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Decoherence from long-range forces in atom interferometry
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Atom interferometers provide a powerful means of realizing quantum coherent systems with increasingly
macroscopic extent in space and time. These systems provide an opportunity for a variety of novel tests of
fundamental physics, including ultralight dark matter searches and tests of modifications of gravity, using long
drop times and microgravity environments. However, as experiments operate with longer periods of free fall and
become sensitive to smaller background effects, key questions start to emerge about the fundamental limits
to future atom interferometry experiments. We study the effects on atomic coherence from hard-to-screen
backgrounds due to baths of ambient particles with long-range forces, such as gravitating baths and charged
cosmic rays. Our approach—working in the Heisenberg picture for the atomic motion—makes proper inclusion
of the experimental apparatus feasible and clearly shows how to handle long-range forces. We find that these
potential backgrounds are likely negligible for the next generation of interferometers, as aggressive estimates for
the gravitational decoherence from a background bath of dark matter particles gives a decoherence timescale on
the order of years.
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I. INTRODUCTION

Atom interferometers (AIs) are useful both in enabling
new measurements and in providing better understandings
of key concepts in quantum mechanics and its intersection
with relativity [1]. Based on the concept of particle interfer-
ence, the simplicity of the atom interferometer in principle
provides key ways of testing the connection between path in-
tegrals and Hamiltonian quantum dynamics [2], explorations
of the concept of “which-way” information [3–8], and con-
siderations of the distinctions between interferometry in a
Galilean frame and in a fully general relativistic frame [9].
At the same time, AIs are exquisitely sensitive to small
variations in local accelerations and rates of rotation. Early
work showcased measurements of the tides [10] and seismic
backgrounds [11,12] while more recent developments include
precision geodesy and gravity gradient detection [13–15]. In
the next decade, AIs will see increasing use in searches for
new fundamental physics, including low-frequency gravita-
tional waves and ultralight dark matter [16–20] and tests of
modifications of gravity [21,22].

Typically, the dominant background noise in AI systems is
assumed to be a combination of different terrestrial sources,
due to local gas particles in the (imperfect) vacuum, or due
to laser-related noise sources [10]. Here, we instead consider
the effect of both distant and close gravitational sources that
may be due, e.g., to particulate models of dark matter or
more distant, heavier astrophysical objects [23]. Due to the
unscreened, long-range nature of the gravitational coupling,

*jkunjumm@umd.edu

this type of background is unavoidable for AIs. By examining
this potential signal, we can put bounds on the fundamental
performance limits of AIs in both earth-based and space-based
settings, conditional on a variety of models for background
particles. This work also contributes to the study of irreducible
gravitational backgrounds that optomechanical experiments
probing quantum macroscopicity and gravity from quantum
objects will face [24–40].

In addition to practical reasons for wanting to charac-
terize this background, the case of gravitational noise is
conceptually interesting, first because of equivalence principle
considerations. Typically, to account for background particles
one need only include their interaction with the atom [41–43].
Things become more complicated when we consider gravita-
tional interactions, however, since for instance we know that
a constant gravitational field acts on all components of an
experiment so as to be undetectable in freefall. To capture
this in the formalism describing the experiment, one must
account for the effect of the gravitational field on the con-
trol system, not just the atom [9,27,44]. A central result of
our work is to provide a clean conceptual framework that
treats the AI apparatus and the atoms themselves on an equal
footing, thus properly treating issues involving the equiva-
lence principle, which is an essential first step for taking AI
into the space-based regime. The effect of gravity gradients,
particularly seismic noise, on interferometry has also been
analyzed by the gravitational wave community [45–48], mo-
tivating the construction of gravitational wave detectors in
space [49,50]. However, while the LISA Pathfinder mission
measured favorable acceleration noise rates for gravitational
wave detection [49], it attributed most of the noise to non-
gravitational sources, and as a result some of the measured
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FIG. 1. Schematic of atom interferometry taking place in the presence of background particles. (a) Schematic of atom interferometry. The
atom begins in the ground state and then undergoes a π

2 -π - π

2 pulse sequence, after which the internal state is measured. A passing bath particle
leads to distortions of the laser and atom trajectories. (b) Particles which remain outside rmin through the whole experiment (light blue) source a
gravitational potential varying slowly across the spatial extent of the experiment. Those which start or drift inside rmin are in the collision cone
(green). The atom starts a distance z0 from the laser, and is put into a superposition of paths with maximum separation h̄kτ/m. (c) Division
of phase space into distant sector (blue) and collision cone (green). This is a cross section of the full phase space at purely radial velocity
and arbitrary angular coordinates. The collision cone includes particles which begin inside the cutoff radius rmin, as well as those which begin
outside but have an inward velocity large enough to bring them within rmin by time 2τ .

background depends on the nature of the test masses and
the experimentalist’s ability to screen unwanted interactions.
Here, we prove a framework for calculating the inherent grav-
itational background any such experiment faces, showing how
the ultimate noise level depends on characteristics of the bath.

The second piece of conceptual interest for this work
comes from the infinite scattering cross section of the 1/r
potential. Our approach addresses a conceptual issue which
occurs when trying to apply traditional Brownian motion cal-
culations [41–43] when the bath has a long-range, unscreened
coupling to the apparatus. As we will explain, the naive pre-
diction of an infinite decoherence rate for a 1/r potential is
fixed by including the infrared cutoff set by the spatial extent
of the experimental apparatus [51,52]. As we show below,
the effect is likely to be small for models of dark matter
under current consideration, but this study opens the door to
exploring dark matter or other particulate detection using AIs
when the interaction is not (only) gravitational, and to this end
we consider interactions with cosmic ray particles at the end
of the paper.

The paper is organized as follows. In Sec. II we set up
the model for an atom interferometer in the presence of back-
ground particles that interact with a long-range force with both
the atoms and the experimental apparatus. In Sec. III we set up
the formalism describing our atom interferometry experiment,
and show how the effects of a constant, global acceleration on
the atom and on the control system cancel out, in accordance
with the equivalence principle. This allows us to analyze the
effect of a cloud of distant bath particles on the experiment.
In Sec. IV, we discuss the relationship between this calcula-
tion and the standard quantum Brownian motion framework.
In Sec. V we calculate the effect of nearby bath particles,
in particular considering atom interferometers as dark matter

detectors. In Sec. VI we discuss the usefulness of tuning the
atom-laser distance to change sensitivity of the experiment to
the gravitational background. In Sec. VII we consider atom
interferometers as impulse detectors for more general forces,
examining the case of a passing charged cosmic ray particle.
Finally, we summarize our results and consider future work in
Sec. VIII.

II. BACKGROUND MODEL

In this paper we consider a simplified atom interferometer
in microgravity, as shown in Fig. 1(a), where the dominant
gravitational acceleration is from a cloud of N identical back-
ground particles of mass mb interacting with the setup via
gravity. This model is relevant to the behavior of proposed
atom interferometers in space, where the free evolution times
are not limited by the need to construct a long drop tower [16].
We restrict ourselves to a highly simplified atom interferome-
try model, in which atomic motion takes place along only one
axis and there is only a single control laser, in order to focus
on the effect of gravitational noise. Specifically, as described
below, this interferometer is sensitive to local accelerations. A
uniform acceleration introduces no relative motion between
the control apparatus and the atom, and is therefore unob-
servable. Gravitational noise results, then, when an unknown
background gravitational field introduces relative motion be-
tween any of three parts of the experiment: The control system
and either of the paths taken by the atom in superposition.
To model this carefully, and in contrast to prior work, we
explicitly include in our analysis the motion of the laser which
implements the beam splitter and mirror operations.

For simplicity, we ignore interactions between the bath
particles, and assume that at the beginning of the experiment
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they are statistically distributed according to a free particle
Boltzmann distribution with some effective temperature T ,

P(rb, vb) = 1

V

(
mb

2π kBT

)− 3
2

exp

{
−mbvb

2

2kBT

}
, (1)

where kB is Boltzmann’s constant, and V is the volume of all
space. We will eventually take the large-N and large-V limit,
with finite number density n0 ≡ N/V .

If a particle is much farther from the setup than the
atom-laser distance, then the potential it produces near the
experiment can be approximated with a multipole expansion
whose first-order terms constitute a global acceleration. We
therefore divide the phase space of a bath particle into two
sectors by choosing some cutoff radius rmin much larger than
the spatial extent of the experiment, and then separating the
part of phase space which will stay outside this radius for the
entire duration of the experiment from the part which is inside
rmin during some or all of the experiment. This division, which
depends on the experimental runtime, is illustrated graphically
in Fig. 1(c). We will examine the effect of each of these phase
sectors on an atom interferometry experiment in turn. In order
to calculate what the effect of this is on atom interferometry,
we need to define the experimental procedure in detail.

III. PROTOTYPICAL EXPERIMENT

We analyze a pedagogical model of atom interferometry
to focus on the effects of gravitational noise. Specifically,
we consider an experiment with two components, a laser of
mass Mlaser and position Rlaser and a two-level atom of mass
ma and position r̂. The laser produces light with wavevec-
tor k = k e3 which we treat classically. We emphasize that,
for the purposes of this calculation, we neglect the spatial
distribution and relative motion of different components of
the laser system. Assuming that all effects leading to phase
shifts in the laser light are captured by a single gravitational
potential acting on the laser center of mass, which we write
as −GMlaser�(Rlaser ) with G the gravitational constant, the
evolution of the laser is governed by the classical equations of
motion

Ṙlaser = Plaser/Mlaser, (2)

Ṗlaser = GMlaser∇�(Rlaser ). (3)

The evolution of the atom degrees of freedom is governed by
the following Hamiltonian, making the rotating wave approx-
imation and moving to the interaction picture with respect to
the atom’s internal degree of freedom:

Ĥ = Ĥatom + Ĥint, (4)

Ĥatom = p̂2

2ma
− Gma�̂(r̂) − h̄�

2
σ̂z, (5)

Ĥint = h̄�(t )

2
eik(ẑ−Zlaser (t ))−i�t σ̂+ + H.c.,

σ̂+ = σ̂
†
− = |↑〉〈↓|, (6)

where �(t ) is the slowly varying Rabi frequency, σ+ (σ−)
is the atomic raising (lowering) operator, and H.c. stands for
Hermitian conjugate. We stress that the gravitational potential

which we, after factoring out the gravitational constant and
the mass, denote � has the same functional form for both the
atom and the laser, which will lead to the noise cancellations
associated with the equivalence principle. From now on we
work on resonance, setting � = 0 in what follows.

Notice we make the approximation that the magnitude of
the coupling between the atom and the laser field depends
only on time, not on the location of the atom in space. We
also ignore time-retardation effects in the location of the laser
seen by the atom. These approximations are valid if the laser
beam is much broader than the atom cloud at all times, and
if the time it takes light to travel from the laser to the atom is
much faster than the timescale on which the laser amplitude
changes.

To implement our experimental protocol, for simplicity we
take the pulse envelope �(t ) to be a sequence of δ functions
giving a three-pulse sequence:

�(t ) = π

2
δ(t ) + e−iθ0/2 π δ(t − τ ) + π

2
δ(t − 2τ ), (7)

where θ0 is a tunable phase set by the experimenter and τ

is the time between pulses. We can approximate the pulses
as δ functions as long as the pulses are much faster than the
dynamics of the laser and atom position. After the pulse at
time 2τ we then measure the state of the atom in the ↑,↓
basis.

We focus on making measurements of the internal state of
the atom, using a spinor notation so that |χ〉 denotes the full
spinor state, whereas |ψ〉 denotes a state in real space only. In
this way we write

|χ〉 = |ψ↑〉 ⊗ |↑〉 + |ψ↓〉 ⊗ |↓〉 =
(|ψ↑〉

|ψ↓〉
)

(8)

with normalization condition

1 = 〈χ |χ〉 = 〈ψ↑|ψ↑〉 + 〈ψ↓|ψ↓〉

=
∫

d3r(|ψ↑(r)|2 + |ψ↓(r)|2) (9)

so that |ψ↑(r)|2 gives the probability density for finding the
atom in the excited state at r and likewise |ψ↓(r)|2 for the
ground state. Generally, we will assume measurements do not
resolve atomic position and thus we only have access to the
probabilities after integration,

Prob(↑) =
∫

d3r |ψ↑(r)|2, (10)

and likewise for spin down.
To calculate the experimental signal, we work in terms

of the unitary operator generated by the Hamiltonian. This
approach is complementary to the path-integral method, used
widely to describe atom interferometers [2]. Our current ap-
proach is convenient, however, in that it easily incorporates
laser motion, failure of the two paths to interfere, and (as
will be shown in Sec. V) impulses from nearby bath particles
which perturb the atomic trajectories significantly. Given the
pulse sequence of Eq. (7), the solution to the Schrödinger
equation can be expressed in terms of a few unitary opera-
tors: First the unitary corresponding to free evolution between
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pulses,

Uatom(t1, t2) = T exp

{
−i

∫ t2

t1

dtHatom(t )

h̄

}
, (11)

and next the unitaries corresponding to the instantaneous π/2
and π pulses (we neglect the effect of gravity during the
pulses),

Uπ/2(t ) ≡ exp

{
−i

(
π

4
eik(ẑ−Zlaser (t ))σ+ + H.c.

)}

= 1√
2
1 − i√

2
(eik(ẑ−Zlaser (t ))σ+ + H.c.), (12)

Uπ (t ) ≡ exp

{
−i

(
π

2
ei(k(ẑ−Zlaser (t ))−θ0/2)σ+ + H.c.

)}

= − i√
2

(ei(k(ẑ−Zlaser (t ))−θ0/2)σ+ + H.c.), (13)

where Zlaser (t ) is of course evolved by the classical equa-
tions of motion, Eqs. (2) and (3).

The spinor state at the end of the protocol is

|χ (2τ )〉 = Uπ/2(2τ )Uatom(τ, 2τ )Uπ (τ )Uatom(0, τ )

× Uπ/2(0)|χ (0)〉. (14)

So, taking the initial atomic state to be entirely in the ground
state with spatial wavefunction |ψ↓,t=0〉,

|χ (0)〉 =
(

0
|ψ↓, t=0〉

)
, (15)

we get the final spinor state

|χ (2τ )〉 = 1

2

(
ieik(ẑ−Zlaser (2τ )) (Ut − U b) |ψ↓, t=0〉

−(Ut + U b) |ψ↓, t=0〉
)

, (16)

where we have defined the operators

Ut = ei θ0
2 Uatom(τ, 2τ ) e−ik(ẑ−Zlaser (τ )) Uatom(0, τ ) eikẑ, (17)

U b = e−i θ0
2 e−ik(ẑ−Zlaser (2τ )) Uatom(τ, 2τ )

× eik(ẑ−Zlaser (τ )) Uatom(0, τ ), (18)

which act only on the center-of-mass degree of freedom.
The two unitaries Ut ,U b correspond to the two arms of

the interferometer as shown in Fig. 1(a) [53]. To provide
some intuition, there are two ways an atom can end up in the
ground state. The ground-state contribution from the top arm
(described by Ut ) is excited by the first π/2 pulse, deexcited
by the π pulse, and left unchanged by the second π/2 pulse.
The contribution from the bottom arm (described by U b) cor-
responds to the component unchanged by the first π/2 pulse,
excited by the π pulse, and deexcited by the last π/2 pulse.
These two contributions follow different real-space paths, as
demonstrated in the figure. These same operators Ut ,U b are
summed to calculate the final excited state wavefunction in
the top entry of Eq. (16), but they are multiplied by a final
momentum kick—as the excited state still carries the photon
momentum—and summed with a different relative phase as is
required to conserve probability.

We can calculate the diagonal entries of the spin density
matrix, i.e., the populations of the ground and excited states,

at the end of the experiment:

ρ↓↓ = 1 − ρ↑↑ = 1
2 + 1

2 Re 〈ψ↓, t=0| (U b)†Ut |ψ↓, t=0〉 (19)

and, as expected, if the spatial wavefunctions at the end of the
two arms do not overlap, i.e., 〈(U b)†Ut 〉 = 0, the contribu-
tions from the two arms cannot interfere, and both states will
be equally populated. If there is no external potential, then
(U b)†Ut = eiθ0 and the output population is simply

ρfree
↓↓ = 1

2 + 1
2 cos θ0. (20)

In this case, by tuning θ0, we can tune the final population all
the way from entirely ground state to entirely excited state.

Gravitational noise changes the overlap between the two
paths, and can cause both phase shifts in the cosine term and
an overall reduction in contrast. We will quantify decoherence
from gravitational noise by how it decreases our ability to tune
the final population via θ0. We rearrange the terms in the path-
specific unitaries to get

Ut = ei θ0
2 Uatom(0, 2τ ) e−ik(ẑ(τ )−Zlaser (τ )) eikẑ, (21)

U b = e−i θ0
2 Uatom(0, 2τ ) e−ik(ẑ(2τ )−Zlaser (2τ )) eik(ẑ(τ )−Zlaser (τ )),

(22)

written in terms of the interaction picture position operator

ẑ → ẑ(t ) = (Uatom(0, t ))†ẑ Uatom(0, t ). (23)

We can then rewrite the overlap factor in the interaction pic-
ture:

(U b)†Ut = (U †
atom(0, 2τ )U b)†U †

atom(0, 2τ )Ut

= eiθ0 (e−ik(ẑ(2τ )−Zlaser (2τ )) eik(ẑ(τ )−Zlaser (τ )) )†

× e−ik(ẑ(τ )−Zlaser (τ )) eikẑ. (24)

From this we see that the output of the atom interferometer
depends solely on the evolution of the position operator ẑ(t )
relative to the laser position. Thus, shared acceleration is
unobservable in this setup, as expected from the equivalence
principle.

A. Case study: Uniform acceleration

To illustrate the importance of including the effect of grav-
ity on the control system, before going further with our model
of the gravitational noise background, we consider an experi-
ment subject to global acceleration g, i.e.,

G �(Rlaser ) = gZlaser, (25)

and an analogous expression holds for the atom with the
appropriate quantities promoted to operators. The classical
and Heisenberg equations of motion in this case can be solved
exactly to give the evolution of the laser position and atom
center of mass:

Zlaser (t ) = Zlaser (0) + Żlaser (0)t + 1
2 gt2, (26)

ẑ(t ) = ẑ + p̂zt/ma + 1
2 gt2. (27)

We will always choose our coordinate system so that the
laser starts out at rest at the origin, Zlaser (0), Żlaser (0) = 0. We
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FIG. 2. (a) Contour plot in two dimensions of the gravitational potential sourced by particles outside the cutoff radius rmin. (b) Comparison
of the actual potential and the second-order multipole approximation to it near the origin along the one-dimensional slice shown in part (a).

subsequently can evaluate Eq. (24) with

ẑ(t ) − Zlaser (t ) = ẑ + p̂zt/ma. (28)

But of course, this is how the relative displacement would
evolve if the apparatus was floating in free space. The output
spin-down population is again given by Eq. (20) with no
dependence on the global acceleration g, so indeed the equiv-
alence principle is satisfied. We now have the tools in place
to explore our gravitational noise model. We first examine the
distant sector.

B. Distant sector

We now analyze the bath model introduced earlier. As the
nth bath particle at position rbn produces a potential given by
the Newton formula, the total potential is simply the sum over
individual contributions:

G�̂(r̂) ≡ G mb

N∑
n=1

1

|rbn − r̂| . (29)

Bath particles in the distant sector produce a gravitational
potential near the experiment that can be approximated with a
multipole expansion as shown in Figs. 2(a) and 2(b),

�̂(r̂) ≈ �(0) + �i r̂i + 1
2 r̂i �

i
j r̂ j, (30)

where repeated indices are summed over the three spatial axes,
but as this is a nonrelativistic calculation there is no distinction
between covariant and contravariant vectors. We have kept the
terms leading to a global acceleration,

�i ≡ ∂

∂ r̂i
�̂(r̂)

∣∣∣∣
r̂=0

, (31)

and the quadratic terms,

�i
j ≡ ∂2

∂ r̂i∂ r̂ j
�̂(r̂)

∣∣∣∣
r̂=0

. (32)

We emphasize, too, that although �̂(r̂) is an operator, the
coefficients �i, �i

j are real numbers.

We can calculate the explicit form of the quadratic coeffi-
cients �i

j ,

�z
z ≡ mb

N∑
n=1

−r2
bn

+ 3z2
bn

r5
bn

, (33)

�z
y ≡ mb

N∑
n=1

3zbn ybn

r5
bn

, (34)

with rotational symmetry fixing all other components given
these two. Following the argument in the uniform acceleration
case study, we note that the �i terms are not observable as
they produce identical displacement of the laser and the atom;
therefore, we do not bother to list them explicitly. Because
we assume the different bath particles are distributed indepen-
dently, any function f (�i

j ) has expectation value

〈
f
(
�i

j

)〉 = 1

V N

(
mb

2πkBT

) 3N
2
∫∫

distant

d3N {rbn} d3N {vbn}

× exp

{
− mb

2kBT

∑
n

v2
bn

}
f
(
�i

j ({rbn}, {vbn}, t )
)
,

(35)

where the subscript on the integrals indicates that we are
averaging over the distant phase-space sector as shown in
Fig. 1(c).

In general the �i
j are time dependent because of the motion

of the bath particles, but in this section we will assume the
zero-temperature limit for simplicity. We calculate the lowest-
order correction from bath particle motion in the Appendix. In
the zero-temperature case, all background particles are at rest,
and the collision cone particles are simply those that begin
inside the cutoff radius. For any finite thermal bath veloc-
ity vβ , the zero-temperature approximation gives increasingly
accurate behavior for the distant sector (though not for the
collision cone) as we take rmin → ∞, because changes in
the gravitational field near the origin over the course of the
experiment are suppressed by vβτ/rmin. We can drop the
velocity averaging in the zero-temperature limit and simply
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average over possible bath particle locations. If the average
volume per bath particle is much smaller than the excluded
volume, n0r3

min  1, the components of �i
j are approximately

Gaussian distributed with zero mean and variance:

〈(
G �i

j

)2〉 = 4π

3

3 + δi j

5
ξ 2, ξ 2 ≡ (Gmb)2n0

r3
min

. (36)

We point out that the characteristic fluctuation scale ξ 2 has di-
mension 1/time4. The trace of the matrix of quadratic terms is
identically zero, so some of its components are correlated. We
will skip over this subtlety, however, as only an uncorrelated
set of components ends up contributing in the lowest-order
correction to the flat-space behavior.

As in the global acceleration case, we solve the Heisenberg
and classical equations of motion for ẑ, Zlaser respectively to
calculate the evolution of the laser-atom separation,

ẑ(t ) − Zlaser (t ) ≈ ẑ + t
p̂z

ma
+ t2

2!
G �z

j r̂ j + t3

3!
G �z

j

p̂ j

ma

× + t4

4!
G2 �z

j �
j
k r̂k + t5

5!
G2 �z

j�
j
k

p̂k

ma
,

(37)

where we have dropped terms past second order in the grav-
itational potential, assuming ξ 2τ 4 � 1. At the end of the
protocol, for a fixed bath configuration, we get a ground-state
population

ρ↓↓ = 1
2 + 1

2 Re 〈ψ↓(0)| exp{i(�̂ + θ0)}|ψ↓(0)〉, (38)

�̂ ≡
(

G �z
z τ 2

2
+ G2 �z

j�
j
z τ 4

8

)
h̄k2τ

ma
+ k

(
G �z

iτ
2 + 7

12
G2 �z

j�
j
iτ

4

)
r̂i + kτ

ma

(
G �z

iτ
2 + 1

4
G2 �z

j�
j
iτ

4

)
p̂i + O(ξ 3τ 6),

(39)

where again repeated indices are summed over {x, y, z}. The operator ei�̂ is a phase-space displacement, and depends on the bath
configuration.

We take for our initial real-space wavefunction a Gaussian wavepacket with isotropic width σ , centered in phase space at
position z0 = z0 e3 and at zero momentum. Denoting our initial state |z0, 0〉, we find

〈z0, 0|ei�̂|z0, 0〉 ≈ exp

{
ik

(
z0 + h̄kτ

2ma

)
τ 2G �z

z +
(

i
7kz0

12
+ i

h̄k2τ

8ma
− k2σ 2

2
− h̄2k2τ 2

8m2
aσ

2

)
τ 4G2 �z

j�
j
z

}
, (40)

again keeping only terms up to second order in the interaction, which requires the additional assumption k2σ 2 ξ 2τ 4 � 1. The
dominant term in this expression is

D ≡ exp
{
ikdτ 2G �z

z

}
, (41)

a phase shift linear in �z
z and in the quantity d ≡ z0 + h̄kτ/2ma, the distance between the laser and the center of atomic motion.

We can think of this as setting an effective dipole moment for the interferometer’s response to gravity. Following this there
is another phase shift quadratic in �, and two inherent decoherence terms set by the nonzero width in phase space of the
atomic wavepacket. The sum of these last two terms has a minimum size set by the standard quantum limit at wavepacket width
σ = √

h̄τ/2ma.
At this order, since we are working in the regime where the second derivatives of the gravitational field �z

j are Gaussian
distributed according to Eq. (36), we can easily trace out the bath as well. We get the following result for the ground-state
population after averaging over bath configurations, accurate to order ξ 2τ 4:

ρ↓↓ = 1

2
+ 1

2

⎛
⎜⎜⎜⎝ exp

{− 8π
15 k2d2 ξ 2τ 4

}
eiθ0/2√ ∏

j∈{x,y,z}

(
1 + 4π

3
3+δz j

5

(
k2σ 2 + h̄2k2τ 2

4m2
aσ

2 − i 7kz0
6 − i h̄k2τ

4ma

)
ξ 2τ 4

) + c.c.

⎞
⎟⎟⎟⎠, (42)

where c.c. stands for complex conjugate and we fix the branch of the square roots in Eq. (42) by demanding that they continuously
go to unity as τ → 0. Since the real part of the argument is always positive, this eliminates any ambiguity. Tracing the different
terms in Eq. (40) through the general formula for a Gaussian function integrated against a Gaussian probability distribution, we
see that the linear-in-� phase shift and the inherent decoherence terms lead to a reduction in overall contrast after averaging
over bath configurations, while the phase shift quadratic in � actually leads, at lowest order, to an average phase shift in the
interferometer, i.e.,

ρ↓↓ ≈ 1

2
+ 1

2

exp
{− 8π

15 k2d2 ξ 2τ 4
}

√ ∏
j∈{x,y,z}

(
1 + 4π

3
3+δz j

5

(
k2σ 2 + h̄2k2τ 2

4m2
aσ

2

)
ξ 2τ 4

) cos

(
θ0 + 4π

3
k

(
7

6
z0 + h̄kτ

4ma

)
ξ 2τ 4

)
. (43)

Usually z0  σ , so the factor of exp{− 8π
15 k2d2 ξ 2τ 4} provides most of the decoherence. From the dependence on the effective

dipole moment we see explicitly how increasing the spatial extent of the experiment increases its sensitivity to effects from finite
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spacetime curvature, as is familiar from discussions of Einstein’s elevator. We also see that the atom-laser separation and the
maximum atom path separation both play a role in determining the sensitivity to gravitational noise. Note that the quantities k
and d , i.e., the inverse wavelength of the wave being interfered and the spatial extent of the experiment, have direct analogs in an
interferometer of any kind, while ξ 2 of course depends only on the bath. We therefore expect that something like this dominant
decoherence term will show up even in interferometers that use a different kind of wave, such as optical interferometers.

We now plug in typical parameters to get some quantitative understanding of the decoherence behavior. Looking at the
dominant contribution to decoherence in Eq. (43) mentioned above, we see that tdecoherence ≡ (k2d2ξ 2)

−1/4
sets a characteristic

decoherence timescale. To get an order-of-magnitude estimate of this timescale, we take rmin to be comparable to d . Let us
consider dark matter providing the background noise. Since the local mass density of dark matter is fixed by observation (at
mbn0 ≈ 5 × 10−25 g/cm3) [54], the decoherence timescale decreases as we consider increasingly massive dark matter candidates.
Taking an optical wavelength of 780 nm and a large dark matter mass of the Planck mass, mpl, to get an optimistic estimate of
the decoherence timescale, we get

tdecoherence ≈ 10 years

(
mpl

mb

) 1
4
(

5 × 10−25 g/cm3

mbn0

) 1
4
(

d

1 m

) 1
4

, (44)

which is clearly unobservable in the near term. Note, too, that in an experiment this long, several of the assumptions that went
into the calculation would be violated. Note also that the τ 4 behavior of the exponent in Eq. (43) makes it very difficult to see
decoherence for experiments with duration much shorter than the characteristic decoherence time.

C. Bias in gravitational field

Above, we analyzed the case where the background gas is distributed isotropically, so that on average the gravitational field
in the region of the experiment is zero and, in particular, 〈�i〉 = 〈�i

j〉 = 0. For completeness, we now analyze the effect of
adding a static asymmetry to the gravitational field in the vicinity of the experiment. Though we will put forward a concrete
source model later, at the level of the potential second derivatives �i

j we assume that the variables are still Gaussian distributed
with the variances calculated earlier and proceed to show what happens if they are allowed to have nonzero means. Note that
all effects of the single derivatives �i disappear even with nonzero mean values, as these terms lead to global, and therefore
unobservable, acceleration. Assuming the expectation values are about the same size as the fluctuations, so that we still require
calculations to be accurate to order G2, Eq. (42) becomes

ρ↓↓ = 1

2
+ exp

{−A2

2 Var
(
�z

z

) − B
(〈
�z

x

〉2 + 〈�z
y

〉2 + 〈
�z

z

〉2)}
2

⎛
⎜⎜⎜⎝

exp
{
i
(
θ0 + A

〈
�z

z

〉 + C
(〈
�z

x

〉2 + 〈
�z

y

〉2 + 〈
�z

z

〉2))}
/2√ ∏

j∈{x,y,z}

(
1 + 8π

3
3+δz j

5 (B − iC)ξ 2τ 4
) + c.c.

⎞
⎟⎟⎟⎠,

(45)

with

A ≡ kdτ 2G, (46)

B ≡
(

k2σ 2

2
+ h̄k2τ 2

8m2
aσ

2

)
τ 4G2, (47)

C ≡
(

7kz0

12
+ h̄k2τ

8ma

)
τ 4G2, (48)

where Var means the variance, i.e., Var(�) = 〈�2〉 − 〈�〉2. We consider a built-in angular asymmetry in the neighborhood of
the experiment, of characteristic size R′ > rmin, which we implement for ease of calculation as a hard cutoff on the distribution
of particles. That is, in addition to the stochastic background of the previous section, we add a fixed bath mass distribution

ρasym(r) =

⎧⎪⎪⎨
⎪⎪⎩

0, r < rmin√
5

16π
mbnasymY2,0(θ, φ), rmin < r < R′

0, R′ < r,

(49)

where nasym is some number density setting the amplitude of the built-in asymmetry, and Y2,0(θ, φ) = √
5/16π (−1 + 3 cos2 θ ) is

the spherical harmonic of degree 2 and order zero. This gives rise to a nonzero expectation value for �z
z, the second z derivative

of the gravitational potential, such that

〈
�z

z

〉 = 5

8
mbnasym

∫ R′

rmin

dr

r

∫
d cos θ (−1 + 3 cos2 θ )2 = mbnasym ln

R′

rmin
. (50)
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Plugging in k = 2π/270 nm and again taking rmin ≈ d , the condition A〈�z
z〉 ≈ 1 gives the timescale tphase on which a significant

phase shift accumulates:

tphase ≈ 5000 years

(
5 × 10−25 g/cm3

mbnasym

) 1
2
(

1 m

d

) 1
2

(
1

ln R′
1020 m + ln 1 m

d

) 1
2

. (51)

In principle this timescale becomes arbitrarily small as the
spatial extent of the asymmetry R′ increases, but in practice
the logarithmic behavior means that at the local dark matter
mass density, even a galaxy-sized asymmetry of R′ = 1020 m
is unobservable. We also note that in practice the gravitational
field from nearby stars and planets will contribute to the ex-
pectation values 〈�i

j〉.

IV. RELATIONSHIP TO COLLISIONAL
BROWNIAN MOTION

As discussed in the Introduction, dephasing from random
baths of background particle collisions with a superposed
mass is usually treated through a Brownian motion ap-
proach [41–43]. There, the assumption is usually made that
the superposed particle is sufficiently heavy that we can ignore
changes to its kinetic energy from the scattering, i.e., in the
limit ma � mb. The decoherence rate � for an object held in
a superposition of two locations with separation �x is then
given by the following integral over q, the incoming bath
particle momentum:

� = n
∫ ∞

0
dq f (q, T )

q

mb
σ (q), (52)

in the limit that distance between the two locations is much
larger than the typical bath particle de Broglie wavelength,
�x

√
mbkBT /h̄  1. Here n is the bath particle number den-

sity, f (q, T ) is the Boltzmann distribution at temperature T ,
and σ (q) is the total scattering cross section.

With an unscreened 1/r interaction, the above poses an
immediate problem: The total cross section is infinite. This
can be traced back to the long-range potential: The potential
does not turn off sufficiently fast even as the bath particle
moves arbitrarily far away, and the particle continues to scatter
at infinitely late times [55].

The divergences associated with the 1/r potential oc-
cur even at the semiclassical level. For instance, a bath
wavepacket far from the scattering center will continue, even
neglecting any spread in the wavepacket about its mean loca-
tion, to accumulate an overall phase

φ(t ) =
∫ t

dt ′ V0

|r + vt ′| , (53)

which grows without bound as t → ∞. Above, the
wavepacket is moving in a potential centered at the origin,
r is the initial location of the wavepacket, v is its asymptotic
velocity, V0 is a coupling constant, and we are focusing on the
behavior when |vt |  |r|.

However, in seeking to model the decohering effect of
a distant bath particle upon a spatial superposition, there is
a related quantity which remains finite, i.e., the difference
of phases. A bath particle produces the relative phase shift

between the two atom paths of the form

�φ ≈ V0

∫ t

0
dt ′

(
1

|r1(t ′) − r − vt ′| − 1

|r2(t ′) − r − vt ′|
)

.

(54)
Here, r1,2 represent the two locations of the atom along the
superposition path, V0 is a coupling constant, and r, v are, as in
Eq. (53), the initial position and velocity of the bath particle,
respectively. At sufficiently long times t → ∞ and assuming
bounded r1, r2, the late-time behavior of this integral is

�φ = V0

∫ t→∞ dt ′

|v|2t ′2 < ∞ (55)

because the lowest-order terms, which would have diverged
logarithmically, cancel. Thus there is no unregulated infrared
divergence. This suggests that the resolution to the failure
of naive collisional decoherence lies in carefully working in
terms of regulated quantities, i.e., quantities defined in terms
of the difference of the evolution between two paths.

To see how this shows up in the calculations already car-
ried out, consider the following: If we followed the typical
path-integral method of calculation, the first thing to consider
would be the phase associated with the potential difference
between the two paths:

�φ =
∫

(V (r1(t )) − V (r2(t )))dt (56)

≈
∫

dtF(t ) · �r(t ), (57)

where F = −∇V and in the second line we assume that the
force in the vicinity of the experiment is approximately con-
stant in space. This of course is not accurate for bath particles
close to the experiment, but the infrared divergence discussed
above comes from the behavior of the interaction at large
distances, so it is sufficient to study this case. Taking, as in
the protocol outlined above,

�r(t ) =
{

kt/ma e3, t ∈ [0, τ ]

k(2τ − t )/ma e3, t ∈ [τ, 2τ ],
(58)

we have

�φ ≈
∫ 2τ

τ

dtFz(t )(k(2τ − t )/ma) +
∫ τ

0
dtFz(t )(kt/ma)

(59)

= k

(∫ 2τ

0

∫ t ′

0
dt ′dt ′′ Fz(t ′′)

ma
− 2

∫ τ

0

∫ t ′

0
dt ′dt ′′ Fz(t ′′)

ma

)

(60)

≈ k(z(2τ ) − 2 z(τ )), (61)
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which is of course the semiclassical version of Eq. (24)
neglecting laser motion. We therefore stress that we evade
divergences associated with the 1/r potential not simply be-
cause we model the bath classically (recall that divergence
occurs even at the semiclassical level), but rather because we
rigorously track relative evolution of the atomic superposi-
tion, in a way that will remain valid even beyond this lowest
term in the semiclassical expansion of bath particle behavior.
Our approach also goes beyond the infinite experimental mass
limit of standard collisional decoherence; i.e., we account for
how interaction with the bath warps the two paths of the
interferometer. Finally, note that the finite result in Eq. (55)
suggests there is a scattering treatment of the problem one
could consider applying in the case where the atom is held
at two fixed locations for a long time, as in [56].

V. COLLISION CONE SECTOR

We now consider the effect of bath particles in the collision
cone on atom interferometry signals. Recall that the collision
cone consists of those background particles which at some
point during the atom freefall come within the cutoff radius
rmin. These particles come close to the setup in the sense that
they source a potential which may vary significantly across the
extent of the experiment. While closed-form expressions for
the scattering states of single particles in the Newton potential

exist [55,57], we use an approximation motivated by dark mat-
ter detection and focus on the impulse delivered by collision
cone particles on the components of our interferometer.

Our approximation neglects self-consistent corrections that
lead to high angle scattering. Specifically, in 1/r scattering,
high-angle-scattering events correspond to substantial back-
action on the incoming particle. We neglect the change in
the motion of the bath particle to all orders, and keep the
only the lowest-order correction to changes in the motion of
the interferometer. We also neglect quantum back-action, i.e.,
entanglement between the bath particle state and the atom
state.

For simplicity we consider the effect of a single particle
in the collision cone. In order to refer to the center of atomic
motion more conveniently, we define

d ≡ z0 + h̄kτ

2ma
. (62)

We use the impulsive limit to write down simple expressions
for the force on the atom and the laser. Given the bath particle
initial conditions we first calculate the times at which it comes
nearest to the initial laser location 0 and the average atom
location d. This done, rather than write out the full expression
for how the force changes continuously in time, we model it as
instantaneous kicks delivered to the experimental components
at the times of closest approach. With this model the force
equations are

Ṗz, laser = Mlaser δvz(0) δ(t − tkick(0)), (63)

˙̂pz = ma [δvz(d) + ∇(δvz(d)) · (r̂ − d) + O((r̂ − d)2)] δ(t − tkick(d)), (64)

where tkick(r) is the time at which a bath particle with position rb and velocity vb at t = 0 comes closest to the point r,

tkick(r) ≡ − (rb − r) · vb

v2
b

, (65)

and the velocity kick function is defined by integrating the gravitational acceleration felt at r over time,

δvz(r) ≡
∫ ∞

−∞
dt

Gmb(rb + vbt − r)

|rb + vbt − r|3 = 2Gmb

vb

((rb − r) + vbtkick(r)) · e3(
(rb − r)2 − v2

bt2
kick(r)

) . (66)

Note the scaling δvz ∝ Gmb/vbb, where b is the impact parameter of the bath particle trajectory with respect to r. The velocity
kick function has gradient

∇(δvz(r)) = 4Gmb

vb

((rb − r) + vbtkick(r)) · e3(
(rb − r)2 − v2

bt2
kick(r)

)2 ((rb − r) + vbtkick(r)) − 2Gmb

vb

e3 − vb(vb · e3)/v2
b(

(rb − r)2 − v2
bt2

kick(r)
) . (67)

Because we assume that the bath particle still remains much farther than kτ/ma from the atom at all times, the velocity kick felt
by the atom at any point in its trajectory is well approximated by a linear correction to the velocity kick felt at d. Going forward
we will drop the terms beyond linear order in r̂ − d.

We can write down the evolution of the laser and atom positions,

Z (t ) = �(t − tkick(0)) (t − tkick(0)) δvz(0), (68)

ẑ(t ) = ẑ + p̂zt

ma
+ �(t − tkick(d)) (t − tkick(d))

[
δvz(d) + ∇(δvz(d)) ·

(
r̂ + p̂ tkick(d)

ma
− d

)]
, (69)
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where �(t ) is the unit step function which results from integrating the δ function in time. The final overlap factor, which we use
to determine the final ground-state population according to Eq. (19), is

〈z0, 0|(U b)†Ut |z0, 0〉 = eiθ0 exp{ik (δvz(d) (τ − |τ − tkick(d)|) − δvz(0) (τ − |τ − tkick(0)|))}

× exp

{
i

h̄k2

2ma
∂z
(
δvz(d)

)
(tkick(d) − τ ) (τ − |τ − tkick(d)|)

}

× exp

{
−∇(δvz(d))2(τ − |τ − tkick(d)|)2

(
k2σ 2

2
+ h̄2k2t2

kick(d)

8m2
aσ

2

)}
. (70)

Let us examine the features of this expression. The first line
gives a simple phase shift caused by relative motion of the
atom and the laser. Note that a velocity kick to the laser system
is just as easy to read out in the signal as a kick to the atom,
which emphasizes that both components of the experiment
contribute to its function as a sensor. The second term is a
more complicated phase shift depending on the differential
velocity kick to the two atom paths. The third term gives
an overall reduction in contrast since the differential velocity
kicks to the two atom paths cause the different paths to end
at slightly different positions and momenta, inhibiting their
ability to interfere.

As the time of the velocity kicks approaches the beginning
or end of the experiment, tkick(0), tkick(d) → 0, 2τ , their effect
disappears. To explain, at the beginning and end of the exper-
iment the separation between atom paths is negligible and so
the differential velocity kick is also negligible, while the rela-
tive motion of the laser and atom leads either to identical and
therefore unobservable phase shifts on both arms (tkick → 0)
or to negligible phase shifts (tkick → 2τ ). Notice that if the av-
erage kick to the atom equals the laser kick δvz(d) = δvz(0),
and if these occur at the same time tkick(0) = tkick(d), then
the phase shift resulting from relative motion between the
atom and laser again disappears, but effects related to different
velocity kicks on the two arms (set by ∇(δvz ), the velocity
kick gradient) persist.

We now comment on prospects for observing this gravi-
tational noise. The dominant contribution to Eq. (70) is the
phase shift in the first line whose characteristic size scales
with experimental parameters like

�θ ≈ k δvzτ. (71)

Obviously, a measurement on a single atom is subject to shot
noise and cannot give meaningful information on a small
phase shift if the phase shift is not constant over many runs
of the experiment. With N atoms in a single cloud, however,
one reduces the shot noise by a factor of

√
N . The velocity

sensitivity of the interferometer, then, scales like (Qkτ
√

N )−1,
where h̄k is the single-photon momentum and Q is an integer
to include the increased momentum kick of multiphoton tran-
sition pulses [58–62]. With reasonable experimental numbers
the weakest observable kick, δvz, min, is roughly

δvz, min ≈ 10−12 m

s

(
102

Q

)(
2π/780 nm

k

)(
1 s

τ

)(
106

N

)1/2

,

(72)
that is, this kick produces a phase shift on the order of 1 radian.
For comparison, a heavy dark matter particle (with a mass of
100mpl) passing within tens of meters of the atom produces
a velocity kick on the order of 10−22 m/s. From the scaling

of the velocity kick given just after Eq. (66), δvz ∝ b−1, we
see that in order to produce a measurable phase shift the same
dark matter particle would need to pass within nanometers of
the atom. An event of this type has negligible event rate and
would of course require modeling the potential near the center
of atomic motion beyond linear order in r̂ − d.

VI. TUNING THE SENSOR: THE CHOICE
OF ATOM-LASER DISTANCE

We now comment on the role of the tunable parameter d ≡
z0 + h̄kτ/2ma, the distance between the laser and the center
of atomic motion. In practice, the easiest way to adjust this is
through z0, the initial atom-laser distance. Recognizing, as we
have emphasized, that the laser system is part of the sensor, we
now ask, what goes into optimizing the atom-laser distance for
sensitivity to the gravitational background?

Recall that we found it useful to distinguish between two
sectors of bath particle phase space, the distant sector and the
collision cone. We will take these sectors in turn. In fact, how-
ever, the most significant change to effects from the distant
sector when we change d is the redefinition of the distant
sector itself. Physically, the atom-laser distance is important if
one wants to see gravitational effects because it sets the cutoff
beyond which effects of the bath have significant common
motion cancellations. The notion of a distant sector therefore
gets its meaning from the length scale d .

Mathematically, the dependence on d appears in the for-
mula for decoherence resulting from distant sector particles,
Eq. (43), both in an explicit factor of d = z0 + h̄kτ/2ma and
implicitly in the characteristic size of gravitational field fluctu-
ations ξ 2 ∝ 1/r3

min, through the condition rmin  d . Since rmin

must scale up with d for the cutoff radius to contain the entire
apparatus, the net effect is that contribution of distant sector
particles to decoherence is diminished as the spatial extent of
the experiment is increased. This makes intuitive sense. As
we increase d , more and more particles we previously labeled
as “distant” we now label as being in the collision cone. The
decoherence from these particles still matters at large d , but is
now attributed to the collision cone contribution.

The sensitivity of the interferometer to collision cone par-
ticles as we increase d is more interesting. The dominant
contribution in the formula for the effect of collision cone
particles, Eq. (70), is a sum of the phase shift from the impulse
on the laser and the phase shift from the mean impulse on
the atom. Consider for simplicity a bath particle with velocity
perpendicular to the z direction which passes through the point
(0, 0,−b) at time τ . Note that we focus on −b < 0 so that in
the large-d limit the dominant effect we need to analyze is the
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FIG. 3. Plot of the magnitude of the dominant phase shift in Eq. (70) divided by the sum of the constituent phase-shift magnitudes. For
d � b there is significant phase-shift cancellation due to similar common motion of the laser and the atom. (a) A bath particle passes below
the laser. The size of the net phase shift is about 80% of the sum of the separate phase-shift magnitudes for d = 10b, the ratio asymptotes to 1
in the limit d/b → ∞. Increasing d far beyond b gives diminishing returns. (b) A bath particle passes above the laser. The behavior resembles
the previous case for d/b � 1, but as soon as d > b, the momentum kicks on the atom and laser are in opposite directions, so there is no
common motion cancellation to the dominant phase shift.

velocity kick to the laser. This is simpler to treat than the effect
on the atomic superposition, but, as pointed out in the previous
section, is still readily observable. Take the impact parameter
b to be fixed, and consider changing the sensitivity of the
signal to this bath particle by varying d . As shown in Fig. 3(a),
in the regime d � b, the magnitude of the net phase shift is
much smaller than the sum of separate magnitudes of the laser
shift and average atom shift (there is significant cancellation
between the laser shift and atom shift), but as d/b → ∞ the
ratio of the two asymptotes to 1 (one of the shifts is much
larger than the other). Over 80% of the maximum recoverable
phase shift is achieved when d/b = 10.

Very roughly, then, we can say that the signal is not sig-
nificantly reduced by common motion cancellations for bath
particles with impact parameter � d . A larger choice of d
leads to greater sensitivity to particles with impact param-
eters on the order of the experiment size. However, since a
larger impact parameter leads to weaker velocity kicks to the
apparatus, at some point increasing d further “brings online”
particles whose effect is too weak to be read out. Increasing
d far beyond this length scale provides no advantage to the
experiment. With the simplifications we have made in this
section, the idea of a minimum velocity kick sensitivity from
Eq. (72) naturally leads to a maximum impact parameter bmax

for bath particles in the collision cone such that their effect
can be read out; i.e., the condition on d such that the only
momentum kicks which suffer common motion cancellations
are those already too small to be read out is

d  bmax ≈ 1 nm

(
mb

mpl

)(
10−14 m/s

δvz, min

)
. (73)

There is no advantage to increasing d once it is already much
larger than bmax, which we see above is automatically fulfilled
in any realistic experiment. As a result, there is little practical
significance in the choice of d .

VII. COSMIC RAYS

Finally, we consider the atom interferometer as a velocity
kick detector for the case of bath particles coupled through

electromagnetic forces. Note, in this case, we do not need to
track the evolution of the laser, which we take to be charge
neutral and very massive. Consider a cosmic ray particle with
charge q at location rc(t ). We neglect the many-electron in-
ternal structure of the atom, considering only a single valence
electron and a nucleus of effective charge +e. Again, r̂ is the
operator for the atomic center of mass. We also now need
to consider r̂′, the relative coordinate operator, which gives
the displacement of the electron from the nucleus. In the
nonrelativistic limit, the interaction Hamiltonian of the atom
with the cosmic ray particle is

Ĥ ′ = qe

4πε0|r̂ − rc| − qe

4πε0|r̂ + r̂′ − rc| (74)

≈ − qe

4πε0|r̂ − rc|3 (rc − r̂) · r̂′ (75)

= −d̂ · E(r̂), d̂ ≡ −er̂′,

E(r̂) ≡ − q

4πε0|r̂ − rc|3 (rc − r̂), (76)

where to get the second line we assume that the distance of
the cosmic ray from the atom is always much larger than the
atom size. We then get a dipolar interaction of the atom with
the electric field produced by the cosmic ray.

We assume the cosmic ray passes far enough from the atom
that the electric field near the atom varies slowly in time and
therefore we use the DC Stark effect to get in perturbation
theory

Ĥ ′ ≈ −αa

2
|E (r̂)|2 = −αa

2

q2

(4πε0)2|r̂ − rc|4 , (77)

where αa is the ground-state polarizability of the atom. Note
that now the energy depends only on the location of the atom
center of mass.

The leading-order effect for a cosmic ray particle much far-
ther than the separation between atom paths is just the average
velocity kick to the atom. This still produces a measurable
phase shift because the atom moves relative to the laser. With
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impact parameter b ∝ e3 and a straight-line charged particle
trajectory we get

maδvz ≈ αa

(
q

4πε0

)2 ∫ ∞

−∞
dt

1

(
√

b2 + v2t2)5
, (78)

δvz ≈ αa

ma

(
q

4πε0

)2 1

b4 v
. (79)

To get an order-of-magnitude estimate, we plug in c for the
cosmic ray particle velocity, and take the atom to be rubidium,
which has αRb ≈ 4πε0 × 50 Å3 [63]. This gives

δvz ≈ 10−40 m

s

(q

e

)2
(

1 m

b

)4

. (80)

In Sec. V we say with typical experimental parameters one
should be able to get a velocity kick sensitivity of roughly
10−12 m/s. We therefore need a cosmic ray proton to pass
within about 0.1 µm of the atom to be able to read it out. Given
the cosmic ray number density of about 10−3/m3 [64], this
corresponds to an event rate of about one every 10 years and
is therefore negligible as a source of continuous noise. Such an
event would also more require careful modeling as it violates
our assumption that the passing particle be much further from
the experiment than the distance between atom paths.

We can also consider boosting the interaction with an ap-
plied static field Eapplied on the atom. This enhances the effect
of cosmic ray particles with impact parameter parallel to the
applied field. The size of the velocity kick now goes like

δvz ≈ αa

ma

e

4πε0b2

(
Eapplied + e

4πε0b2

)
1

v
. (81)

Suppose we apply a static field on the order of 1 kV/m to the
atom. The contribution from the cosmic ray particle gives a
similar electric field at a distance of 1 µm. From the numbers
above, we see that even with the applied field, if the cosmic
ray passes at a distance of 10 µm, the phase shift is already
undetectable (though suppressed only by a factor of 100 rather
than 104 corresponding to the case without an applied field).

VIII. OUTLOOK

In this paper, we examined an explicit model for gravi-
tational background noise in an atom interferometry experi-
ment. By accounting for the effect of the noise on the control
system in addition to the atom, we were able to illustrate
how the equivalence principle suppresses the effect of bath
particles far from the experiment. Clearly, it will be difficult
to see such gravitational noise in any near-term experiment.
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APPENDIX: TIME DEPENDENCE IN THE DISTANT SECTOR

When we include the time dependence of the bath, we get the following evolution of the relative displacement:

ẑ(t ) − Zlaser (t ) ≈ ẑ + t
p̂z

ma
+ G

∫ t

0
dt1

∫ t1

0
dt2�

z
j (t2)

(
r̂ j + t2

p̂ j

ma

)

+ G2
∫ t

0
dt1

∫ t1

0
dt2�

z
j (t2)

∫ t2

0
dt3

∫ t3

0
dt4 �

j
k (t4)

(
r̂k + t4

p̂k

ma

)
. (A1)

Using the same initial atomic wavepacket |z0, 0〉 from the main text we find

〈z0, 0|(U b)†Ut |z0, 0〉 = eiθ0 exp

{
ik

(
G
∫ 2τ

dt1

∫ t1

dt2

[
�z

z(t2)

(
z0 + kt2

2ma

)
+ �z

j (t2)G
∫ t2

dt3

∫ t3

dt4�
j
z (t4)

(
z0 + kt4

2ma

)]

− 2G
∫ τ

dt1

∫ t1

dt2

[
�z

z(t2)

(
z0 + kt2

2ma

)
+ �z

j (t2)G
∫ t2

dt3

∫ t3

dt4�
j
z (t4)

(
z0 + kt4

2ma

)])}

× exp

{
−
(

G
∫ 2τ ∫ t1

dt2�
z
j (t2) − 2G

∫ τ ∫ t1

dt2�
z
j (t2)

)2
k2σ 2

2

−
(

G
∫ 2τ ∫ t1

dt2�
z
j (t2)t2 − 2G

∫ τ ∫ t1

dt2�
z
j (t2)t2

)2
k2

8m2σ 2

}
, (A2)
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〈z0, 0|(U b)†Ut |z0, 0〉 = eiθ0 exp

{
ik

(
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where a square over terms with one free index implies doubling and summing over the free index, i.e., (�z
j + · · · )2 ≡ �z

j�
j
z +

· · · . In the main text we analyze the average over bath configurations of the phase shift in the above expression which is linear
in �, as this term is responsible for the dominant effect in the static case. The dominant term D from Eq. (40) in the static case
was made up of terms that are linear in �. In the case of time-dependent � this becomes

D = exp

{
ikG

(∫ 2τ

dt1

∫ t1

dt2�
z
z(t2)

(
z0 + kt2

2ma

)
− 2

∫ τ

dt1
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dt2�
z
z(t2)

(
z0 + kt2

2ma

))}
. (A4)

Now we assume that we can approximate �z
z(t2) with a linear function in time,

�z
z(t ) ≈ �z

z(0) + ∂t�
z
z(t )

∣∣
t=0 t, (A5)

where

∂t�
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− 5z2

bn

)
rbn · vbn

r7
bn

+ 6
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. (A6)

This approximation assumes that we are looking at experimental runtimes still much shorter than the autocorrelation time of
the bath. In particular, we assume vβτ � rmin. In this limit, we approximate the integral over the distant sector with an integral
over all initial positions outside rmin and over all velocities regardless of initial position. As a result the correlation between
�z

z(0), ∂t�
z
z(0) vanishes by symmetry as ∂t�

z
z(0) is linear in velocity, and we can treat the two quantities as independent Gaussian

random variables, with

〈(
G ∂t�

z
z(0)

)2〉 = 48π

5
ξ 2

v2
β

r2
min

. (A7)

We can then straightforwardly extend the calculation from the static bath section to get

〈D〉Bath = exp

{
−8π

15
k2

(
z0 + kτ

2ma

)2

ξ 2τ 4

}
exp

{
−24π

5
k2

(
z0 + 7

12
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ξ 2τ 4
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βτ 2

r2
min

}
, (A8)

the lowest-order correction in bath time dependence.
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Kiesel, and M. Aspelmeyer, Cooling of a levitated nanoparticle
to the motional quantum ground state, Science 367, 892 (2020).

[31] T. Westphal, H. Hepach, J. Pfaff, and M. Aspelmeyer, Mea-
surement of gravitational coupling between millimetre-sized
masses, Nature (London) 591, 225 (2021).

[32] T. Oniga and Charles H.-T. Wang, Quantum gravitational
decoherence of light and matter, Phys. Rev. D 93, 044027
(2016).

[33] B. H. Pang, Y. Chen, and F. Y. Khalili, Universal Decoherence
under Gravity: A Perspective through the Equivalence Princi-
ple, Phys. Rev. Lett. 117, 090401 (2016).

[34] I. Pikovski, M. Zych, F. Costa, and Č. Brukner, Universal de-
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