈ψ̂↓ψ̂↑〉 for fermions and wave function ψb(x) = 〈ψ̂b〉 for
bosons, the free-energy density of a uniform superfluid BFM
with SO coupling can be obtained as

E[nb, nf ] = gbn2
b +

∑
k

ξ|−k| +
∑
k,ν



(−Eη

k,ν

)
Eη

k,ν
− |�|2

gf
,

(2)

where nf = ∑
σ 〈ψ̂†

σ ψ̂σ 〉 and nb = |ψb|2 are respectively the
fermion and boson densities. The kinetic energy of the bosons
vanishes and ξk = h̄2k2/2mf + gbf nb − μf . In Eq. (2), 
(x)
is the Heaviside step function. The quasiparticle (η = +) and
quasihole (η = −) dispersions Eη

k,ν
(ν = 1, 2) are the eigen-

values of the Bogoliubov–de Gennes (BdG) matrix

HBdG =

⎛
⎜⎜⎝

ξk − hz −iαk 0 �

iαk ξk + hz −� 0
0 −�∗ −ξ−k + hz iαk

�∗ 0 −iαk −ξ−k − hz

⎞
⎟⎟⎠
(3)

under the Numbu spinor basis [ψ̂↑,k, ψ̂↓,k, ψ̂
†
↑,−k, ψ̂

†
↓,−k]T .

Without loss of generality, we assume hz, α, and � to be
real and mb = mf = m throughout the work. This could be
approximated well in the BFMs 7Li - 6Li as well as 39K - 40K
of experimental interest. The order parameter and chemical
potential are determined self-consistently by solving the fol-
lowing conditions: ∂E/∂� = 0, nf = −∂E/∂μf .

As was done in Ref. [49] for an ideal spin-polarized Fermi
gas interacting with a dilute Bose gas, we now analyze the
general phase stability of superfluid BFM by a binary mixture
which can have at most two distinct phases. Here we use
subscripts i = 1, 2 to label the physical quantities specific to
each. The volume fractions of the phases are l1 = L1/L and
l2 = 1 − l1, then the total free-energy density for the phase-
separated mixture is E = ∑

i=1,2 liEi. There are four possible
existences of phase: (i) a uniform mixture, where both compo-
nents occupy the entire space at constant densities; (ii) a fully
separated phase where fermions and bosons are completed
separated; and a partially separated phase, where (iii) part of
the space is occupied by fermions (bosons) and (iv) partly by a
Bose-Fermi mix. Here we note that the topological properties
of different regions are determined by the winding num-
ber, respectively [45]. For the fixed total densities l1nb(f),1 +
l2nb(f),2 = nb(f), the allowed parameters (l1, nb(f),1, nb(f),2) as
well as the pairing order parameters �1,2 can then be deter-
mined by the principle of minimum energy with μf,1 = μf,2.
It is convenient to work in terms of dimensionless variables
defined in terms of Fermi wave vector kf ≡ πnf/2 and Fermi
energy Ef ≡ h̄2k2

f /2mf by ψb = √
kf ψ̃b, g j = g̃ j h̄

2kf/(2mf ),
hz = h̃zEf , � = �̃Ef , and α = α̃h̄2kf/(2mf ).

III. TOPOLOGICAL PHASE SEPARATION

Our calculations indicate that topological phase separa-
tion can occur under suitable interspecies interaction. By
minimizing the total free energy, we plot the change of vol-
ume fractions li [Fig. 1(a)] along with the order parameters
|�i| [Fig. 1(b)], the atomic density nb,f,i [Fig. 1(c)], and the
winding numbers Wi [Fig. 1(d)] with subscripts i = 1, 2 as a
function of interspecies interaction gbf in Fig. 1. Here we note
that the system is prepared in a topological trivial state with
no interspecies interaction gbf = 0. According to the results of
Figs. 1(a) and 1(c), an apparent conclusion can be drawn that,
in superfluid BFMs with SO coupling, only three phases are
supported: a uniform mixture with l2 = 0, a fully separated
phase with nb,1nf,1 = nb,2nf,2 = 0, and a partially separated
phase, where a mixed phase surrounded by pure fermions.
With increasing gbf , the uniform phase gets unstable and then
displays a self-induced localization of bosons in the fermion
density profiles. Such self-induced localization lowers the
fermionic density but does not destroy the bulk gap of BCS
superfluid. Finally, a strong gbf produces a fully separated
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FIG. 1. (a) The volume fractions, (b) order parameters,
(c) atomic densities, and (d) corresponding winding numbers of
the phases i = 1, 2 as functions of interspecies interaction gbf . The
arrows label the transitions from the uniform mixture (U) to the
topological partially separated phase (tPS), and tPS to the fully sep-
arated phase (FS), as shown in panel (c). The topological properties
are determined by the winding number W1 and the bulk quasiparticle
excitation gap Eg,1 = 2|hz − (μ2

1 + �2
1)1/2| shown in panel (d). Here,

we have taken α = 1Ef/kf , kf gb = 1Ef , kf gf = 3Ef , hz = 1.0Ef , and
nb = 0.5.

phase, and these effects are clearly shown in Fig. 1(c), where
we plot the density profiles. It is worth noticing that a Bose-
Bose mixture only admits the uniform phase and the fully
separated phase.

To further explore the transition from nontopological to
topological phases, we have calculated the winding numbers
of the Fermi superfluids, which is necessary to the change
of the topology. From Fig. 1(d), the system evolves from
nontopological phase (W1 = 0) to a topological state (W1 = 1)
when it enters the partially separated phase. The winding
number W2 is always zero and hence is not depicted. Thus we
have a mixed phase with both nontopological and topological
superfluid components, which separate from each other spa-
tially. Here we give the phase its name–“topological partially
separated phase” (tPS). To better understand the transition
from nontopological to topological phases, we further observe
the closing and reopening of the bulk quasiparticle excitation
gaps, which is determined by Eg,i = 2|hz − (μ2

i + �2
i )1/2|

with μi = μ − gbf nbi. Thus, the transition occurs at the
Zeeman field threshold hc,i = (μ2

i + �2
i )1/2 and the system

will be in a conventional superfluid state at hz < hc,i and in
a topological superfluid state at hz > hc,i. The Majorana zero-
energy modes are expected to appear at the phase interfaces
between those two distinct phases.

IV. MAJORANA ZERO-MODES
AT THE PHASE INTERFACE

To observe the Majorana zero modes at the phase in-
terfaces, we restricted the system in a atomic waveguide,

i.e., a finite quasi-1D cylinder with the trap V (x) = 0
(−L/2 < x < L/2) and V (x) = ∞ (otherwise). The axial
length L of the atomic waveguide is much larger than the
transverse width. In this case, we can derive the gener-
alized BdG equation in real space from Eq. (3) by k →
−ih̄∂/∂x for fermions: HBdG(x)η(x) = Eηη(x), where
η(x) ≡ [u↑,η(x), u↓,η(x), v↑,η(x), v↓,η(x)]T are the Numbu
spinor wave functions corresponding to the quasiparticle exci-
tation energy Eη. It is coupled to the GP equation for bosons:[

− h̄2

2mb
∂2

x + gbf nf + V (x) + gb|ψb|2
]
ψb = μbψb. (4)

The order parameter �(x) and the chemical potential
μf in the real-space BdG equation can be determined self-
consistently with

�(x) = −gf

2

∑
η

[u↑(x)v∗
↓(x) f (Eη ) + u↓(x)v∗

↑(x) f (−Eη )]

(5)

and the number equation Nf = ∫
dx[n↑(x) + n↓(x)] with

nσ (x) = 1

2

∑
η

[|uσ (x)|2 f (Eη ) + |vσ (x)|2 f (−Eη )] (6)

being the local density of σ fermions. f (E ) = 1/[eE/(kBT )+1]
is the Fermi distribution function at temperature T . The cou-
pled real-space BdG-GP equations are solved by means of an
iterative procedure, which starts from a trial function �(x),
ψb(x), μf and converges to the self-consistent solutions. In
each procedure, we solve the BdG equation following the
basis expansion method in Ref. [50] and GP equation by
using an imaginary-time propagation method based on the
finite-difference Crank-Nicholson discretization scheme [51].
For our numerical calculations, we consider a superfluid BFM
with fixed total numbers of fermions Nf = 100 and of bosons
Nb = 10 confined in a tight waveguide of size L = 50kf/π .
In the finite-difference discretization we use a space step of
0.001 and time step of 0.0005. An energy cutoff Ec = 10Ef

is adopted, which is found to be large enough to ensure the
numerical accuracy. All calculations are done under zero tem-
perature T = 0.

In Fig. 2, three results with different values of gbf are
chosen as representation of the typical phases predicted in
the Sec. III. First, let us concentrate on the left column where
we plot the density profiles of bosons (red line) and fermions
(blue lines), respectively. For the zero value of gbf , there is
no connection between bosons and fermions and both of them
are evenly distributed. With increasing gbf , the bosonic and
fermionic gases, especially the spin-down component, tend to
separate from each other and create a potential well in their
vicinity, as shown in the middle panel. Clearly, the localization
effect is the result of boson-fermion interactions. It relies on
a local deformation of the density of fermions and is not
effected by the boundary conditions. For sufficiently strong
boson-fermion interaction, bosonic and fermionic gases are
fully separated: bosons are localized in a small area and
fermions are rejected to both sides of the area. The appear-
ance of the topological phase can be simply monitored by
the calculation of hz − hc(x). The local uniform cell will be
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FIG. 2. (left column) Density profiles of the fermions and bosons for three sets of interaction parameters. (middle column) The order
parameter �(x) of the Fermi superfluid and the spatial distribution of hz − hc(x) for the same configurations as the left column. The area in
which the fermionic atoms are in the topological superfluid state is highlighted by the yellow colors. The right column show the behavior of
the eigenenergy spectrums at these three interactions: kf gbf = 0Ef , 1.5Ef , and 2.0Ef , respectively. Here α = Ef/kf , kf gf = 3Ef , hz = 1Ef , and
kf gb = 2Ef .

in the topological state if hz > hc(x). This is demonstrated
in the center column of Fig. 2, where we plot the order
parameter and the spatial distribution of hz − hc(x). Without
the boson-fermion interaction, hz < hc(x) for any position x
and the whole fermionic gas is in the conventional superfluid.
In the case of topological partially separated phase (middle
column in Fig. 2), the order parameter �(x) reduces in the
middle of the potential where hz > hc(x) is satisfied. The area
of topological superfluid is highlighted by the yellow colors.
At a large boson-fermion interaction gbf = 2.0Ef/kf , bosons
and fermions are completed separated and the condition hz <

hc(x) extends over the whole system. As shown in the right
column of Fig. 2, the behavior of the quasiparticle energy
spectrum can clearly reveal the emergence of Majorana zero
modes.

The wave functions of the Majorana zero modes in the
middle panel of Fig. 2 are shown in Fig. 3. In this exam-
ple, we can see that the wave functions readily satisfy either
u j,σ (x) = v∗

j,σ (x) or u j,σ (x) = −v∗
j,σ (x), meeting the require-

ment of the self-Hermitian condition for Majorana fermions.
The overlap between the wave functions at the phase bound-
aries xkf/π ≈ ±7 lead to finite but exponentially small energy
splitting: Ezes ≈ ±1.10 × 10−6Ef . A practice way to probe
the Majorana zero modes is to measure the local density of
states (LDoS) using the spatially resolved radio-frequency (rf)
spectroscopy [52], with which we anticipate that the contri-
bution of Majorana fermions will be well isolated in both
energy domain and real space. The local density of states

for spin-up and spin-down atoms is defined by ρσ (x, E ) =
1/2

∑
η[|uσ,η|2δ(E − Eη ) + |vσ,η|2δ(E + Eη )]. In Fig. 4, we

show that the local density of states ρσ (x, E ) and the con-
tribution from Majorana zero modes are clearly visible near
zero energy and well isolated from other quasiparticle contri-
butions by an energy gap � ≈ 0.3Ef . There are two Majorana
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FIG. 3. Wave functions of Majorana zero modes. Due to the
intrinsic symmetry u+

ση → v−∗
ση with Eη → −Eη, where ± refer to

quasiparticle and hole excitations, we just show the wave functions of
quasiparticle zero modes. The modes satisfy the symmetry require-
ment for Majorana zero modes uσ (x) = v∗

σ (x) or uσ (x) = −v∗
σ (x).

The parameters are the same as the case of the middle panel in Fig. 2.
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The signals of Majorana zero modes are well isolated in the energy and spatial domain, which are highlighted by white circles.

induced zero-energy peaks at xkf ≈ ±7 as shown in Fig. 4.
Note that the Majorana zero modes mainly contributed to
ρ↓(x, E ).

To gain more information, we preform calculation for sev-
eral values of the atomic ratio γ = Nf/Nb, and we observe
the change of the position of phase interfaces and movement
of the associated Majorana zero modes. In Fig. 5, the density
distribution and order parameter are reported for three values
of γ . With increasing atomic ratio, in other words, adding
more boson atoms, we observe that the topological phase area
spread out while keeping the same structure of the topological
interfaces. It suggests the Majorana zero modes at the phase
interfaces move away from each other, thus providing a direct
manipulation of the Majorana zero modes.

V. CONCLUSION

In this work we investigate the novel topological properties
of superfluid BFMs with SO coupling and carefully study both
the homogeneous behavior and the spatial behavior of the

system in real space with reflective boundaries. We tune the
interaction between bosons and fermions and, by minimizing
the total free energy, explore three possible phase regimes
of uniform, partially separated and fully separated phases. In
our case, the phase separation is induced by the self-incurred
localization of particles, not by the confining trap. The focus
of the work is on the regime of partially separated phase, and
we find that, two distinct uniform regions of fermions, both
nontopological and topological phase, can coexist in the sys-
tem. They are characterized by the different winding numbers
and the emergence of Majorana zero modes is predicted at
the phase interfaces. This mechanism distinguishes our work
from most of the previous scenarios with phase separations.
We further give reliable results by self-consistently solving
the coupled BdG-GP equations and demonstrate the evident
signals of Majorana zero modes at the phase interfaces in real
space. Moreover, the change of atomic ratio or interspecies
interaction shifts the position of the phase interfaces and as-
sociated Majorana zero modes, thus providing more knobs
for tuning the Majorana zero modes. In view of the recent
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realization of the superfluid BFMs, our theoretical predication
can be verified experimentally in the near future.
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