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Accuracy of quantum simulators with ultracold dipolar molecules: A quantitative comparison
between continuum and lattice descriptions
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With rapid progress in control and manipulation of ultracold magnetic atoms and dipolar molecules, the quan-
tum simulation of lattice models with strongly interacting dipole-dipole interactions (DDIs) and high densities is
now within experimental reach. This rapid development raises the issue about the validity of quantum simulation
in such regimes. In this study, we address this question by performing a full quantitative comparison between
the continuum description of a one-dimensional gas of dipolar bosons in an optical lattice and the single-band
Bose-Hubbard lattice model that it quantum simulates. By comparing energies and density distributions and
calculating direct overlaps between the continuum and lattice many-body wave functions, we demonstrate that
in regimes of strong DDIs and high densities the continuum system fails to recreate the desired lattice model.
Two-band Hubbard models become necessary to reduce the discrepancy observed between continuum and lattice
descriptions, but appreciable deviations in the density profile still remain. Our study elucidates the role of strong
DDIs in generating physics beyond lowest-band descriptions and should offer a guideline for the calibration of
near-term dipolar quantum simulators.
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I. INTRODUCTION

Atomic and molecular ultracold quantum simulators have
emerged as an extremely innovative toolbox to study many-
body physics which would otherwise be hard to probe in
condensed-matter systems or simulate numerically. This is
due to the high degree of precision that can be achieved
in quantum optics experiments, which allows one to recre-
ate prototypical models of quantum many-body systems
under controlled settings [1–9]. Among the numerous mod-
els that can be quantum simulated in ultracold systems,
the Bose-Hubbard (BH) model is undoubtedly one of the
most fundamental for describing strongly correlated collective
quantum behavior [10–13]. Besides offering a prototypical
realization of the superfluid–Mott-insulator phase transition
[10,12,14–16], the original BH model has been used as an
effective description of many other different physical systems,
such as Josephson junction arrays [17,18], granular and thin-
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film superconductors [19–21], magnetic insulators [22,23],
and of course optical lattices [24].

Whereas the quantum simulation of the lowest-band
BH model has been demonstrated in many different scenarios,
its quantitative validity can become reduced by interactions
[25–33]. This is particularly true for long-range interactions
that appear in dipolar systems. Dipolar Bose-Hubbard (DBH)
models have been implemented using magnetic atoms [34]
and may be implemented using the more strongly interacting
polar molecules in the near future [35–37]. These models have
drawn interest due to the rich physics of strong off-site inter-
actions that lead to phases such as density waves, supersolids,
and the Haldane insulator [38–40].

Here we quantitatively study the validity of the DBH model
for a one-dimensional dipolar quantum simulator. We contrast
the physics of the underlying continuum-space description
with the one of the lattice model it is supposed to recre-
ate. Across the two descriptions, we compare observables
such as energies and density distributions. We also obtain
a quantitative measure of their compatibility by calculating
direct overlaps between their full many-body wave functions.
Our results show that for stronger dipole-dipole interactions
(DDIs) (several times the recoil energy) and higher densities
(above 0.67 particles per site) the single-band DBH descrip-
tion fails to correctly reproduce the physics of the continuum
system. Considering an effective two-band lattice description
reduces this discrepancy, but still does not fully account for
density distortions present in the continuum description. Our
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work demonstrates that strong DDIs require careful consid-
eration when benchmarking the validity of dipolar quantum
simulators and offers a method for quantitatively verifying
the parameter regimes in which quantum simulation remains
accurate.

II. PHYSICAL SCENARIO

We investigate the ground state of N = 4, 5, or 6 dipolar-
interacting bosons of mass m in a one-dimensional optical
lattice with L = 9 sites and infinite outer potential walls. The
potential between the walls is modeled as

A(x) = A0

ER
sin2

(
π

x

L0

)
, (1)

where L0 = λ/2 is our chosen unit of length (the distance
between two neighboring lattice sites). We consider poten-
tial depths A0 from 5ER to 10ER, where ER = h2

2mλ2 is the
recoil energy, which acts as our unit of energy. This optical
lattice can be implemented straightforwardly in experiments
by counterpropagating laser beams, whereas the hard-wall
boundaries can be engineered via a flat-bottom trap [41,42].
A combination of both has been employed in state-of-the-art
experiments [43,44]. We will study filling fractions below
one particle per site to investigate the effect of intersite dipo-
lar interactions on the validity of the lowest-band dipolar
BH model (1BDBH) and the two-lowest-band dipolar BH
model (2BDBH).

We assume a strong transverse harmonic confinement,
which regularizes the short-range divergence of the DDIs
[45,46]. To include this regularization, we use the DDI po-
tential

UV (x − x′) = V L3
0

ER(|x − x′|3 + α)
, (2)

where x and x′ are the particles’ coordinates and α = 0.05.
Thus V denotes the (nonregularized) DDI strength between
two bosons separated by one lattice site. To reduce the popu-
lation of multiply occupied sites within the lowest band to less
than 1%, we consider a very strong contact interaction repre-
sented as a narrow Gaussian in the continuum calculations1

UG(x, x′) = VG

ER

√
2πσ 2

e−(x−x′ )2/2σ 2L2
0 , (3)

where VG = 2.5ER and σ = 0.05.

III. LATTICE METHODS

For a sufficiently deep optical lattice potential, the con-
tinuum system should map onto a DBH model through a
tight-binding approximation. While the use of the DBH model
is widespread [47–51], we briefly describe the derivation here
due to its importance.

1We remark that this term becomes irrelevant as the repulsive DDI
performs this role more strongly for V � 1.0ER.

The single-particle Hamiltonian is given by the sum of
kinetic and lattice potential terms

H =
∫

dx �̂†(x)

(
− h̄2

2m
∇2 + A(x)

)
�̂(x), (4)

where �̂(x) annihilates a boson at position x while obeying
bosonic commutation relations and m is the mass of a boson.
In an infinite periodic lattice potential, the eigenvalues of
this Hamiltonian form low-energy bands, labeled in ascending
energy order by σ . While the eigenstates themselves are Bloch
functions extended over the whole lattice, it is useful to de-
scribe the physics of the interparticle interacting lattice model
using Wannier functions w j,σ (x), which are superpositions of
the Bloch functions of band σ that become localized at lattice
sites j [52,53]. We have used Wannier functions derived for
finite-size lattices, which are not translationally invariant (see
Appendix A). Examples of such Wannier functions are shown
in Fig. 1(a).

The Wannier functions provide a useful basis to decompose
the boson field operator �̂(x) using the equation

�̂(x) =
∑
j,σ

w j,σ (x)b̂ j,σ , (5)

where b̂ j,σ now annihilates a boson which has a spatial wave
function given by w j,σ (x). If the lattice potential depth is very
large compared with other energy scales, such as tempera-
ture and interactions, which could cause excitation to higher
bands, the use of the lowest band is typically sufficient. This
might not be the case when interactions are strong and long
ranged, as for the DDI regimes considered in this work. Be-
cause of that, we have performed separate calculations using
the lowest band and the two lowest bands.

When expanded in the basis of Wannier states, the single-
particle continuum Hamiltonian in Eq. (4) creates tunneling
terms which cause particles to hop between sites within the
same band. The tunneling element Jj,k,σ between site j and
site k of band σ is calculated using the integral

Jj,k,σ = −
∫

dx w∗
j,σ (x)

(
−h̄2

2m
∇2 + A(x)

)
wk,σ (x). (6)

These elements result in the single-particle tunneling part of
the BH lattice Hamiltonian

HJ =
∑
j,k,σ

−Jj,k,σ b̂†
j,σ b̂k,σ + H.c. (7)

For the lattice potential depths studied, the tunneling elements
decay quickly with the distance between the sites. Therefore,
we neglect tunneling beyond next-nearest-neighboring sites.
The term for j = k corresponds to a chemical potential, which
costs energy for occupation of excited bands.

The lattice Hamiltonians corresponding to the interparticle
DDI and contact interaction are also calculated by integrating
their elements in the Wannier basis.2 For example, the lattice

2We do not use the common approximation that these DDI decay as
the inverse cube of the distance between the site minima to improve
the comparison between lattice and continuum results [54].
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FIG. 1. (a) Examples of basis functions in the lattice description (one-band and two-band finite-size Wannier functions) and in the
continuum (a representative of the M orthonormal MCTDH-X orbitals). The functions are vertically shifted from 0 by multiples of
0.5 to facilitate visualization. (b) Spatial extent of interactions (V = 1.0ER) for a particle centered at x0 = 0 and another at x. Also
shown are schematic illustrations of some of the terms appearing in the 2BDBH model: (c) tunneling, (d) density-induced tunneling, and
(e) density-density interactions.

Hamiltonian for the DDI is calculated using

Vi,σ1, j,σ2,k,σ3,l,σ4 = 1

2

∫
dx

∫
dx′w∗

i,σ1
(x)w∗

j,σ2
(x′)

× UV (x − x′)wk,σ3 (x′)wl,σ4 (x), (8)

where Vi,σ1, j,σ2,k,σ3,l,σ4 is the matrix element corresponding
to the operator b̂†

i,σ1
b̂†

j,σ2
b̂k,σ3 b̂l,σ4 . A sketch of some of the

DBH terms appearing in the lattice Hamiltonian is given in
Figs. 1(c)–1(e).

The long-range nature of the DDI means these elements
generally decay more slowly with distance than the single-
particle tunneling elements. In our calculations, we have
included all DDI and contact interaction elements where i,
j, k, and l are contained within three consecutive sites. We
have included all DDI terms where i = l and j = k because
these terms do not rely on the spatial overlap of far-separated
Wannier functions. In the single-band model, these terms
correspond to density-density repulsion n̂in̂ j , while in the
two-band model, there are extra terms where bosons tunnel
between the two bands within a site. A quantitative compar-
ison between the band gap and the magnitude of some DBH
terms, including nearest-neighbor DDIs, intraband tunneling,
and density-induced interband DDI tunneling, is given in
Fig. 2.3

3Note that there are tens of different DBH terms which we included
in the calculations, but to make the figure readable, we have only
shown the most relevant ones.

We solve the lattice model using exact diagonalization
(ED) [55] implemented in the QUSPIN library [56,57]. As
the repulsive DDI and contact interaction strongly discourage
multiple occupation of sites, we limited the number of bosons

FIG. 2. Behavior of some nearest-neighbor (NN) DBH terms at
the centermost sites of the lattice as a function of lattice depth A0

and in comparison with the band gap shown for V = VG = 1ER.
Solid lines represent selected DDI terms. The intraband NN DDI
(band 1) corresponds to V4,1,5,1,5,1,4,1 [cf. Eq. (8)]. Density-induced
DDI tunneling corresponds to |V4,1,5,1,5,2,4,1|. Simultaneous interband
tunneling corresponds to |V4,2,5,1,5,2,4,2|. Dashed lines represent NN
tunneling terms. The dash-dotted line represents on-site repulsion.
The dotted line represents the band gap |J5,5,2 − J5,5,1|.
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in each site of each band to 2. The resulting wave function
is denoted by |ψED1〉 for the 1BDBH and by |ψED2〉 for the
2BDBH.

IV. CONTINUUM METHODS

To benchmark the validity of the quantum simulator in
implementing the DBH model, we also solve the many-
body Schrödinger equation directly for the continuum system
which consists of the single-particle Hamiltonian of Eq. (4)
and the dipolar and contact interactions given by

Hint =
∫

dx �̂†(x)�̂†(x′)UV (x, x′)�̂(x′)�̂(x)

+
∫

dx �̂†(x)�̂†(x′)UG(x, x′)�̂(x′)�̂(x). (9)

To calculate the continuum ground state |ψC〉, we em-
ploy the multiconfigurational time-dependent Hartree method
for bosons (MCTDH-B) [58–61], implemented by the
MCTDH-X software [62–66]. MCTDH-X implements a
variational optimization procedure by decomposing the many-
body wave function with an adaptive basis set of M
time-dependent single-particle orbitals. The orbitals form a
very different basis set than the Wannier function and they
can be nonlocal [see Fig. 1(a)]. In our calculations with L = 9
sites, we employ M = 9 for simulations involving N = 4, 5
particles and M = 18 for simulations involving N = 6 parti-
cles. This choice of M thus allows us to faithfully describe
each site with one (M = 9) or two (M = 18) orbitals, respec-
tively, and to project the corresponding wave function to the
single-band or double-band lattice basis.

We have verified that the contribution of higher orbitals is
negligible in terms of both occupation and change in ground-
state energy, as shown in Fig. 3. For instance, for N = 6 we
find that already beyond M = 15, the change in ground-state
energy that occurs when adding more orbitals is less than
0.004ER and their occupation is below 0.00001. As we will
see when comparing continuum calculations with lattice ones,
this change in energy is three orders of magnitude smaller than
the discrepancy observed between the continuum and 1BDBH
lattice models.

V. METHOD COMPARISON

We use several quantities to compare the results of the
lattice and continuum methods. The first is the total ki-
netic, potential, and interaction ground-state energy. We then
compare the boson density expectation values on the fine
spatial grid used by the MCTDH-X calculations, where
〈ψED|�̂†(x)�̂(x)|ψED〉 is calculated using Eq. (5). Finally,
we project the MCTDH-X wave function |ψC〉 to the Hilbert
space of the lowest band to obtain |ψC → ED1〉 or of the
two lowest bands to obtain |ψC → ED2〉. (For details, see
Appendix C.) We evaluate the projection magnitude onto
these Hilbert spaces as P1 = 〈ψC → ED1|ψC → ED1〉 and
P2 = 〈ψC → ED2|ψC → ED2〉, where P2 � P1. We then
calculate the overlap of these projections with the ED
wave functions as f1 = |〈ψED1|ψC → ED1〉|2 and f2 =
|〈ψED2|ψC → ED2〉|2, where f1 � P1 and f2 � P2. This gives

FIG. 3. (a) Energy convergence in continuum calculations for
N = 6, A0 = 10ER, and V = 10.1ER. The blue solid line is the
change of ground-state energy as a function of M. The green dotted
line represents the difference in energy at the end of each relaxation
with different M. The red dashed line indicates the computation
time step needed to achieve the given energy convergence. (b) Or-
bital occupation convergence in continuum calculations for the same
parameters as in (a). The occupations converge to a fixed value as
M is increased, as evinced also by the negligible occupation of the
additional orbitals for M � 15 (inset).

a quantitative measure to compare the accuracy of the lattice
representation in the continuum system.

VI. RESULTS

We now present the results obtained by comparing the
observables mentioned above across continuum and lattice
descriptions. We will first examine lower densities (N = 4, 5
particles), where the 1BDBH model is well reproduced (even
when the filling fraction is incommensurate with the density
wave order), and then focus on higher densities (N = 6),
where higher bands must be considered.

A. Lower densities: N = 4, 5

We begin by considering the case of N = 5 bosons. The
filling fraction here is chosen such that the ground state is a su-
perfluid at weak DDIs and a density wave (DW) |101010101〉
with a large energy gap at strong DDIs. We compare this to
the case of N = 4, which has a lower filling fraction that is
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FIG. 4. Comparison between lattice and continuum results for
N = 4 and 5. (a) Comparison of ground-state energies per particle
for the lattice (EED) and continuum (EC). (b) Projection magnitude P
of |ψC〉 onto lowest band and overlap f with the corresponding ED
ground state.

not commensurate with the density wave order. This leads to
a much smaller gap between the lowest-energy states of the
lowest-band dipolar BH model at strong DDIs.

Figure 4(a) compares the ground-state energies in the two
methods. For small DDIs, the good quantitative agreement for
A0 = 10ER reduces slightly for weak lattice potentials where
the lattice description is less appropriate. There are larger dis-
crepancies between methods for strong DDIs, an effect which
increases with shallower potentials and higher particle density,
as expected. For N = 5, A = 5ER, and V = 10.1ER, the lattice
energy is approximately equal to 0.2ER (approximately 1%)
larger than the continuum energy.

FIG. 5. Comparison of densities between methods for (a) N = 4,
A0 = 5ER, and V = 10ER and (b) N = 5, A0 = 5ER, and V = 10ER.
The density is normalized to integrate to 1.

FIG. 6. Comparison between lattice and continuum results for
N = 6. (a) Difference in total energy between continuum results and
ED with one and two bands. (b) Projection magnitudes of |ψC〉 onto
the lowest band (P1) and the two lowest bands (P2) and overlaps with
corresponding ED ground states (f1 or f2).

Figure 4(b) shows the projection magnitude of the
MCTDH-X ground state onto the lowest band and onto the
corresponding ED ground state itself. This shows quantita-
tively that the energy discrepancy at strong DDIs coincides
with a small population of higher bands. For A0 = 5ER

and N = 5, there is a small reduction in P1 and an in-
crease in the energy gap between methods for V ≈ 0.2ER

where the larger tunneling at the weak lattice potential
means there is still a small occupation in the nominally
empty sites of the DW. This effect decreases as the DW
becomes fully established and the particles are separated
further.

Figures 5(a) and 5(b) show the continuum densities for
A = 5ER and V = 10.1ER for N = 4 and 5, respectively. The
densities of the two methods are visually similar except for
small warping of the continuum on-site density to minimize
dipolar repulsion. For N = 4, this slightly displaces the den-
sity on the edge sites further out and the density on the
adjacent sites towards the center of the lattice. For N = 5,
since the filling is commensurate with the density wave,
there is less benefit in displacing the on-site density except
pushing the edge sites further outward and narrowing the
peaks.

B. Higher densities: N = 6

We now present results for N = 6, where the quantum
simulation of the single-band dipolar BH model in the
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FIG. 7. Comparison of densities between methods for N = 6,
using the common legend in (a), for (a) A0 = 5ER and V = 1.01ER,
(b) A0 = 10ER and V = 1.01ER, (c) A0 = 5ER and V = 10.1ER, and
(d) A0 = 10ER and V = 10.1ER. The density is normalized to inte-
grate to 1.

continuum system becomes drastically less precise because
of increased DDI effects. Like N = 4 the energy gaps to
low-lying excited states of the lattice model are small due
to incommensurate filling and the lattice ground state is
significantly entangled for the range of V we cover. We
empirically find that the continuum results for N = 6 are
not converged with respect to M = 9 single-particle orbitals
for V � 0.5ER and instead require M = 18. We therefore
compare these results with both the lowest-band dipolar BH
model and the corresponding two-band model, which features
the same number of single-particle orbitals as the continuum
calculations.

In Fig. 6(a) the energies of the continuum calculations,
single-band ED, and two-band ED agree well at weak DDIs
as expected. For strong DDIs, however, the continuum calcu-
lations are able to achieve a significantly lower energy than
the single-band model and slightly lower than the two-band
model. In Fig. 6(b) P1 (and therefore f1) decreases below
0.5 for all potential depths studied, quantitatively showing
the strong population of excited bands for strong DDIs. As
expected, P1 and P2 decrease with lattice potential depth,
although this pattern is not strictly observed with f1 and f2 due
to the close energy competition of states within and outside
the specified bands.

For N = 6 there is a clearer repositioning of particle den-
sity within sites to reduce the DDI repulsion [Figs. 7(a)–7(d)],
because the greater average density leads to at least one
pair of neighboring sites with particles. While the 1BDBH
(red dashed lines) fails at correctly recreating this effect, the
2BDBH is at least able to qualitatively capture it because su-

perpositions of occupation of the two lowest bands are offset
from the lattice minimum.

VII. DISCUSSION

The much greater deviations between the lattice and con-
tinuum methods for N = 6 compared to N = 4 and 5 suggest
that the quantitative validity of the 1BDBH model at strong
DDIs is strongly dependent on the filling pattern of the ground
state. The occupations of nearby sites significantly affect the
warping of the on-site density. This would complicate the
application of on-site occupation-dependent Wannier func-
tions and BH parameters, which have been used for strong
short-range interactions [67,68]. This effect may be more im-
portant for more complicated particle arrangements in higher
dimensions or for attractive interactions where the particles
preferentially occupy nearby sites. For higher filling fractions
above one particle per site, more dramatic dipolar crystal
states with multiple density peaks per lattice site have been
predicted, clearly populating excited bands [45,69,70].

Experimentally, BH models showing dynamical effects of
the DDI have been implemented using magnetic atoms [34].
In that example, the DDI between the two atoms at a dis-
tance of one lattice site was around 1% of the recoil energy,
deep within the regime of quantitative agreement between the
lowest-band dipolar BH model and the continuum methods
for moderate lattice potentials. For the most strongly dipolar
polar molecules, this is not necessarily the case. Taking the
example of NaCs, which has a large electric dipole moment of
up to 4.7 D (2.6 D of which has been implemented in recent
experiments [71]), the repulsive DDI between two molecules
polarized perpendicularly to the lattice at a distance of 532 nm
could be up to approximately 20 kHz. This is over 15× the
recoil energy ER in a lattice of wavelength λ = 1064 nm,
suggesting that the DDI strengths required to compete with
moderate lattice potentials may be realizable in near-future
experiments. We considered filling fractions of around one
boson per two sites, which is somewhat larger than previously
observed filling fractions of 30% for bosonic polar molecules
in optical lattices [36].

Before presenting our concluding remarks, a comment
about the energy scale is in order. When the DDIs are very
strong and repulsive and the density is below one particle per
site, the particles rearrange themselves to reduce their average
interaction energy well below the value of UV ≈ 0.952 V at
one lattice site distance. For example, the two-band lattice re-
sults for N = 6 and A0 = 10ER have a DDI energy per particle
of 3.34ER when V = 10.1ER. For the single-band results for
N = 5 particles, the DDI energy per particle at V = 10.1ER

is 1.19ER because the particles are able to arrange in the
density wave. Nevertheless, these interaction energies are still
quite high and the outer boxlike potential wall introduced in
Sec. II is required to stop the particles from trying to escape
the lattice. Furthermore, the construction of the lattice model
on the noninteracting single-particle band structure is a rough
approximation to the physics when the DDI is comparable
to the lattice potential. Our comparison with the continuum
calculations shows however that the 1BDBH model, despite
being inaccurate, is still well behaved.
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VIII. CONCLUSION

We quantitatively studied the breakdown of the lowest
Hubbard band description in one-dimensional repulsively in-
teracting systems, finding that the on-site wave functions
are distinctly warped by the presence of particles on other
sites. We performed a direct comparison between contin-
uum and lattice models, not only by calculating energy and
density, but also by constructing many-body wave-function
overlaps directly between the two methods. The message of
our results is twofold. On the one hand, they highlight that
the DDI strongly influences the parameter regimes where
dipolar quantum simulators correctly reproduce single-band
BH models. On the other hand, they show that experimentally
feasible parameters can access the regimes in which the DDI
significantly populates higher bands for finite-size lattices.
More generally, our method of measuring the overlap between
lattice and continuum many-body wave functions provides
a robust and quantitative way of verifying the compatibility
between the two descriptions. This should help determine the
correct parameter regimes of operation for near-term dipolar
quantum simulators.

Future work could include a more general quantification
of the validity of lowest-band dipolar BH models in different
geometries, including periodic boundary conditions, higher
dimensions, and attractive interactions. Our study could also
be extended to focus on time evolution, where significant
discrepancies between lowest-band lattice and continuum
methods were found for contact interactions [72,73]. The
breakdown of the lowest-band BH model may have more
significant consequences for the physics at weaker lattice
potential or anisotropic DDI, where interactions may encour-
age particles to occupy neighboring sites, or in cases where
the DDI introduces more intricate competition of interactions
within the BH model itself.
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APPENDIX A: WANNIER FUNCTIONS

This Appendix shows the derivation of the Wannier func-
tions for finite lattices. It is based on that in the Supplemental
Material of Ref. [75] and is functionally equivalent except for
a small extension for the second band.

We consider a lattice potential A = A0 cos2(πx) defined
between x = 0 and x = L with hard potential walls (after
calculating the Wannier functions, we translate this to be sym-
metric about x = 0). The Wannier functions must vanish at
the potential walls, so we build them using the basis functions
fm(x) = √

2 sin(mπ x
L ), where m is a positive integer. For the

lowest bands of L = 9, m � 800 causes negligible truncation.
The kinetic Hamiltonian ĤK is diagonal in these basis func-
tions, where each basis function has kinetic energy ( m

L )2ER.
The Hamiltonian for the lattice potential HP also couples basis
states and is given by

ĤP = A0

∑
m

1

2
|m〉〈m| + 1

4
|m〉〈m + 2L|

+ 1

4
(|m + 2L〉〈m| − |m〉〈−m + 2L|), (A1)

where elements outside the chosen maximum value of m
are excluded. The single-particle Hamiltonian is the sum of
the kinetic and potential terms. Due to its structure, this
Hamiltonian only couples the basis functions in groups de-
fined by (m ± q)mod(2L) = 0 labeled by q, where q takes
integer values from 0 to L. Excluding small truncation effects,
there are half the number of basis functions for q = 0 and
q = L each as for all other values of q. As in Ref. [75],
the lowest band is spanned by the lowest eigenstate for each
value of 1 � q � L. Meanwhile, it is clear that the second-
lowest eigenvalues for 1 � q � L − 1 are similar to the lowest
eigenvalue for q = 0 and are far below the second-lowest
eigenvalue for q = L. This motivates our identification of the
lowest eigenstate for q = 0 and the second-lowest eigenstates
for 1 � q � L − 1 as the second band.

As in Ref. [75], the Wannier functions within the space
of a band are found by taking the eigenstates of the position
operator

X̂ =
∑

m1,m2

[(−1)(m1+m2 ) − 1]
4Lm1m2

π2
(
m2

1 − m2
2

)2 |m1〉〈m2|. (A2)

These can be converted into functions in real space using the
definition of the basis functions. The BH model parameters
can be found by calculating the matrix elements of the kinetic
Hamiltonian and any additional interaction Hamiltonians in
the basis defined by the Wannier functions. For the DDI and
contact interaction, we numerically integrated over real space
for this purpose. The tunneling elements and on-site energies
for both the lowest and second bands away from the edges
of the lattice are in good quantitative agreement with the
equivalent elements for infinite lattices calculated using the
methods in Ref. [76].

APPENDIX B: MCTDH-X

In this Appendix we review the main theory behind
the multiconfigurational time-dependent Hartree method for
indistinguishable particles implemented by the MCTDH-X
software [61–66]. MCTDH-X is based on a variational op-
timization procedure in which the many-body wave function
is decomposed into an adaptive basis set of M time-dependent
single-particle wave functions, called orbitals. Using the time-
dependent variational principle in imaginary time, MCTDH-X
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optimizes both the coefficients and the orbitals to relax the
system to its ground state.

The starting point of this approach is the total many-body
Hamiltonian in second quantized formulation, which is com-
posed of one- and two-body operators:

Ĥ =
∫

dx �̂†(x)

{
p2

2m
+ A(x)

}
�̂(x)

+ 1

2

∫
dx �̂†(x)�̂†(x′)W (x, x′)�̂(x)�̂(x′). (B1)

The function V (x) represents a one-body potential, while
W (x, x′) encodes two-body interactions. In the case of
the present work, A(x) is the optical lattice, while
W (x, x′) is the sum of Gaussian repulsion and dipole-dipole
interactions.

To time evolve the many-body Schrödinger equation (in
either real or imaginary time), the state of the system is first
decomposed into M orbitals, through the following ansatz:

|ψC〉 =
∑

n

Cn(t )
M∏

k=1

(
[b̂†

k (t )]nk

√
nk!

)
|0〉. (B2)

Here n = (n1, n2, . . . , nk ) is the number of atoms in each
orbital, which is subject to the global constraint

∑M
k=1 nk = N ,

with N the total number of particles. Furthermore, in our
notation |0〉 denotes the vacuum and b̂†

i (t ) represents the time-
dependent operator that creates one boson in the ith working
orbital ψi(x), i.e.,

b̂†
i (t ) =

∫
dx ψ∗

i (x; t )�̂†(x; t ), (B3)

�̂†(x; t ) =
M∑

i=1

b̂†
i (t )ψi(x; t ). (B4)

The equations of motion for the coefficients Cn(t ) and
the working orbitals ψi(x; t ) can be obtained by apply-
ing the time-dependent variational principle [77], from
which the real or imaginary time evolution of the sys-
tem then follows. The number of orbitals influences the
accuracy of the algorithm: With a single orbital M = 1,
MCTDH-X is equivalent to a mean-field Gross-Pitaevskii de-
scription, while as M → ∞ the method becomes numerically
exact.

With the MCTDH-X method it is possible to compute
N-body reduced density matrices from the working orbitals.
For example, the one-body reduced density matrix can be
calculated as

ρ (1)(x, x′) =
M∑

kq=1

ρkqψk (x)ψq(x′), (B5)

with

ρkq =
{∑

n |Cn|2nk, k = q∑
n C∗

nCnk
q

√
nk (nq + 1), k �= q.

(B6)

Here the sum enumerates all possible configurations of n. The
denotation nk

q refers to the configuration where one atom is
removed from orbital q and then added to orbital k. From the
one-body reduced density matrix it is then straightforward to
calculate the one-particle density as its diagonal elements

ρ(x) = ρ (1)(x, x)/N. (B7)

APPENDIX C: CONSTRUCTION OF
LATTICE-CONTINUUM OVERLAPS

In this Appendix we provide details of the calculation of
the projection of the continuum wave function into the lattice
Hilbert space, and the overlap of the continuum and lattice
wave functions. The structure of the continuum wave function
is stated in Eq. (B2) . The lattice wave function has a similar
form

|ψED〉 =
∑

n′
C′

n′

L∏
k′=1

N ′
b∏

σ ′=1

⎛
⎜⎝ (b̂′†

k′,σ ′ )
n′

k′ ,σ ′√
n′

k′,σ ′!

⎞
⎟⎠|0〉, (C1)

where we have used primes to denote lattice quanti-
ties; N ′

b is the number of bands in the lattice model;
n′ = (n′

1,1, . . . , n′
k′,σ ′ ) is the number of atoms in each

Wannier function, which is subject to the global constraint∑L
k′=1

∑Nb
σ ′=1 n′

k′,σ ′ = N , with N the total number of particles;

and b̂′†
i′,σ ′ represents the operator that creates one boson in the

i′th Wannier function of the σ ′th band wi′,σ ′ (x).
To calculate the ψC → ED and f , we used the inner prod-

uct of the single-particle basis functions for the two methods,
i.e., the working orbitals ψi(x) for the continuum calculations
and the Wannier functions wi,σ (x) for the lattice calculations.
For this we calculated the integrals

Oi,(i′,σ ′ ) =
∫

dx ψi(x)∗wi′,σ ′ (x). (C2)

These overlaps can be used to project the annihilation
operator for the MCTDH-X orbitals into the lattice Hilbert
space using

b̂i =
∑
i′,σ ′

Oi,(i′,σ ′ )b̂i′,σ ′ , (C3)

which in turn allows the projection of the MCTDH-X wave
function onto the lattice Hilbert space |ψC → ED〉 to be calcu-
lated using Eq. (B2). The overlap with the ED wave function
f = |〈ψED|ψC → ED〉|2 can then be calculated easily in the
lattice Hilbert space.
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