
PHYSICAL REVIEW A 107, 033320 (2023)

Linear and nonlinear edge dynamics of trapped fractional quantum Hall droplets
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We report numerical studies of the linear and nonlinear edge dynamics of a non-harmonically-confined macro-
scopic fractional quantum Hall fluid. In the long-wavelength and weak excitation limit, observable consequences
of the fractional transverse conductivity are recovered. The first nonuniversal corrections to the chiral Luttinger
liquid theory are then characterized: for a weak excitation in the linear response regime, cubic corrections to the
linear wave dispersion and a broadening of the dynamical structure factor of the edge excitations are identified;
for stronger excitations, sizable nonlinear effects are found in the dynamics. The numerically observed features
are quantitatively captured by a nonlinear chiral Luttinger liquid quantum Hamiltonian that reduces to a driven
Korteweg–de Vries equation in the semiclassical limit. Experimental observability of our predictions is finally
discussed.
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I. INTRODUCTION

The fractional quantum Hall (FQH) effect is one of the
most fascinating concepts of modern quantum condensed-
matter physics [1,2]. Whereas FQH states of matter were orig-
inally observed in the solid-state context of two-dimensional
electron gases under strong magnetic fields, a strong exper-
imental attention is presently devoted to synthetic quantum
matter systems [3] such as gases of ultracold atoms under
synthetic magnetic fields [4–7] or fluids of strongly inter-
acting photons in nonlinear topological photonics devices
[8–10]. As it was pointed out in recent theoretical proposals
[11–25], such systems typically offer a wider variety of ex-
perimental tools compared to the transport and optical probes
of electronic systems. Important experimental steps towards
observing FQH physics have been recently reported in both
atomic [26–28] and photonic [29,30] systems.

One of the most exciting features of FQH liquids is the
possibility of observing fractional statistics effects both in
the bulk and on the edge [31,32]. Regarding the latter, in
particular, gapless modes supporting fractionally charged ex-
citations have been observed in shot-noise experiments [33].
More recently, edge modes have been used as a probe of
the topological state of the bulk [34], hints of generalized
exclusion statistics have been highlighted [35], and a number
of further intriguing properties have been anticipated [36,37].
Many of these features are theoretically captured by the chiral
Luttinger liquid (χLL) theory [38–40], which is expected to
be an accurate description of the edge in the long-wavelength
and weak excitation limits.

In this work, we investigate the physics beyond the the
regime of validity of the χLL description and perform nu-
merical studies of the linear and nonlinear edge dynamics of
a fractional QH liquid trapped by a generic, nonharmonic
external potential. As compared to our previous study of
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integer QH liquids [41], the strongly correlated nature of FQH
liquids poses enormous technical challenges to the theoretical
description and requires the development of a novel numerical
approach to follow the dynamics of macroscopic FQH clouds.
In particular, we focus on the neutral edge excitations (EEs)
that are generated by applying an external time-dependent
potential to an incompressible FQH cloud.

In electronic systems, the generation and diagnostics of
edge excitations require ultrafast tools that are presently being
developed with state-of-the-art electronic and optical tech-
nologies [42,43]. On the other hand, arbitrary time-dependent
potentials can be readily applied to synthetic systems, and
high-resolution detection tools at the single-particle level are
also available [3]. This suggests that our results will offer
useful guidance to the next generation of FQH experiments
in a wide range of experimental platforms.

In addition to this, we expect that our results may also be of
interest from a theoretical perspective: leveraging on the phys-
ical insight provided by numerical calculations, we are able to
formulate a nonlinear extension of χLL theory that is able to
quantitatively describe the system dynamics at a much lower
numerical cost. This theory offers an effective theoretical
framework for future investigations of the rich nonlinear quan-
tum dynamics of the FQH edge and is amenable to sophisti-
cated theoretical tools for nonlinear Luttinger liquids [44].

The structure of the article is the following. In Sec. II, we
discuss the physical system under consideration (Sec. II A),
we introduce our numerical approach for its description
(Sec. II B), and we show some benchmark calculations
(Sec. II C). In Sec. III, signatures of the quantized transverse
conductivity of the bulk in the edge physics are highlighted
and discussed within the χLL picture. In Sec. IV, we start
investigating effects beyond the χLL description by looking
at the dynamical structure factor of an anharmonically con-
fined droplet (Sec. IV A), at the group velocity dispersion
of the edge excitations (Sec. IV B) and at their nonlin-
ear features at stronger excitation levels (Sec. IV C). In
Sec. V, we capitalize on the numerical observations of the
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previous section to write a minimal nonlinear χLL Hamil-
tonian whose classical limit gives a Kortweg–de Vries
equation for the edge-density dynamics. In particular, we
show how this generalized χLL Hamiltonian is able to re-
produce all the microscopic calculations in a quantitative
way. In Sec. VI, we discuss the experimental observability
of the described physics. Finally, we give some conclusive
remarks in Sec. VII. The Appendices summarize additional
information in support of our claims. Appendix A shows
statistical information on the collected Monte Carlo data; in
Appendix B, we comment on the protocol that we used to
excite the edge dynamics; Appendix C provides further details
on the linear response calculations within the χLL theory; in
Appendix D, we show some additional data on the broadening
of the dynamic structure factor due to the anharmonic con-
finement; and in Appendix E, we compare the microscopic
numerical results for the time evolution with the nonlinear
χLL description.

II. THE PHYSICAL SYSTEM
AND THE NUMERICAL METHOD

A. The physical system

We consider a two-dimensional (2D) system of N quan-
tum particles with short-range repulsive interactions subject
to a uniform magnetic field B orthogonal to the plane. In
this continuous-space geometry with no underlying periodic
lattice, the single-particle states in a uniform B organize in
highly degenerate and uniformly separated Landau levels: in
what follows, energies are measured in units of the cyclotron
splitting between Landau levels and lengths in units of the
magnetic length, with the usual complex-valued shorthand
z = x + iy. Two-body interactions lift the degeneracy and lead
to the formation of highly correlated incompressible ground
states. The simplest examples are the celebrated Laughlin
states (LS) [45,46],

�L({zi}) =
∏
i< j

(zi − z j )
1/ν exp

(
−

∑
i

|zi|2/4

)
, (1)

entirely sitting within the lowest Landau level (LLL). The LS
at filling ν = 1/2 is the exact ground state (GS) for contact-
interacting bosons [47,48]; the ν �= 1/2 LS is the exact GS of
certain bosonic or fermionic toy-model Hamiltonians [49–51]
and an excellent approximation in more realistic cases.

In this work, we focus our attention on the gapless EE
on top of a LS. These excitations correspond to chirally
propagating surface deformations of the incompressible cloud
and, in the low-energy/long-wavelength limit, are accurately
described by the χLL model [38–40,52]. Our goal is to
understand the basic features of the dynamics beyond the
χLL description, when the cloud is confined by a generic
nonharmonic trap potential Vconf(r) = λrδ and the applied
time-dependent excitation strength is large enough to exit the
linear regime. To keep the calculation manageable, we will
assume that the trap is shallow enough and the excitation is not
too strong, so to avoid coupling to states above the many-body
energy gap � [4,13,53]. In this way, the ground state remains
a Laughlin state and the dynamics of the system edge is con-
fined to the subspace of many-body wave functions obtained

by multiplying the Laughlin wave function by holomorphic
symmetric polynomials Pα ({zi}) of the particle coordinates
[38,46,52,54].

In order to make these qualitative considerations more
precise and quantitative, we can note that the Laughlin state
remains the GS in the presence of the confinement potential
as long as the energy cost of adding a particle at the system
edge is smaller than the one required for inserting the extra
particle into the bulk of the system, which is the many-body
gap. Under this assumption, the GS is a Laughlin state ev-
erywhere and its edge states are well captured by our theory
[55]. If the aforementioned condition is not strictly met, a
shell structure of locally homogeneous incompressible liquids
has been predicted to appear [57], separated by sudden jumps
at the transition points between different strongly correlated
liquids at different filling fractions. In spite of this additional
complication, we expect that our theory will still provide an
accurate description, at least of the external edge between the
outer Laughlin shell and the external vacuum, provided the
outer shell is thicker than the characteristic correlation length
of the gapped bulk, of the order of the magnetic length.

While we expect that our results can be generally applied
to a variety of systems in different geometries, it is interesting
to have a closer look at the relevant energy scales for the
promising case of rotating clouds of bosonic atoms [4,26,58]:
atoms are confined to move along a two-dimensional plane
by a tight confinement along z and are laterally trapped by a
harmonic V2 = 1

2 Mω2r2 potential supplemented by an anhar-
monic Vconf = λrδ one. In the fast rotation regime at 
r = ω,
the centrifugal potential in the rotating frame is completely
compensated by the harmonic part of the confinement and one
is left with the anharmonic trapping only. Given the tight con-
finement along z, the effective two-body interaction potential
is a contact one, Vint = 2h̄
rgδ(2)(r/l2

B), with an interaction
strength g proportional to the ratio aS/az between the s-wave
scattering length and the harmonic oscillator length az. As
usual, lB = √

h̄/(2M
r ) is the effective magnetic length and
2h̄
r is the effective cyclotron gap.

The characteristic energy scale of the interactions between
the bosons is thus Vint = 2h̄
rg(n2Dl2

B), where n2D is the two-
dimensional density of the gas: for a Laughlin state at half
filling n2D = 1/(4π l2

B), so the interaction energy scale is of
the order of Vint/2h̄
r = g/4π . While the quantum correla-
tions between particles make the Laughlin state and its edge
excitations exact zero-energy eigenstates of the Hamiltonian,
the typical energy of quasiparticle excited states is set by Vint.
In particular, numerical calculations [4] have shown that the
many-body energy gap in these systems is of the order of
� ≈ 0.1 g h̄
r . While the dimensionless parameter g could
be tuned to relatively large values by means of Feshbach
resonances, in our case it is beneficial to keep it moderate
g/(4π ) � 1 so as to suppress the Landau level mixing. As a
result, one can expect optimal values of the many-body gap to
be of the order of a fraction of h̄
r , which visibly points in
the direction of using strong in-plane harmonic potentials.

As a final point, we can spell out the condition not to break
the many-body gap in the case of a quartic δ = 4 anharmonic
confinement potential. This requires that at the position of the
edge (r ∼ √

2N/ν lB), the anharmonic part is much smaller
than the harmonic one, Vconf/V2 ∼ 10−3. For a system of
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N = 25 particles, for which, as we will show in what follows,
the physics already approaches the thermodynamic limit, this
condition sets the magnitude of the anharmonic potential to be
roughly Vconf (Rcl )/2h̄
r ≈ 0.01, which imposes h̄λ/M2
3

r ≈
10−5. Under these conditions, the ground state of the system
will be the bosonic Laughlin state at half filling. Scaling up the
size of the system will, in principle, require precise control on
the trap parameters; however, as we briefly discuss in Sec. VI,
we expect the same physics to emerge for a general confining
potential.

B. The numerical approach

We expand the many-body wave function � over these
many-body states as

�({zi}) =
∑

CαPα ({zi}) �L({zi}), (2)

where α runs through the angular momentum l sectors and
through the pN (l ) states corresponding to the integer partitions
of l restricted to N elements at most, which span each l sector.
Projecting the many-body Schrödinger equation over these
basis states, we obtain a Schrödinger equation,

iMβ,αĊα = Hβ,αCα, (3)

for the expansion coefficients Cα .
The kinetic energy is constant within the LLL and the two-

body interaction energy is assumed to be negligible within
the subspace of Laughlin-like states (it is exactly zero for
the case of contact-interacting bosons). The Hamiltonian H

then only includes the confinement potential Vconf (r), and the
“metric” M accounts for the nonorthonormality of the basis
wave functions. A similar approach was previously adopted to
study the ground-state properties and the spectrum of EE of a
FQH fluid of Coulomb-interacting fermions [59–63]; here we
make a crucial step forward and apply it to the time-dependent
dynamics of the strongly correlated FQH fluid, in particular to
its response to an external potential U .

The great advantage of our approach is that it allows one
to tame the dimension of the many-body Hilbert space: for
a given l , the dimension of the Hilbert subspace does not
grow with N . The price is the need to compute the high-
dimensional integrals hidden in the matrix elements of H and
M: in our calculations, this is done by means of a Monte Carlo
sampling of the many-body wave function via a standard
Metropolis-Hastings algorithm with a weight that general-
izes to excited states, i.e., the well-known Laughlin’s plasma
analogy [2].

Specifically, the calculation of the matrices M and H

appearing in (3) requires the evaluation of matrix elements
of generic real-space observables O({zi}) between two (non-
necessarily normalized) many-body states ψ1,2({zi}). This
quantity can be rewritten as

∫
Dz

ψ∗
1 (z)√

‖ψ1‖2
O(z)

ψ2(z)√
‖ψ2‖2

=
∫
Dz |ψ1(z)|2

‖ψ1‖2
O(z) ψ2(z)

ψ1(z)√∫
Dz |ψ1(z)|2

‖ψ1‖2

∣∣∣ψ2(z)
ψ1(z)

∣∣∣2
,

(4)

FIG. 1. (a) Radial profile of the GS density. (b),(c) Excitation
spectra for (b) N = 9 and (c) N = 25 particles (red crosses), com-
pared to ED [black dots in (b)] and the nonlinear χLL theory (18)
[black dots in (c)]. Anharmonic δ = 4 trap with λ = 10−6; filling
factor ν = 1/2.

where we have introduced the shorthands z = {z1 . . . zN } and
Dz = dz1 . . . dzN , and we have defined the norm as ‖ψ1,2‖2 =∫
Dz |ψ1,2(z)|2. The integrals in both the numerator and the

denominator are then performed with the Metropolis-Hastings
algorithm using W (z) = |ψ1(z)|2/‖ψ1‖2 as the target prob-
ability distribution function [64,65]. Since the ψ1,2(z) wave
functions have the form (2) consisting of a Laughlin state
multiplied by a suitable polynomial of moderate degree, they
share most of their zeros and their weights are concentrated in
similar regions of configuration space. This feature is strongly
beneficial in view of the convergence of the Monte Carlo
sampling. In principle, the matrices M and H obtained in this
way are not exactly Hermitian, so we perform a preliminary
Hermitization step before proceeding with the calculations.

Using this method, we have been able to study the dynam-
ics of systems of up to N ∼ 80 particles. In the following, we
will focus on results for up to 40 particles for which the sta-
tistical error of the Monte Carlo sampling is smaller (see Ap-
pendix A). As we are going to see, for this particle number, the
system is in fact large enough to be in the macroscopic limit
where the edge properties are independent of the system size.

C. Benchmark

A first application of the numerical Monte Carlo (MC)
method is illustrated in Fig. 1, where we show a radial
cut of the GS density [Fig. 1(a)] and the energies of the
lowest-l excited states sitting below the many-body energy
gap [Figs. 1(b) and 1(c)]. The density profile shows the den-
sity plateau corresponding to the incompressible bulk ρ0 =
ν/(2π ) and the usual oscillating structure on the edge near the
classical radius, Rcl = √

2N/ν [2]. The excited-state energies
successfully compare to exact-diagonalization (ED) results
for all particle numbers for which ED is feasible Fig. 1(b).

III. QUANTIZED TRANSVERSE CONDUCTIVITY

We then investigate the dynamical evolution of the system
in response to a temporally short excitation. With no loss of
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FIG. 2. (a) Amplitude of the edge density response after the weak
l = 2 external potential has been switched off, for different filling
factors ν, normalized to the one of a large IQH system. (b) DSF
weights plotted against the excitation energy of each eigenstate.
Within each l sector, the dashed lines are guides to the eye. MC data
(black dots) are compared to the nonlinear χLL theory (red crosses).
(c) SSF Sl as a function of l for the same values of ν as in (a).
Dashed lines indicate the χLL prediction Sl = νl . (d) Normalized
edge-mode dispersion for different N . Same trap potential as in
Fig. 1. In (b) and (d), the filling factor is fixed to ν = 1/2.

generality, we assume for simplicity a radially flat potential
carrying definite angular momentum l . In the usual (r, θ ) polar
coordinates, the potential has the simple form

U (r, θ, t ) = U (θ, t ) = Ul (t ) eil θ + c.c., (5)

where Ul (t ) is the (complex-valued) time-dependent ampli-
tude of the excitation at angular momentum l . Here, l plays
the role of a proxy of the excitation wave vector: for a fixed
cloud size, the higher the l , the shorter the effective wave-
length of the excitation along the edge. While the calculations
reported in the main text refer to this r-independent poten-
tial, the general case of a r-dependent U (r, θ, t ) is discussed
in Appendix B and shown to bring no additional physics.
From the temporal point of view, we focus on the case of
a pulsed excitation with a Gaussian temporal shape Ul (t ) =
u0 exp[−(t/τ )2]. The characteristic time τ for turn-on and
then switch-off is taken to be slow enough τ � h̄/� to avoid
a significant excitation of states above the many-body gap, but
fast enough compared to the edge-mode frequencies to induce
a significant excitation of them.

As expected on physical grounds, the force along the az-
imuthal direction induced by the angular gradient of U (θ, t )
generates a transverse Hall current along the radial direction,
which locally changes the cloud density on the edge. Numer-
ical results for the linear response to a weak excitation are
displayed in Fig. 2(a): in agreement with transverse conduc-
tivity quantization arguments, a clear proportionality of the
response on the FQH filling factor ν is found in the large-N
limit. Quite remarkably, this limiting behavior is accurately
approached in the FQH case already for way lower particle
numbers N � 15 in the FQH than in the ν = 1 Integer Quan-
tum Hall (IQH) case. This conclusion is of great experimental
interest as it suggests that evidence of the quantized conduc-

FIG. 3. (a),(b) Normalized angular velocity 
 and group velocity
dispersion parameter α as a function of N for different trap exponents
δ at a constant ν = 1/2. (c),(d) Normalized α as a function of inverse
filling 1/ν for (c) δ = 4 and different N , and (d) as a function of trap
curvature ∝ δ(δ − 2) for different fillings ν at given N . All points are
extracted from low-l fits to the numerical MC predictions for ωl as a
function of l .

tivity can be observed just by probing the response of the edge
of relatively small clouds to trap deformations, a technique of
widespread use for ultracold atomic clouds [66].

This behavior can be understood on the basis of the χLL
theory [38–40,52], with the external potential U (θ, t ) mini-
mally coupled to the edge density ρ̂(θ ). The system response
after U has been turned off can be written (Appendix C) to
linear order as

〈δρ̂(θ, t )〉 = 1

π
Im

[∑
l

∫
Ũl (ω)Sl (ω)ei(lθ−ωt ) dω

]
, (6)

where Ũl (ω) is the space-time Fourier transform of U (θ, t ),

Sl (ω) =
∫

dt

2π
eiωt 〈eiĤtδρ̂l e

−iĤtδρ̂−l〉 (7)

is the dynamical structure factor (DSF)—restricted here to the
edge-mode manifold of states—and δρ̂l is the angular Fourier
transform of the edge-density variation δρ̂(θ ). When the trap
is quadratic, the edge is a prototypical χLL and the DSF is
a δ peak centered at ωl = 
 l , with 
 = 2λ. For anharmonic
traps [Fig. 3(a)], 
 is still determined by the potential gradient
at the cloud edge,


 = r−1∂rVconf(r)|Rcl ∝ N (δ−2)/2, (8)

but at the same time the DSF broadens. Up to not-too-late
times, the density response can nevertheless be accurately
approximated as

〈δρ̂(θ, t )〉 � 1

π
Im

[∑
l

Ũl (ωl ) ei(lθ−ωl t )Sl

]
, (9)

where Sl = ∫
Sl (ω) dω is the edge-mode static structure fac-

tor (SSF). As long as the confinement potential is not strong
enough to mix with states above the many-body gap, the
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FIG. 4. (a) Color plot of the density near the edge at c0t � 0.1
after an excitation pulse of the form (5) with an intensity large
enough to induce a significant nonlinear dynamics on this temporal
scale. White (black) lines are isodensity contours for the excited
(unexcited) system. (b),(c) Time evolution of the fundamental and
second harmonic spatial Fourier components of the edge density
variation of N = 30 (red) and N = 9 (yellow) clouds. ED data for
N = 9 are shown as brown dashed lines as a benchmark. Dotted
black lines and black dots indicate, respectively, the solution of the
semiclassical equation (16) and of the quantum model ĤNL

χLL . Insets
show a magnified view of the dynamics at early times. Same trap
parameters as in Fig. 1; filling factor ν = 1/2.

SSF keeps its χLL value Sl = νl for l � 0, and zero other-
wise, up to l values where finite-N effects become important
[Fig. 2(c)].

IV. BEYOND CHIRAL LUTTINGER LIQUID EFFECTS

Our numerical framework is not restricted to study the re-
sponse of the system to weak and long-wavelength excitations
as captured by the standard chiral Luttinger liquid theory.
The goal of this section is to explore the physics beyond the
χLL, namely, the response of the edge to stronger and shorter
wavelength excitations.

A. Dynamical structure factor

As we have seen in the previous section, anharmonic
confinements cause the DSF to broaden [Fig. 2(b)] within
a finite-frequency window, whose extension turns out (Ap-
pendix D) to be proportional to l2 and to the curvature of the
trap potential at the classical radius,

c0 = R−1
cl ∂r[r−1∂rVconf(r)]|Rcl = λ δ(δ − 2)Rδ−4

cl , (10)

a quantity related to the second l derivative of the LLL pro-
jection of Vconf (r), which physically corresponds to the radial
gradient of the angular velocity. Like in the IQH case [41], the
broadening is responsible for the decay of the oscillations at
late time that is visible in Fig. 4(b).

However, in contrast to the IQH case, the distribution of
the DSF weights at fixed angular momentum l is nonflat: as
one can see in Fig. 2(b), within each l sector, the weight of
the states close to the high-energy threshold is suppressed,

while the one of the states close to the low-energy thresh-
old is reinforced. This behavior is in close analogy to what
was found for a fermionic LL beyond the linear dispersion
approximation [44,67–69] and will be the subject of further
investigation [70].

B. Group velocity dispersion

This asymmetrical distribution of the DSF makes its
center-of-mass frequency shift from the low-energy result
ωl � 
 l . EE experience a wave-vector-dependent frequency
shift and, thus, a finite group velocity dispersion. As shown in
Fig. 2(d), the negative shift gets stronger according to a cubic
law at small l ,

ωl = 
 l − α l3. (11)

Note that the cubic form of the frequency shift is different
from the quadratic term that appears in typical nonchiral Lut-
tinger liquid theories describing, e.g., interacting Fermi gases,
as well as from the Benjamin-Ono term introduced in the con-
text of FQH fluids in [71,72] and already critically scrutinized
on the basis of conformal field theory and symmetries in [73].

Whereas the results in Fig. 2(d) may suggest that the shift
is a finite-size effect, a careful account of the N dependence
of the geometry and confinement parameters indicates that
the effect persists in the macroscopic limit. To this purpose,
we note that as N increases at fixed trapping parameters λ, δ,
the cloud gets correspondingly larger as Rcl = √

2N/ν, so the
effective spatial wave vector of an excitation at l decreases
as q = l/Rcl. At fixed q, we expect the frequency shift to be
proportional to the curvature of the confining potential in a
straight-edge geometry, which in our case suggests

α l3 = βν c̃0 q3, (12)

with

c̃0 = R2
cl c0 = λ δ(δ − 2) Rδ−2

cl (13)

and a size-independent βν . This functional form is validated
against the numerical results in Figs. 3(b)–3(d). Figure 3(b)

shows that α is indeed proportional to
√

N
δ−5

at fixed λ.
Figures 3(c) and 3(d) illustrate the linear dependence on the
filling factor and on the trap curvature parameter, respectively.

From these data, we extract a macroscopic coefficient [74],

βν � π

8

1 − ν

ν
. (14)

Since βν ∝ 1 − ν, we see that the frequency shift (12) is
related to the strong correlations of the quantum liquid, for
it vanishes at integer filling. Work is in progress to understand
this result in connection with the Hall viscosity [75] and the
magneto-roton excitations in the bulk of the FQH fluid [76].

C. Nonlinear dynamics

When the excitation strength increases, nonlinear effects
start to play an important role in the edge-mode evolution.
Numerical results illustrating this physics are displayed in
Fig. 4: Figure 4(a) shows the density profile of the cloud
edge after a relatively long evolution time past a sinusoidal
excitation with given l . In contrast to the weak excitation

033320-5



ALBERTO NARDIN AND IACOPO CARUSOTTO PHYSICAL REVIEW A 107, 033320 (2023)

case discussed above where the density profile keeps, at all
times, a plane-wave form proportional to cos(lθ − ωl t ), here
a marked forward bending of the waveform is visible, leading
to a sawtoothlike profile. Upon angular Fourier transform, this
asymmetry corresponds to the appearance of higher spatial
harmonics.

The physical mechanism underlying the nonlinearity can
be understood in analogy with the IQH case [41]. Because
of the incompressibility condition, a local variation δρ(θ ) of
the radially integrated angular density must correspond to a
variation of the cloud radius, δR(θ ) � δρ(θ )/(ρ0Rcl ). This
then leads to a variation of the local angular velocity,


̄(θ ) = r−1∂rVconf|R(θ ) � 
 + (2πc0/ν) δρ. (15)

This nonlinear effect can be combined with the group disper-
sion and the excitation potential U (θ, t ) discussed above into
a single semiclassical evolution equation.

For simplicity, we formulate the equation in terms of the
1D density variation along a “straightened” edge. By back
substitution, obtaining the one in terms of angular parame-
ters is straightforward. σ (ζ , t ) = δρ(θ, t )/Rcl, with ζ = Rclθ

being the physical position along the edge. The resulting evo-
lution equation,

∂σ

∂t
= −

[
v0 + 2π c̃0

ν
σ

]
∂σ

∂ζ
− βν c̃0

∂3σ

∂ζ 3
− ν

2π

∂U

∂ζ
, (16)

has the form of a driven classical Korteweg–de Vries (KdV)
equation [77,78] whose coefficients only involve macroscopic
parameters such as the linear speed,

v0 = Rcl 
, (17)

determined via (8) by the transverse response to the in-
ward trapping force at the cloud edge, v0 ∼ −∂rVconf(r)|Rcl .
The confinement potential curvature is defined via Eqs. (10)
and (13) and is proportional to the second derivative c̃0 ∼
∂2

r Vconf(r)|Rcl , namely, the gradient of the trapping force.
As one can see in the time evolution of the spatial Fourier

components of the density shown in Figs. 4(b) and 4(c),
the semiclassical equation accurately reproduces the numer-
ical evolution up to relatively long times, where the forward
bending due to the density-dependent speed of sound is well
visible. At later times, the broadening of the DSF discussed
above starts to play a dominant role, giving rise to the collapse
and revival features visible in the plots.

V. NONLINEAR CHIRAL LUTTINGER LIQUID THEORY

In order to properly capture these last features, quantum
effects must be included in the theoretical description. In this
perspective, the semiclassical evolution (16) can be seen as the
classical limit of the Heisenberg equation for the density oper-
ator of a χLL supplemented with a group velocity dispersion
term and a forward-scattering nonlinearity.

This reasoning suggests the following form for the lowest
nonuniversal corrections to the quantum χLL Hamiltonian for

our FQH fluid:

ĤNL
χLL =

∫
dζ

[
π v0

ν
σ̂ 2 − π βν c̃0

ν

(
∂σ̂

∂ζ

)2

+ 2π2c̃0

3ν2
σ̂ 3 + U (ζ , t ) σ̂

]
, (18)

where the density operator of the chiral edge mode obeys the
usual χLL commutation rules [2,38],

[σ̂ (ζ ), σ̂ (ζ ′)] = −i
ν

2π
∂ζ δ(ζ − ζ ′). (19)

It is straightforward to verify that the evolution equation for
σ̂ that is obtained by taking the classical limit of the Heisen-
berg equation,

∂σ̂

∂t
= i

[
ĤNL

χLL, σ̂
] = −v0

∂σ̂

∂ζ
− π c̃0

ν

∂ (σ̂ 2)

∂ζ

− βν c̃0
∂3σ̂

∂ζ 3
− ν

2π

∂U

∂ζ
, (20)

indeed recovers the classical wave equation (16) when opera-
tors are replaced by complex numbers.

The different terms in the Hamiltonian (18) correspond
to the different physical effects discussed in the previous
sections. The first term, proportional to σ̂ 2, is quadratic in
the density operators σ̂ : it is already present in the standard
chiral Luttinger liquid Hamiltonian and accounts for the in-
crease of energy of the cloud when the edge is deformed from
its equilibrium position. The second term is proportional to
the second spatial derivative (∂ζ σ̂ )2 and is still quadratic in
the density operators: it arises from the cubic correction to the
dispersion of weak-amplitude waves in (11); the additional
third derivative appearing in the corresponding term in the
wave equation (16) comes from the derivative present in the
commutator (19). The microscopic origin of this term will be
the subject of future work—here we just note that it has the
suggestive form of a surface-tension energy.

The third term is proportional to σ̂ 3 and therefore is no
longer quadratic in σ̂ : it stems from the intrinsic nonlinearities
discussed in Sec. IV C and it describes interactions among the
bosonic modes of the chiral Luttinger liquid. Finally, the last
term proportional to the density operator σ̂ is analogous to
the coupling to the electromagnetic field in the standard χLL
theory [38,39]: in our model, it describes the external driving
generated by the coupling of the cloud density to the external
potential U (θ, t ) in Eq. (5).

All numerical coefficients appearing in the quantum
Hamiltonian (18) can be straightforwardly calculated in terms
of the FQH filling ν and the radial dependence of the confine-
ment potential Vconf (r) around the classical radius r = Rcl =√

2N/ν using Eqs. (13), (14), and (17). This confirms the
physical expectation that the edge dynamics only depends on
the local features of the confinement. The resulting formulas

v0 = ∂rVconf (r)|Rcl , (21)

c̃0 = Rcl∂r[r−1∂rVconf (r)]|Rcl , (22)

can be used to obtain quantitative predictions for specific
physical systems.
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The surprisingly good accuracy of the physical predic-
tions of the nonlinear χLL Hamiltonian (18) is showcased in
Figs. 1(d), 2(b), and Figs. 4(b) and 4(c) for the eigenenergy
spectrum, the DSF [79], and the complete time evolution,
respectively. In each of these plots, the predictions of (18) are
compared to the result of the full microscopic Hamiltonian
and an excellent agreement is found. An analogous agreement
is shown in Appendix E for additional observables.

All together, these results strongly support the predictive
power of the nonlinear χLL model. Given the favorable scal-
ing of its numerical complexity with particle number N as
compared to the full two-dimensional calculations, the one-
dimensional nonlinear χLL appears as a most promising tool
to describe the dynamics of large FQH clouds well beyond the
limitations of the full many-body description.

VI. EXPERIMENTAL OBSERVABILITY

We conclude the work with a brief discussion of the actual
relevance of our predictions in view of experiments with syn-
thetic quantum matter systems, in particular trapped atomic
gases for which an artillery of experimental tools is already
available.

As several strategies to induce synthetic magnetic fields
are nowadays well established, from rotating traps [80,81] to
combinations of optical and magnetic fields [5,7], the open
challenge is to reach sufficiently low atomic filling factors
and sufficiently low temperatures to penetrate the fractional
quantum Hall regime [4,6]: an intense work is being devoted
to this issue from both the theoretical [82] and experimental
sides, and promising preliminary observations have appeared
in the literature [26,28,58]. In this, an important challenge is to
design an adiabatic protocol for reaching a Laughlin state with
large fidelity. Once the desired many-body state is generated,
arbitrary confinement potentials can be generated with optical
techniques [80,83] and the response to rotating potentials of
the form (5) can be measured via the same tools used, e.g., to
study surface excitations of rotating superfluid clouds [84].

Most remarkably, we have shown in Fig. 2 that this mea-
surement provides a precise measurement of the transverse
conductivity already for moderate cloud sizes N ∼ 10. This
suggests that a smoking gun of the topological nature of
the many-body state can be obtained in strongly correlated
atomic clouds with realistic sizes trapped in fast rotating po-
tentials [6].

While transverse conductivity features are independent of
the shape of the confinement potential, both the group veloc-
ity dispersion and the nonlinear effects crucially depend on
the trap anharmonicity that also helps stabilize the cloud at
large rotation speeds close to the centrifugal limit. A rough
estimate of the maximum potential curvature c̃0 that the FQH
liquid can stand before being significantly affected is set by
the many-body gap over the squared magnetic length. Since
both the group velocity dispersion and the nonlinearity terms
in (16)–(18) scale proportionally to the curvature c̃0 and the
chiral dynamics factors out as a rigid translation at v0, such
an upper bound on c̃0 does not impose any restriction on the
observability of interesting effects due to their interplay. It
only requires that the dynamics is followed on a temporal
scale much longer than the inverse many-body gap, a con-

dition which is anyway automatically enforced upon working
with a correlated many-body state.

To be more specific, let us consider again the case of
ultracold bosons in the fast rotation regime already mentioned
in Sec. II A. In this case, for a δ = 4 quartic anharmonic
potential, the curvature parameter can be written as c/2
r =
λh̄/M2
3

r . Based on the constraints discussed above, the
timescale for the correction of linear waves (11) is then set by
the reciprocal of Tl = 1/(cl3), which is 102 ÷ 103 longer than
the timescale set by the many-body energy gap �. In order to
be able to observe the correlated many-body state, one needs
to maintain the system over a timescale much longer than the
reciprocal of the many-body energy gap.

When the droplet gets excited by a time-dependent external
potential of the form (5), the edge density variation δσ pre-
dicted by Eq. (20) in the linear regime of weak excitations is
proportional to lu0τ/Rcl, where τ is the duration of the (short)
Gaussian excitation pulse and u0 is its strength [85]. Given
the incompressible nature of the FQH fluid, the edge density
variation δσ then results in a corresponding variation of the
cloud radius δR/Rcl = δσ ν/(2π Rcl ) ∼ lu0τν/N , which can
be detected either in situ or, if needed, after a time-of-flight
expansion: as one can see in Fig. 4, the relative change in the
cloud radius can be a significant fraction of its equilibrium
value, which supports the experimental observability of our
predictions.

Ongoing work is addressing the robustness of our pre-
dictions to different geometries and configurations. On one
hand, a forthcoming manuscript [70] will discuss how a sim-
ilar physics is obtained for macroscopic clouds trapped by
nonsmooth hard-wall potentials. On the other hand, ab initio
exact-diagonalization calculations are presently being used
to investigate the edge response of few-body FQH clouds in
those lattice geometries that are presently under active exper-
imental investigation [28].

A different strategy to observe the nonlinear dynamics and
highlight KdV behaviors is to induce a spatially localized den-
sity modulation by selectively removing a controlled number
of particles in the vicinity of the system edge [12]: the study
of the dynamics of such particle-number-nonconserving, spa-
tially localized and strongly nonlinear excitations and of their
interplay with the particle-number-conserving edge modes
studied in this work will be the subject of future work.

VII. CONCLUSIONS

In this work, we have reported a numerical study of the
linear and nonlinear edge dynamics of a fractional quantum
Hall cloud of macroscopic size. Our calculations are based on
a numerical method based on expanding the many-body wave
function in the basis of Laughlin states and evaluating the ma-
trix elements of the Hamiltonian and of the main observable
quantities in this basis by Monte Carlo techniques. This allows
us to follow in time the evolution of the cloud in response to
different excitation sequences.

Our calculations highlight a number of effects of direct
experimental interest both at linear and nonlinear regimes,
such as a sizable group velocity dispersion of the edge mode
and a significant amplitude-dependent response. Since our
conclusions are based on a very generic model, they directly
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apply to fractional quantum Hall fluids both in atomic or pho-
tonic synthetic matter and in electronic systems. As such, they
are prone to experimental investigations with state-of-the-art
systems.

From the theoretical side, the numerical results are used to
build an effective one-dimensional nonlinear chiral Luttinger
liquid (χLL) quantum formalism describing a dynamics in
the form of a quantum Korteweg–de Vries equation. The
predictive power of the nonlinear χLL formalism is suc-
cessfully validated at a quantitative level by comparing its
predictions against the full numerics. As compared to the full
two-dimensional calculations, the χLL approach has a much
more favorable scaling with system size, which allows one to
address macroscopically large systems.

Work is presently in progress to combine the quantum χLL
formalism with refermionization techniques to understand
the peculiar exponents numerically observed in the dynamic
structure factor of edge excitations. In the future, this formal-
ism will be a natural starting point to investigate more subtle
nonlinear effects in the edge dynamics such as solitonic exci-
tations. Once supplemented with terms describing tunneling
processes between FQH edges [86], it holds great promise in
view of using FQH fluids as a novel platform for nonlinear
quantum optics of edge excitations and highlight observable
signatures of the anyonic statistics of FQH excitations.
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APPENDIX A: STATISTICS OF THE SAMPLING

In order to estimate the statistical error of the Monte Carlo
sampling, we performed some statistical analysis on the nu-
merical data. In particular, we split the calculations of our
observables into M = 250 groups for the same droplet con-
figuration. The obtained results are treated as a population of
which we studied the statistics.

The average energies

El,n = 1

M

M∑
i=1

el,n[i] (A1)

are shown in Fig. 5(a) with their standard errors,

σ (El,n) =
[

1

M(M − 1)

M∑
i=1

(el,n[i] − El,n)2

] 1
2

. (A2)

Since these latter are very small and almost invisible in
Fig. 5(a), we have replotted them separately in Fig. 5(b). His-
tograms of the M = 250 samples for the eigenstate energies
at a few values of l are shown in the right panels.

The same analysis has been repeated for the DSF; the
results for the DSF weights are shown in Fig. 6(a). Again, the
error bars are too small to be seen by eye on that scale. His-

FIG. 5. (a) Eigenenergy spectrum (with error bars) for a N = 25,
ν = 1/2 FQH cloud confined by a δ = 4 quartic potential. (b) Magni-
fied view of the statistical errors on the eigenenergies. The panels on
the right show histograms for the M = 250 Monte Carlo realizations
of the energy spectrum in each l sector. Each point is obtained by an
independent run.

tograms of the M = 250 samples for a few l components of
the DSF are shown in the right panels. Error propagation then
yields small but sizable error bars on the central frequency ωl ,
in particular at l = 1, as shown in Fig. 6(b).

APPENDIX B: EXCITATIONS WITH A RADIAL
DEPENDENCE

The picture presented in the main text remains valid under
reasonable approximations even when the externally applied
excitation depends on the radial coordinate. The external po-
tential couples to the density (apart from a time-dependent
additive constant which is irrelevant for the dynamics anyway)

FIG. 6. (a) DSF weights |〈0|δρ̂l |l, n〉|2 (with error bars) for a
N = 25, ν = 1/2 FQH cloud confined by a δ = 4 quartic potential.
(b) Suitably normalized first moment ωl of the DSF (with error bars).
The panels on the right show histograms for the M = 250 Monte
Carlo realizations of the DSF weights in each l sector.
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FIG. 7. Density variation δρ(x, y) at a time c0t � 0.1 after the
ν = 1/2 cloud has been excited by means of (a) an excitation with
a nontrivial radial profile described by Eq. (B3) or (b) by a radially
flat profile. (c),(d) Time evolution of the fundamental and second
harmonic spatial Fourier components of the edge-density variations
in the same two cases (black and red).

via

V̂ (t ) =
∫

U (r; t ) δρ̂(r) d2r. (B1)

For edge excitations, the support of the density variation δρ̂(r)
is exponentially localized near the edge, r � Rcl: if the exci-
tation is constant over the width of the edge mode, we can
approximate

V̂ (t ) �
∫

U (Rcl, θ ; t )

[∫
δρ̂(r) r dr

]
dθ

=
∫

U (Rcl, θ ; t ) δρ̂(θ ) dθ, (B2)

which indeed yields a minimal coupling between the edge-
density variation and an effectively azimuthal excitation. For
this formula to remain valid for a radially dependent potential,
we can expect that the potential U has to reach the bulk on one
side and overlap with the whole edge on the other side. This
condition is needed for the quantized transverse Hall current
to flow from the bulk towards the edge during the excitation
time, so that the edge-density variation is proportional to the
macroscopic bulk transverse conductivity set by the filling
fraction.

To validate this physical picture, we compare the calcu-
lations presented in the main text for a radially constant
potential with analogous calculations with an excitation of the
form

U (r, θ ; t ) = Ul (t ) (r/Rcl )
l eil θ + c.c., (B3)

for which the radial variation of the excitation potential over
the edge-mode shape may be non-negligible. As shown in
Fig. 7, good qualitative agreement with the results for a flat
U (θ ; t ) = U (Rcl, θ ; t ) is found: the density variations δρ(x, y)
are in fact practically indistinguishable. Note that the exci-
tation considered here was strong enough to trigger visible
nonlinear effects.

The comparison has been made more quantitative by look-
ing at the time evolution of the spatial Fourier transforms of
the edge density (bottom panels). The fundamental mode in
the two cases can hardly be told apart. Slight quantitative dif-
ferences appear in the second spatial harmonic, even though
the qualitative shape remains the same. This confirms that the
approximation made in Eq. (B2) is a good one, especially at
small l , so the simpler form given by Eq. (B2) is an accurate
effective description also for the more general coupling given
by Eq. (B1).

APPENDIX C: LINEAR RESPONSE
WITHIN THE χLL THEORY

The key observable we consider is the edge-density varia-
tion defined as

δρ̂(θ ) =
∫ ∞

0
[ψ̂†(r)ψ̂ (r) − 〈ψ̂†(r)ψ̂ (r)〉]r dr, (C1)

where the bra-kets denote the expectation value on the ground
state and ψ†(r) is the particle-creation operator at position r.

Within linear response theory, the edge-density variation
induced by the external perturbing potential of the form given
by Eq. (B2) reads

〈δρ̃(θ, t )〉 = −i

〈[
δρ̃(θ, t ),

∫ t

−∞
Ṽ (t ′)dt ′

]〉
, (C2)

where the system is assumed to be initially in its ground state
at t → −∞, higher-order terms O(U 2) have been neglected,
and the tilde indicate the interaction picture with respect to the
unperturbed U = 0 Hamiltonian.

With straightforward algebra, the above formula can be
rewritten as

〈δρ̂(θ, t )〉 = 2 Im
∫ t

−∞
dt ′

∫
dθ ′ U (θ ′, t ′)

× 〈δρ̂(θ ) e−i(Ĥ−E0 )(t−t ′ ) δρ̂(θ ′)〉. (C3)

Introducing the Fourier transforms

δρ̂(θ ) = 1

2π

∑
l �=0

eilθ δρ̂l

U (θ, t ) = 1

2π

∑
l �=0

eilθUl (t ), (C4)

this can be reformulated as

〈δρ̂(θ, t )〉 = 2 Im
∫ t

−∞
dt ′ 1

(2π )2

∑
l �=0

eilθ Ul (t
′) Cl (t − t ′),

(C5)

where the rotational invariance of the ground state has been
used to remove a summation, Cll ′ = Cl δll ′ , with

Cl (t ) = 〈δρ̂l e−i(Ĥ−E0 )t δρ̂−l〉. (C6)

If we are interested in the late-time dynamics of the system
once the perturbation pulse has gone [Ul (t ) → 0 for late
times], we can replace the upper boundary of the time integral
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with t → ∞, use the convolution theorem, and write

〈δρ̂(θ, t )〉 = 1

π
Im

[∑
l

eilθ
∫

Ũl (ω) Sl (ω) e−iωt dω

]
,

(C7)

where

Ũl (ω) =
∫

dt

2π
eiωt Ul (t ), (C8)

Sl (ω) =
∫

dt

2π
eiωt Cl (t ). (C9)

Combining Eqs. (C9) with (C6) allows one to recover the
edge dynamic structure factor. As long as the confinement
and excitation potentials are weak enough not to excite states
above the many-body gap, we can introduce a projector onto
these states only and rewrite

Sl (ω) =
∑

n

δ(ω − ωl,n)|〈0|δρ̂l |l, n〉|2, (C10)

where |0〉 is the Laughlin ground state and ωl,n = El,n − E0 is
the excitation energy of state |l, n〉 with respect to the ground
state.

Integrating over the frequencies in Eq. (C10) (restriction to
energies below the many-body gap is automatically enforced
by the projector onto the low-energy subspace), one obtains
the edge static structure factor,

Sl =
∑

n

|〈0|δρ̂l |l, n〉|2, (C11)

which is invariant under a deformation of the many-body
Hamiltonian as long as the gap is not closed, so that a uni-
tary transformation between the “new” eigenstates |l, n〉′ and
the “old” ones |l, n〉 is well defined. Hence, in the long-
wavelength, low-energy limit, the edge static structure factor
maintains its χLL value, namely, Sl = νl , when l � 0 and 0
otherwise, reflecting the chirality of the system.

Assuming a narrowly peaked DSF at ω � ωl and including
the χLL form of Sl , we can approximate Eq. (C7) as

〈δρ̂(θ, t )〉 = − ν

π

∂

∂θ

∑
l>0

Re[eil (θ−ωl t )Ũl (ωl )]. (C12)

This formula explicitly displays the proportionality of the
edge response to the FQH filling factor and is the key of our
proposed measurement scheme of the transverse conductiv-
ity. Of course, this formula is only valid up to not-too-large
times, namely, as long as the DSF broadening is not resolved,
�Elt � 1.

Note, finally, that the solution of the semiclassical equa-
tion introduced in the main text [Eq. (1)] perfectly matches
this result as long as the nonlinear velocity term can be ne-
glected.

APPENDIX D: BROADENING OF THE DYNAMICAL
STRUCTURE FACTOR OF EDGE MODES

When the cloud is nonharmonically confined with δ �= 2,
we have seen in the main text that the DSF broadens within

FIG. 8. Suitably normalized width �El of the DSF of a ν = 1/2
FQH cloud as a function of the particle number N for different values
of (a) l = 2, (b) 3, (c) 4, and (d) 5. The dashed lines are power-law
fits to the data and highlight the scaling with N at fixed l , for different
confinements δ. The fitted exponents are in close agreement with the
expected ones indicated in the legends.

a finite-frequency window, whose width can be easily esti-
mated by looking at the difference �El between the largest
and smallest energies in a given angular momentum l sector.
The corresponding states have in fact a nonvanishing DSF
weight |〈0|δρ̂l |l, n〉|2 and these energies thus correspond to
the thresholds of the DSF.

In close analogy to to the IQH, we expect the DSF to
broaden ∝ c l2. Here we verify this scaling. In particular, data
in Fig. 8 suggest the following simple form:

�El = μm
c

2
l (l − 1). (D1)

FIG. 9. Time evolution of the (a) fundamental, (b) second, and
(c) third harmonic of the spatial Fourier transform of the edge-density
variation of a N = 30 cloud at filling factor ν = 1/2 in a δ = 4 quar-
tic trap. The results of the microscopic MC calculations (red lines)
are compared with those of the nonlinear χLL model (black circles).
For comparison, the result of a nonlinear χLL model without the
dispersive contribution is shown as yellow triangles.
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The proportionality c ∝ Rδ−4
cl is visible from the N depen-

dence in each l sector. Since all data have been normalized
by �El=2 (at a fixed number of particles, N = 10), the propor-
tionality to l (l − 1)/2 can instead be read out by looking at the
first point on the y axis. Notice that apart for the m-dependent
proportionality factor, the result in Eq. (D1) is exactly the
same as in the IQH case, where the lower (upper) threshold
corresponds to a particle (hole) created just above (below) the
Fermi surface.

APPENDIX E: QUANTITATIVE COMPARISON BETWEEN
THE MICROSCOPIC DYNAMICS AND THE NONLINEAR

χLL MODEL HAMILTONIAN

To further support the nonlinear χLL model, the numer-
ically calculated microscopic time evolution was compared
with the results of the nonlinear χLL model for different
observables. To this purpose, the free parameters of the model
have been determined according to the scaling formulas dis-
cussed in the text, without any additional fine tuning. In

particular, for a δ = 4 quartic confinement, the angular ve-
locity of the edge modes is set by 
 = 4λR2

cl; we have a
size-independent curvature c = 8λ which determines both the
cubic phonon dispersion shift coefficient α = πλ/Rcl and the
strength of the nonlinearity.

The time evolutions of the spatial Fourier transform of the
edge-density variation calculated by the full numerics and
by the χLL model are compared in Fig. 9. A very good
agreement can be seen, which gets slightly worse at larger
angular momenta l: this small deviation may be caused by a
higher-order correction of the phonon dispersion (beyond the
cubic term considered here) and by the increasing difficulty
in accurately sampling the matrix elements of the excitation
Hamiltonian between higher-l subspaces. Note that the cubic
correction to the phonon dispersion is essential to correctly
capture the late-time dynamics, in particular of the harmonic
components at 2l and 3l (see yellow triangles in Fig. 9). Of
course, the nonlinear terms are even more essential, as they
are responsible for the very appearance of a finite amplitude
in the harmonic components.
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