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On-shell approximation for the s-wave scattering theory
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We investigate the scattering theory of two particles in a generic D-dimensional space. For the s-wave
problem, by adopting an on-shell approximation for the T -matrix equation, we derive analytical formulas
which connect the Fourier transform Ṽ (k) of the interaction potential to the s-wave phase shift. In this way
we obtain explicit expressions of the low-momentum parameters g̃0 and g̃2 of Ṽ (k) = g̃0 + g̃2k2 + · · · in terms
of the s-wave scattering length as and the s-wave effective range rs for D = 3, D = 2, and D = 1. Our results,
which are strongly dependent on the spatial dimension D, are a useful benchmark for few-body and many-body
calculations. As a specific application, we derive the zero-temperature pressure of a two-dimensional uniform
interacting Bose gas with a beyond-mean-field correction which includes both scattering length and effective
range.
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I. INTRODUCTION

One of the main features of the physics of ultracold and
dilute atomic gases is their universality, i.e., the fact that the
interaction potential, and consequently many physical prop-
erties, can be accurately described by only one zero-range
interaction parameter: The s-wave scattering length [1,2]. The
flexibility of current experimental techniques prompts novel
interest in the nonuniversal behavior of quantum gases. One
remarkable example is the possibility of using Feshbach reso-
nances for tuning the s-wave scattering length, and eventually
obtain an interaction regime in which the next-to-leading or-
der term in the low-momentum expansion of the potential, i.e.,
the effective range rs, becomes relevant [3]. The effects of the
inclusion of the effective range are various: The equation of
state of a Bose gas undergoes substantial modifications [4–8],
and so does the description of the dynamics. In particular, by
considering the effective range contribution in the mean-field
dynamics, one obtains the so-called modified Gross-Pitaevskii
equation [9,10], that have been used to predict dynamical
signatures of the effective range in the case of solitons and
sound waves [11]. Some diffusion Monte Carlo calculations
were carried out for studying the validity of a universal de-
scription of the bosonic gas, i.e., using the gas parameter
na3

s , where n is the three-dimensional (3D) density and as the
s-wave scattering length. Although in Ref. [12] the universal
approach is shown to be valid for usual experimental settings,
more recent Monte Carlo investigations with a Bose-Bose
mixture [13] suggest that by increasing the number density
the effective range rs is needed to accurately reproduce the
numerical results (see also the analytical results of Ref. [14]).

Taking into account that the interaction potential is not
directly measurable in usual experiments, in recent years
separable potentials [15] were assumed to investigate nonuni-
versal features of bosonic and fermionic systems [16–18]. In
these papers, which adopt the effective field theory (EFT)

methodology, dimensional regularization (DR) and minimal
subtraction (MS) were employed to regularize the divergent
loop integrals. In the low-energy limit, which corresponds
to consider only the s-wave contribution to the phase shift,
these calculations are based on the writing of an effective
action of which only the terms contributing to the desired
low-momentum expansion are retained. This EFT procedure
was previously used to study the nucleon-nucleon scatter-
ing problem [19–23]. It is important to stress that, in the
three-dimensional case, the nonuniversal EFT corrections of
Refs. [16,17] do not agree with the ones of Refs. [10,24–
26], which are based on the simple Born (zero-order) ap-
proximation of scattering theory. This disagreement is due to
different methods and assumptions in the two approaches. In
the first setting [16,17], the aim is to obtain the correct low-
momentum expansion of the phase shift, by starting from an
effective Lagrangian, and summing the Feynman graphs for
the T matrix up to the desired momentum power. The second
approach [10,24–26] is instead based on the calculation of the
energy shift due to a phase shift in the wave function in a finite
volume, and then letting the volume go to infinity. A puzzling
consequence of this energy-shift approach in three spatial
dimensions is the fact that sending the s-wave effective range
rs to zero the finite-range correction of the low-momentum
expansion of the interaction potential remains finite. In this
paper we adopt the EFT approach [16,17] because it is strictly
related to the scattering theory via the T matrix, it can be
directly applied also to reduced spatial dimensions, and the
obtained finite-range corrections are always vanishing for
rs → 0.

Exact analytical calculations able to tackle the scattering
theory by using a realistic finite-range interaction potential
are not available [27–29]. In this paper we face this prob-
lem under the assumption of low-energy scattering and using
an arbitrary dimension partial-wave expansion. Our method,
which is based on two crucial approximations on the T -matrix
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FIG. 1. Depiction of the scattering process in the center-of-mass
reference frame used in the construction of Eq. (2). The initial state,
represented on the left-hand side of all diagrams, is a relative motion
in the state |k〉, and the final state, on the right-hand side of the
diagrams, is in the state |k′〉. The shadowed center represents the
T matrix, whereas the black dot represents the potential. The last
term specifies the relation between initial, final, and intermediate
state |k′′〉.

equation, called s-wave and on-shell approximations, allows
one to link in a systematic way the s-wave components of the
interaction potential and the transition matrix in any spatial
dimension D. In particular, for D = 3, D = 2, and D = 1 we
obtain explicit expressions of the low-momentum parameters
of the Fourier transform Ṽ (k) of the interaction potential V (r)
in terms of the s-wave scattering length as and effective range
rs. In this way we recover the nonuniversal EFT results in
three spatial dimensions [16,17]. In the last section, we ap-
ply our theory to derive the zero-temperature pressure of the
interacting gas in two dimensions in terms of as and rs (see
also Ref. [8]).

II. THE TWO-BODY PROBLEM

Let us consider the Hamiltonian operator

Ĥ = Ĥ0 + V̂ , (1)

where Ĥ0 = p̂2/(2mr ) is the kinetic energy operator of a
particle of reduced mass mr and linear momentum p̂ while
V̂ is the interaction potential operator. We assume that the
potential operator V̂ is diagonal in the coordinate represen-
tation, namely V̂ |r〉 = V (r)|r〉, where |r〉 is the eigenstate of
the position operator r̂, i.e., r̂|r〉 = r|r〉. Moreover, mr = m/2
is the reduced mass of two identical particles, each of mass m.

As shown in many textbooks [3,30,31], in D spatial di-
mensions, the matrix element Tkk′ = 〈k|T̂ |k′〉 of the transition
operator T̂ of scattering theory satisfies the T -matrix equation

Tkk′ = Vkk′ +
∫

dDk′′ Vkk′′

h̄2k2

2mr
− h̄2(k′′ )2

2mr
+ i ε

Tk′′k′ , (2)

where Vkk′ = 〈k|V̂ |k′〉, |k〉 is the initial state, |k′〉 is the final
state, and |k′′〉 is an intermediate state. The involved variables
are represented pictorially in Fig. 1.

Here, |k〉, |k′〉, and |k′′〉 are eigenstates of the linear mo-
mentum operator p̂, i.e., p̂|k〉 = h̄k|k〉, p̂|k′〉 = h̄k′|k′〉, and
p̂|k′′〉 = h̄k′′|k′′〉. In Eq. (2), i is the imaginary unit and
ε > 0 is an infinitesimal real parameter ensuring that in the
scattering there are only outgoing waves. Notice that Vkk′ =
Ṽ (k − k′)/(2π )D, where

Ṽ (k) =
∫

dDr V (r)e−ik·r (3)

is the Fourier transform of the interaction potential V (r).
We assume that the interaction potential V (r) is spherically

symmetric, i.e., V (r) = V (r) with r = |r|, and it follows that
Ṽ (k) = Ṽ (k).

Partial-wave decomposition

The T -matrix equation (2) can be decomposed in partial
waves in D dimensions in the following way (see Appendix A
for further details). We drop D when the notation is not am-
biguous. Define the partial-wave expansion of Vkk′ as

Vkk′ = 1

(2π )D

∑
l

Vl (k, k′)N (D, l )Pl (k̂ · k̂′), (4)

holding also for Tkk′ in an analogous way. The number of
spherical harmonics in D dimensions with D > 1, is the num-
ber of independent homogeneous and harmonic polynomials
of degree l in D variables, that is [45],

N (D, l ) = 2l + D

l

(
D + l − 3

l − 1

)
. (5)

For D = 3 we recover the usual multiplicities of the spheri-
cal harmonics. It is easy to verify that when l = 0, one has
N (3, 0) = 1, N (2, 0) = 2.

Substituting into Eq. (2), using the orthogonality of Leg-
endre functions and the uniqueness of the representation in
partial waves, one obtains

Tl (k, k′)Pl (k̂ · k̂′)

= Vl (k, k′)Pl (k̂ · k̂′) +
∫

dDk′′

(2π )D

[
N (D, l )

h̄2k2

m − h̄2(k′′ )2

m + i ε

× Vl (k, k′′)Tl (k
′′, k′)Pl (k̂ · k̂′′)Pl (k̂′′ · k̂′)

]
. (6)

Choosing k = k′, the angular integral can be computed us-
ing the orthonormalization of Legendre polynomials [see
Eq. (A1) of Appendix B]. By selecting the s-wave term l = 0
we get

T0(k) =V0(k) + SD

∫ ∞

0

dk′′

(2π )D

(k′′)D−1

h̄2k2

m − h̄2(k′′ )2

m + i ε

× V0(k, k′′)T0(k′′, k), (7)

where T0(k) = T0(k, k), V0(k) = V0(k, k), and SD =
2πD/2/�(D/2) is the solid angle in D dimensions with
�(x) the Euler gamma function.

III. ON-SHELL APPROXIMATION

Here, we adopt the s-wave approximation but also
the “on-shell approximation” [31]. Explicitly we assume
that, due to the singularity in the integrand for k =
k′′, in Eq. (7) V0(k, k′′) � V0(k, k) = V0(k) and T0(k′′, k) �
T0(k, k) = T0(k). As a consequence, Eq. (7) becomes

T0(k) = V0(k) + V0(k)C(k)T0(k) (8)

with

C(k) = SD

∫ ∞

0

dk′′

(2π )D

1
h̄2k2

m − h̄2(k′′ )2

m + i ε
. (9)
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Then one finds

T0(k) = 1
1

V0(k) − C(k)
, (10)

which is the crucial formula of our paper. Equation (10) can
be obtained from Eq. (8) in two ways: By a direct algebraic
manipulation or by summing up the associated Born-like
geometric series within an iterative scheme. We stress that
Eq. (10), based on the s-wave and the on-shell approximation,
is expected to be reliable in the regime of low momentum
and it becomes exact for k → 0 [3]. Indeed, it turns out that
Eq. (10) is structurally similar to Eq. (3.16) of Ref. [20],
obtained within the EFT procedure.

It is important to observe that the s-wave component V0(k)
does not coincide with the Fourier transform Ṽ (k). Actually,
for D = 3 and D = 2 we find (see Appendix B)

V0(k) = 1

2

∫ π

0
dθ Ṽ (2k sin(θ/2)) sin (θ ). (11)

Taylor expanding with respect to k the s-wave component
V0(k) we formally obtain

V0(k) = g0 + g2 k2 + · · · , (12)

where the coefficients g0 and g2 depend on the choice of the
Fourier transform Ṽ (k) of the interaction potential. Perform-
ing also the Taylor expansion of the latter, i.e.,

Ṽ (k) = g̃0 + g̃2 k2 + · · · , (13)

one finds, using Eq. (11), that g0 = g̃0 and g2 = 2g̃2. As
shown in Appendix B, these two simple relationships are valid
also for D = 1.

Dimensional regularization

In the limit ε → 0, the term C(k) of Eq. (9) can be written
as

C(k) = − SD

(2π )D

m

h̄2

∫ ∞

0
dk′′(k′′)D−1 1

(k′′)2 + (−ik)2

= − m

h̄2 (−ik)D−2 B(D/2, 1 − D/2)

(4π )D/2�(D/2)
, (14)

where B(x, y) is the Euler beta function. Clearly, C(k) is ul-
traviolet divergent at any integer dimension D. We now show
how this divergence is eliminated by DR [32,33].

The Euler beta function

B(x, y) =
∫ +∞

0
dt

t x−1

(1 + t )x+y
(15)

is defined with the real parts of x and y greater than zero.
However, it can be analytically continued [33] to complex
values of x and y as

B(x, y) = �(x)�(y)

�(x + y)
. (16)

Performing this analytic continuation in Eq. (14) means that
we promote the integer spatial dimension D to a complex
number [32,33]. After doing it, we can safely go back to an
integer D, if D = 3 and D = 1 [33]. Thus, we get [32]

C(k) = − m

h̄2 (−ik)D−2 �(1 − D/2)

(4π )D/2
, (17)

where D is in general, for the specific discussion of this sec-
tion, a complex number very close to its integer counterpart.

From Eq. (17), simply setting D = 3 and remembering that
�(−1/2) = −2

√
π , we obtain

C(k) = −ik
m

4π h̄2 . (18)

Setting D = 1, and remembering that �(1/2) = √
π , we have

instead

C(k) = −i
1

k

m

2h̄2 . (19)

DR is more difficult in two spatial dimensions. In fact,
for D = 2, Eq. (17) diverges due to the presence of �(0). To
face this divergence, we extend the calculation to noninteger
dimension D = 2 − ε and let ε go to zero only at the end of
the calculation. Equation (17) can be written as

C(k) = − m

h̄2 κε
0 (−ik)−ε �(ε/2)

(4π )1−ε/2
, (20)

where the regulator κ0 is a scale wave number which enters
for dimensional reasons. The small-ε expansion of the gamma
function reads

�(ε/2) = 2

ε
− γ + O(ε), (21)

where γ � 0.5572 is the Euler-Mascheroni constant. Taking
into account that xε = eln(xε ) = eε ln(x) = 1 + ln(x)ε + O(ε2)
and ln(−i) = −iπ/2, we finally get

C(k) = m

2π h̄2 ln

(
k

2

eγ /2

�

)
− m

4h̄2 i, (22)

after removing the remaining singularity (MS scheme) [34]
and setting � = √

πκ0, which plays the role of a ultraviolet
cutoff.

IV. INTERACTION POTENTIAL AND PHASE
SHIFT FOR D = 3

By using the D = 3 results of the previous section we can
write

T0(k) = 1
1

V0(k) + ik m
4π h̄2

. (23)

It is important to underline that Eq. (23) is a generalization
of the result obtained in Ref. [17] with the simple potential
V0(k) = g0 + g2k2.

A well-known result of the scattering theory is that the s-
wave transition element T0(k) can be written in term of the
s-wave scattering amplitude f0(k) as follows [3],

T0(k) = −4π h̄2

m
f0(k). (24)

Moreover, the s-wave scattering amplitude f0(k) is related to
the s-wave phase shift δ0(k) by the formula [3]

f0(k) = 1

k cot[δ0(k)] − ik
. (25)
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Using these two equations with Eq. (23), valid in D = 3,
we get

V0(k) = −4π h̄2

m

tan[δ0(k)]

k
. (26)

This is our main 3D result: An explicit relationship be-
tween V0(k) of the 3D spherically symmetric interaction
potential and the 3D s-wave phase shift δ0(k). Quite re-
markably, Eq. (26) is quite similar to the ansatz Ṽ (k) =
−(4π h̄2/m)δ0(k)/k suggested in Ref. [24].

By definition, the 3D s-wave scattering length as and the
3D s-wave effective range rs are the low-momenta coeffi-
cients of the following expansion of the 3D phase shift δ0(k)
[3,30,31]:

k cot[δ0(k)] = − 1

as
+ 1

2
rsk

2 + · · · . (27)

This effective range expansion is valid for interaction po-
tentials that decay more rapidly than r−5 [24]. Taking into
account this low-momentum expansion, from Eq. (26) and the
Taylor expansion of V0(k) with respect to k, Eq. (12), we get

g0 = 4π h̄2

m
as (28)

and

g2 = 2π h̄2

m
a2

s rs. (29)

Equation (28), which relates g0 to as, is quite familiar
[3,30,31]. Instead Eq. (29), which relates g2 to as and rs, is less
known, but it can be found in Refs. [4,17]. Notice that these
results, and in particular Eq. (26), hold in the regime where as

is finite while k is small. In other words, Eq. (26) cannot be
used to model the unitarity regime, where the scattering length
as diverges, while Eq. (27) for as = ∞ and rs = 0 simply
gives δ0(k) = π/2.

V. INTERACTION POTENTIAL AND PHASE
SHIFT FOR D = 1

By using the D = 1 results of Sec. III we have

T0(k) = 1
1

V0(k) + i 1
k

m
2h̄2

. (30)

An interesting achievement of the 1D scattering theory is that
the s-wave transition element T0(k) is related to the s-wave
phase shift δ0(k) by the formula [35,36]

T0(k) = −
(

2h̄2

m

)(
k

cot[δ0(k)] − i

)
. (31)

Comparing this equation with Eq. (30) we get

V0(k) = −2π h̄2

m
k tan[δ0(k)]. (32)

This is our main 1D result: An explicit relationship between
the Fourier transform V0(k) of the 1D spherically symmetric
interaction potential and the 1D s-wave phase shift δ0(k).

By definition, the 1D s-wave scattering length as and the
1D s-wave effective range rs are the low-momenta coefficients

of the following expansion of the 1D phase shift δ0(k) [35,36],

k tan[δ0(k)] = 1

as
+ 1

2
rsk

2 + · · · . (33)

Taking into account this low-momentum expansion, from
Eq. (32) and the Taylor expansion of V0(k), Eq. (12), we obtain

g0 = − 2h̄2

mas
(34)

and

g2 = − h̄2

m
rs. (35)

Equation (34), which relates g0 to as, is quite familiar [35,36].
Instead, Eq. (35), which relates g2 to rs, was previously found
in Ref. [5].

VI. INTERACTION POTENTIAL AND PHASE
SHIFT FOR D = 2

By using the D = 2 results of Sec. III the s-wave transition
element reads

T0(k) = 1
1

V0(k) − m
2π h̄2 ln

(
eγ /2k
2�

) + m
4h̄2 i

. (36)

In the 2D scattering theory the s-wave transition element T0(k)
is related to the s-wave phase shift δ0(k) by the formula [37]

T0(k) = −
(

4h̄2

m

)(
1

cot[δ0(k)] − i

)
. (37)

Comparing this equation with Eq. (36) we find

V0(k) = −
(

4h̄2

m

)
1

cot[δ0(k)] − 2
π

ln
(

k
2

eγ /2

�

) . (38)

This is our main 2D result: V0(k) of the 2D spherically sym-
metric interaction potential in terms of the 2D s-wave phase
shift δ0(k). Equation (38) clearly depends on the ultraviolet
cutoff �.

By definition, for short-range potentials, the 2D s-wave
scattering length as and the 2D s-wave effective range rs are
the coefficients of the following low-momentum expansion of
the 2D phase shift δ0(k) [38],

cot[δ0(k)] = 2

π
ln

(
k

2
ase

γ

)
+ 1

2
r2

s k2 + · · · . (39)

Inserting this expression into Eq. (38) we obtain

V0(k) = −
(

4h̄2

m

)
1

2
π

ln(�aseγ /2) + 1
2 r2

s k2 + · · · , (40)

which, remarkably, no longer has a logarithmic dependence
on k and it is convergent for k → 0. We can then write the
low-momentum expansion of V0(k), given by Eq. (12), finding

g0 = −4π h̄2

m

1

ln
(
�2a2

s eγ
) . (41)
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TABLE I. Main results in spatial dimension D = 1, 2, 3. C(k) is
the function of the T matrix derived using dimensional regulariza-
tion, and g0 and g2 are the first two coefficients of the low-momentum
expansion of the s-wave component V0(k) of the interaction potential.
The tabulated quantities depend on the s-wave scattering length as

and the s-wave effective range rs. For D = 2 there is also a depen-
dence on the wave-number ultraviolet cutoff �.

D C(k) g0 g2

3 −ik m
4π h̄2

4π h̄2

m as
2π h̄2

m a2
s rs

2 m
2π h̄2 ln( k

2
eγ /2

�
) − m

4h̄2 i − 4π h̄2

m
1

ln(�2a2
s eγ )

2π2 h̄2

m
r2
s

ln2 (�2a2
s eγ )

1 −i 1
k

m
2h̄2 − 2h̄2

mas
− h̄2

m rs

This result is consistent with the one obtained by Castin [39].
We also obtain the formula

g2 = 2π2h̄2

m

r2
s

ln2
(
�2a2

s eγ
) , (42)

which relates g2 to the s-wave scattering length as, the ef-
fective range re and the cutoff �. Sometimes in many-body
calculations it is used some other characteristic range R of
the interatomic potential V (r) instead of the effective range rs

[6,40,41].
For ease of reading, we summarize the results for all the

dimensions in Table I, reporting the function C(k), and the
low-momentum coefficients g0, g2.

VII. AN APPLICATION: EFFECTIVE FIELD THEORY
OF INTERACTING BOSONS

The formalism developed in the previous sections is well
suited to set up low-momenta EFTs of bosons and fermions.
As an example, let us consider the Lagrangian density of iden-
tical bosonic particles of mass m in a D spatial dimensions,
given by

L = ψ∗(r, t )

[
ih̄∂t + h̄2

2m
∇2

r

]
ψ (r, t )

−1

2

∫
dDr′|ψ (r′, t )|2V (|r − r′|)|ψ (r, t )|2, (43)

where the bosons are described by the complex field ψ (x, τ )
and V (|x − x′|) is the two-body interaction potential be-
tween atoms. By using Eq. (13) it is straightforward (see,
for instance, Refs. [4,5,41]) to get the low-momenta effective
Lagrangian density

L = ψ∗(r, t )

[
ih̄∂t + h̄2

2m
∇2

r

]
ψ (r, t ) − 1

2
g̃0|ψ (r, t )|4

+ 1

2
g̃2|ψ (r, t )|2∇2

r |ψ (r, t )|2. (44)

Quite remarkably, contrary to Eq. (43), the effective La-
grangian density of Eq. (44) is local. The connection with the
scattering theory is established by the formulas of g̃0 and g̃2

as a function of the s-wave scattering length as and the s-wave
effective range rs. As previously stressed, while g̃0 coincides
with g0, g̃2 differs from g2 by a factor 2 in any dimensions D.
Instead, the connecting formulas are crucially dependent on
D. Formally, the modified Gross-Pitaevskii equation, derived
as Euler-Lagrange equation from the effective Lagrangian
density (44), is equivalent to the one found by several authors
[9,10,24], but it contains a coefficient g̃2 which is related in
a different way to scattering parameters, as discussed previ-
ously.

As we have seen, the case D = 2 is quite complicated
because g̃0 and g̃2 depend on the ultraviolet cutoff �. We
now show that, quite remarkably, this cutoff can be washed
out in explicit calculations. For instance, at the one-loop level,
from Eq. (44) one finds [6,41,42], after DR, the following ex-
pression for the zero-temperature pressure P of the interacting
Bose gas as a function of the chemical potential μ,

P(μ) = 1

2g̃0
μ2 + m

8π h̄2

μ2(
1 + 4m g̃2

h̄2 g̃0
μ

)3/2

× ln

[
4h̄2�2

mμeγ+1/2

(
1 + 4m g̃2

h̄2g̃0
μ

)]
, (45)

where the first term is the mean-field result and the second
one is the Gaussian (one-loop) correction with � the same
ultraviolet cutoff of Eq. (41) and γ the Euler-Mascheroni
constant. Contrary to Refs. [6,41,42], here we explicitly use
both Eqs. (41) and (42). Inserting these equations into Eq. (45)
we obtain

P(μ) = m

8π h̄2 μ2 ln

(
4h̄2

mμa2
s e2γ+1/2

)
+ 3m2

16h̄4 r2
s μ3, (46)

where the first term is � independent while the second term
is obtained in the limit � → +∞. For rs = 0 our result for
the pressure P(μ), derived with DR, becomes the same of that
found by Mora and Castin [43,44] with space discretization.
For rs �= 0 Eq. (46) is fully consistent with the EFT findings
of Ref. [8]. The zero-temperature pressure is represented in
Fig. 2 for three values of rs, corresponding to the case rs = 0,
and two values computed in Ref. [14] using the van der Waals
model for Li-Li and Na-Na scattering.

VIII. CONCLUSIONS

We have shown a method for systematically relating, in
generic spatial dimension D, the coefficients of the low-
momentum expansion of the interaction potential in terms of
the s-wave scattering length and effective range, highlighting
the two crucial assumptions that are present in the scheme,
namely the s-wave and the on-shell approximations for the
T -matrix equation. The on-shell approximation turns out to
be an alternative to the assumption of a separable potential
utilized in previous works [15]. We have explicitly calculated
these relations in dimensions D = 1, 2, 3 by using dimen-
sional regularization, and we also discussed the discrepancy
appearing in the literature for the expression of g2 in the
D = 3 case, showing, using a different method, how the same
results of Refs. [16,17] can be obtained. Using this framework
we have also obtained the finite-range correction to the zero-
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FIG. 2. Zero-temperature pressure dependence on chemical po-
tential, for three values of effective range rs. Values are as computed
in Ref. [14]. The dashed line is for the case of Li-Li singlet-state scat-
tering, the dotted line is for the case of Na-Na triplet-state scattering,
and the solid line is the prediction with the zero-range model. Length
is in units of as, and energy is in units of h̄2/(ma2

s ).

temperature pressure in a D = 2 Bose system, which is in
agreement with previous results [8]. It may be interesting to
extend the proposed scheme for the case of atomic mixtures,
which is getting increasing interest, or for atomic Josephson
junctions in reduced spatial dimensions.
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APPENDIX A: LEGENDRE POLYNOMIALS
IN ARBITRARY DIMENSIONS

Legendre polynomials in arbitrary dimensions are defined,
after fixing a direction, as the spherical harmonic of a ro-
tational invariant homogeneous harmonic polynomial with
respect to this direction. This defines them in a unique way
[45]. We indicate them with the notation Pl (·) when the
dimension is obvious. Pl (·) will in general depend on two
versors, but due to the rotational invariance, it is only de-
pendent on the angle in between through the inner product
of versors. For every versor x̂ the following normalization
condition holds,∫

SD

dω Pl (x̂(ω) · ŷ)Pl ′ (x̂(ω) · ŷ) = SD

N (D, l )
δll ′ , (A1)

where SD is the unit spherical shell in D dimensions, and x̂ is
the corresponding versor. It is important to notice that it holds,

Pl (1) = 1, (A2)

Pl (−1) = (−1)l . (A3)

The above condition allows one to define the Legendre
polynomial in the case D = 1. In this case the angle can only
assume values 0 or π . Let û+ be the versor in the positive
direction, and û− in the negative direction. Integrating in the
discrete measure, for l = l ′,∫

S1
dω P2

l (x̂(ω) · ŷ) = P2
l (û+ · ŷ) + P2

l (û− · ŷ) = 2, (A4)

in the last equality we used the fact that the argument of
the Legendre polynomials can only assume values ±1, and
the properties (A2) and (A3). Remembering that S1 = 2, and
using Eq. (A1) we define the value of N (1, l ) := 1. By using
the rotational symmetry, integral (A1) can be evaluated sepa-
rately in the angular variables that fixes the inner product. Let
x̂(ω) · ŷ = t ,∫

SD

dω Pl (x̂(ω) · ŷ)Pl ′ (x̂(ω) · ŷ)

= SD−1

∫ 1

−1
Pl (t )Pl ′ (t )(1 − t2)(D−3)/2,

obtained by using the spherical hypersurface of radius√
1 − t2 in D dimensions: SD(1 − t2)(D−3)/2 [45]. This

normalization condition will be used in computing the partial-
wave expansion used in the s-wave approximation.

Finally, we point out that a similar generalization is avail-
able also for spherical Bessel functions, which are coefficients
of the radial component of the partial-wave expansion of the
plane wave in general dimension D, and are defined as [45,46]

jl,D(z) = �

(
D

2

)(
2

z

) D
2 −1

Jl+ D
2 −1(z), (A5)

where Jα is the Bessel J function of index α, that can be
rational.

APPENDIX B: CONNECTION BETWEEN s-WAVE
AND FOURIER TRANSFORM

As explained in the Introduction, the representations in
momentum space of the matrix element of the operators T̂
and V̂ take the form of Fourier transforms calculated in the
difference between the wave vectors. Let us focus on the
operator V̂ , since the treatment of the operator T̂ is identical.
The Fourier transform is denoted by Ṽ (k − k′),

Vkk′ = Ṽ (k − k′)
(2π )D

= 1

(2π )D

∫
dDr V (r)e−i(k−k′ )·r, (B1)

In the hypothesis |k| = |k′| = k, the difference vector can be
expressed as

k − k′ = 2k sin (θ/2)û, (B2)

where û is the versor of the difference, and θ the angle
between the wave vectors. Clearly, for D = 1 the angle θ

has only two values: θ = 0 and θ = π . It follows that the
expression Ṽ (k − k′) only depends on k and θ , so we refer to
this quantity with the notation Ṽ (2k sin(θ/2)) = Ṽ (k − k′).
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By using the standard expansion in partial waves, i.e., the
Fourier-Legendre series, we can write

Ṽ (2k sin(θ/2)) =
∞∑

l=0

Vl (k)(2l + 1)Pl (cos(θ )), (B3)

where Pl (x) are Legendre polynomials, that satisfy the orthog-
onality relation [47]∫ 1

−1
dx Pl (x)Pl ′ (x) = 2

2l + 1
δl,l ′ . (B4)

As a direct consequence of the Fourier-Legendre expansion
one can compute the expansion coefficients via integration.
These integrals are convergent for potentials that are square
summable (Fischer-Riesz theorem). Explicit examples of po-

tentials that satisfy this condition are discussed, for instance,
in Refs. [3,48]. In 3D and 2D, the integration is simply

Vl (k) = 1

2

∫ π

0
dθ Ṽ (2k sin(θ/2)) sin(θ )Pl (cos(θ )). (B5)

The s-wave case, i.e., l = 0, gives exactly Eq. (11) be-
cause P0(x) = 1. However, in 1D the set of angles that
θ can assume is discrete, containing only in 0 and π .
The same integral can be evaluated in a discrete measure
giving

Vl (k) = 1
2 [Ṽ (0) + (−1)lṼ (2k)]. (B6)

Notice that the first term of the expansion is the even part of Ṽ
with respect to the variable θ centered in π/2. Independently
of the dimension D, the relationships g0 = g̃0 and g2 = 2g̃2

are verified.
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