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Distributed quantum sensing with optical lattices
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In distributed quantum sensing the correlations between multiple modes, typically of a photonic system,
are utilized to enhance the measurement precision of an unknown parameter. In this work, we investigate the
metrological potential of a multimode, tilted Bose-Hubbard system and show that it can allow for parameter
estimation at the Heisenberg limit of [N (M − 1)T ]2, where N is the number of particles, M is the number
of modes, and T is the measurement time. The quadratic dependence on the number of modes can be used
to increase the precision compared to typical metrological systems with only two atomic modes and does not
require correlations between different modes. We show that the limit can be reached by using an optimized
initial state given as the superposition of all the atoms occupying the first and last sites. Subsequently, we present
strategies that would allow us to obtain quadratic dependence on M of the Fisher information in a more realistic
experimental setup.
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I. INTRODUCTION

The main aim of quantum metrology is to understand how
utilizing quantum effects can enhance the estimation preci-
sion of a parameter beyond the classical limits [1–4]. The
latter is given by the shot-noise limit (SNL), which restricts
the estimation precision to scale as �θ ∼ (Nν)−

1
2 , where θ

is a parameter one wishes to measure precisely, N is the
number of particles being measured, and ν is the number
of measurement repetitions. Making use of entangled states,
one can enhance the precision by a factor of k− 1

2 , where k is
the number of entangled particles [5], and in the limit of a
maximally entangled many-body state, i.e., when k = N , one
can achieve an estimation precision which scales as N−1ν− 1

2

for a decoherence-free system. This is the so-called Heisen-
berg scaling, which provides an improvement of ∼N− 1

2 over
the SNL [6]. The metrological enhancement over the SNL
has been demonstrated by utilizing entangled states such as
squeezed states [7,8], NOON states [9], and others [6,10–12]
and has been implemented using a variety of setups such as
squeezed-state interferometers [13,14], cavity QED [15–17],
ion traps [18–20], and distributed quantum networks [21–24].
In distributed quantum networks, a single-mode photonic
input state is fed to a global beam-splitter network which con-
sists of M modes. The output state is then correlated between
all of the modes before the parameter is imprinted and then
measured at each mode. In this protocol, the parameter esti-
mation has been shown to scale as M−1, which corresponds to

*jose-pelayo@oist.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Heisenberg-like scaling for the system. This demonstrates that
aside from scaling with the number of particles, one can also
utilize scaling with the number of modes to further enhance
the parameter estimation.

In standard setups for distributed quantum networks
for photons, multimode correlations can be readily created
through the use of beam splitters. However, in recent years
precise control of atomic systems has become possible as
well through the advent of atom-cooling, -trapping, and -
engineering techniques [25–27]. Despite this, atomic systems
have received relatively little attention in the context of dis-
tributed quantum networks [28], and in this work, we want
to bridge that gap and explore the metrological applications
of multimode cold atomic systems by investigating how one
can enhance the estimation precision by manipulating the
controllable parameters of atoms trapped in an optical lattice.

II. HEISENBERG LIMIT IN MULTIMODE,
MULTIPARTICLE ATOMIC SYSTEMS

The ultimate bound to the estimation precision for a param-
eter θ over all possible measurements is given by the quantum
Cramér-Rao bound, �θ � �θQCR = 1/

√
νF (θ ), where F (θ )

is the quantum Fisher information [29,30]. Given a Hamilto-
nian Hθ that depends on the parameter θ and evolves in time
according to Uθ = exp (−iHθ t ), one can determine the quan-
tum Fisher information by introducing a local generator ĥθ =
i(∂θUθ )U †

θ , which characterizes the sensitivity of a state ρθ to
an infinitesimal change in θ , from ρθ → ρθ+dθ . For a system
with an initial state that is a pure state |ψ〉, the quantum Fisher
information can then be written as F (θ ) = 4〈ψ |�2ĥθ |ψ〉
[29,31], and it is maximized when the initial state is given
by an optimal state of the form |ψopt〉 = 1√

2
(|hmax〉 + |hmin〉).

In this case one gets

Fmax(θ ) = (hmax − hmin)2, (1)
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where hmax and hmin are the maximal and minimal eigenvalues
of ĥθ associated with states |hmax〉 and |hmin〉, respectively [4].
In the case where the Hamiltonian is composed of noncom-
muting terms, a compact expression for the local generator
may not be available. An alternative expression to the local
generator can be written in terms of the eigenvalues Ek and
eigenvectors |φk〉 of the Hamiltonian [32], given as

ĥθ = ĥ(L)
θ + ĥ(O)

θ , (2)

ĥ(L)
θ = t

ns∑
k=1

∂Ek

∂θ
|φk〉〈φk|, (3)

ĥ(O)
θ = 2

∑
l �=k

e− itEkl
2 sin

(
tEkl

2

)
〈φl |∂θφk〉|φk〉〈φl |, (4)

where Ekl = Ek − El and ns is the total number of states, while
ĥ(L)

θ and ĥ(O)
θ are the linear and oscillating parts of the local

generator, respectively. Note that we use the convention h̄ = 1
throughout the paper.

To describe a multiparticle, multimode atomic system let
us first consider a general Hamiltonian of the form

H = γ
∑

m

mâ†
mâm, (5)

where γ is the parameter we wish to measure precisely, â†
m

and âm are creation and annihilation operators, and the mode
label m runs from 1 to M. The quantum Fisher information
for a system described by Hamiltonian (5) is maximized by a
state

|ψopt〉 = 1√
2

(|N0 · · · 0〉 + |0 · · · 0N〉), (6)

which is a superposition of all the atoms occupying the first
and last sites (for the sake of brevity we will call this a
generalized NOON state), and can be calculated to be

Fmax(γ ) = T 2[N (M − 1)]2 = FHL, (7)

where T is the length of the time interval during which the
information about the unknown parameter was being im-
printed. This will be our definition of the Heisenberg limit
FHL throughout this work. In particular, we will consider
a one-dimensional (1D) lattice system in a uniform linear
potential, where M is the total number of lattice sites, such
that the enhancement proportional to (M − 1) is reminiscent
of the scaling obtained from distributed photonic networks
where M refers to the number of modes. However, in the
photonic systems, the maximum quantum Fisher information
scales with ∼n̄M2, where n̄ ≡ N/M is the average photon
number per mode [21]. Thus, once the Fisher information
is expressed in terms of the total number of photons N , the
quadratic dependence on the number of modes disappears.
In the following, we propose a possible realization of such
a system using cold atoms and explore different strategies that
can take advantage of the presence of multiple modes.

III. TILTED BOSE-HUBBARD MODEL

A Hamiltonian with a term given in Eq. (5) can be realized
in a one-dimensional lattice system that is exposed to a uni-
form linear potential. Such a system is also known as a tilted

FIG. 1. Top: Schematic of the TBH model. Bottom: Schematic
of the driven TBH model in the effective time-independent picture as
given in Eq. (10). All parameters in Eq. (10) are scaled with respect to
the tunneling coefficient J and are fixed for all simulations (except for
U ) with the following values: J = 1, γ = 33J , V0 = 30.4J , θ = π ,
φm+1 = φm − π , and φ0 = −π/2.

Bose-Hubbard (TBH) model and can be described by

HTBH = −J
∑
〈i, j〉

â†
i â j + γ

∑
j

jn̂ j + U

2

∑
j

n̂ j (n̂ j − 1), (8)

where J is the tunneling coefficient, 〈·〉 denotes nearest-
neighbor sites, U quantifies the on-site interaction strength
between the particles, γ is the strength of the tilt, and n̂m =
â†

mâm is the number operator. A schematic of the system is
shown in Fig. 1 (top), and we assume that we have only a finite
number of sites, j = 1, . . . , M. Although the TBH Hamilto-
nian contains additional terms when compared to Eq. (5), it
is known that terms that are not dependent on the unknown
parameter cannot alter the maximum attainable precision [33].
Thus, the Bose-Hubbard system in Eq. (8) will have a max-
imum quantum Fisher information that is still bounded by
Eq. (7).

The Hamiltonian in Eq. (8) can be realized using ultracold
atoms trapped in a 1D optical lattice under the influence
of a linear potential of strength γ , which, for example, can
be gravitational or magnetic in nature [34–36]. Therefore, a
precise measurement of the parameter γ would correspond
to making a precise measurement of the gravitational accel-
eration or magnetic field gradient. The interaction strength U
can be tuned by employing Feshbach resonances [37,38] and
is designed to be small relative to γ such that excitations to
higher bands are suppressed.

Assuming one can prepare the generalized NOON state in
Eq. (6) at t = 0, the interaction can then be set to U = 0,
and the lattice depth can be set to a value such that J 	 γ ,
which freezes the spatial dynamics. The remaining dynamics
is therefore purely in the phase difference between the two
states in the superposition and is of the form |ψopt(t )〉 ∼

1√
2
(|N0 · · · 0〉 + e−itγ N (M−1)|0 · · · 0N〉), which is a state that

yields FHL at all times. In this case, all the information about
the unknown parameter is stored in the relative phase be-
tween the two components of the wave function. It could
be retrieved, for example, by performing an interference
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measurement, i.e., transferring the information stored in the
relative phase to the occupation of each site, which might be
experimentally challenging. Furthermore, NOON states are
known to be very fragile against losses and thus difficult to
prepare. Although several approaches have been suggested
in the literature, especially for two-site systems, they usually
suffer from having low fidelity as the number of particles
is increased [39–43]. We therefore explore in the following
the prospects for metrology with a TBH model using a more
realistic initial state.

IV. FISHER INFORMATION WITH AN INITIAL
FOCK STATE

Let us start by considering an initial state where the parti-
cles are all placed in the lowest-energy site of the lattice

|ψFock〉 = |N0 · · · 0〉. (9)

We first investigate the case where interactions are switched
off and show later that, when U > 0, additional improvement
to the quantum Fisher information can be observed due to the
correlations introduced by the interactions.

Given that γ 
 J , the spatial dynamics is frozen as before,
and since 4〈ψFock|�2ĥθ |ψFock〉 = 0, the Fisher information
will be fixed to this value unless one restores the spatial
dynamics. To introduce atomic dynamics to the system that
depends on γ , we therefore consider a periodic drive with fre-
quency ω = γ , which involves knowledge about the unknown
parameter. Such an approach would require, for example, an
adaptive protocol where the knowledge about ω would be
updated with every round of the protocol [44–47]. The driven
Hamiltonian can then be written as

HDBH = HTBH + V0

∑
m

n̂m sin

(
ωt + φm + θ

2

)
, (10)

where V0 is the driving amplitude, φ is a site-dependent phase,
and θ is a constant phase. A schematic of the driven system
in the effective time-independent picture is shown in Fig. 1
(bottom). These kinds of driving terms can be experimentally
realized by an off-resonant laser-assisted tunneling scheme
[35,48]. In order to suppress decoherence due to particle
loss into the higher bands we choose our driving parame-
ters based on a stability diagram shown in Appendix A and
focus on the limit γ 
 U [49,50]. The resulting quantum
Fisher information [51] of the system in Eq. (10) is computed
using

F (γ ) = 4(〈∂γ ψγ |∂γ ψγ 〉 − |〈ψγ |∂γ ψγ 〉|2). (11)

Figure 2(a) shows the evolution of the quantum Fisher
information F (M ) using the initial state |ψFock〉 in the noninter-
acting driven TBH model, where M denotes the total number
of lattice sites. Here, F (M ) is scaled by T 2, and the number of
particles is set to N = 1 as it makes only a linear contribution
to the quantum Fisher information in the case of U = 0, that
is, F (M,N ) = NF (M ). The inset in Fig. 2(a) shows the oscil-
lating behavior of the unscaled F (M ) with T , and thus, in the
vicinity of the first peak, F (M ) starts to scale poorly compared
to T 2. This means that we need to consider the dynamics
only up until the first peak of F (M )/T 2, and we denote this
peak as F (M )

max = max(F (M )/T 2). Defining the time at which

(a) (b)

FIG. 2. (a) Time dependence of the scaled F (M ) for M = 2, 3, 4,
corresponding to the blue solid line, red dashed-dotted line, and
orange dashed line, respectively (the unscaled F (M ) is shown in
the inset). (b) Growth of F (M )

max scaled by F (M=2)
max with M. The in-

set shows the linear scaling of τ with respect to M. (See text for
details.)

F (M )
max is attained as τ , one can see in the inset in Fig. 2(b)

that it has a linear dependence on M since more modes in-
crease the time after which the state is transferred to the other
end of the lattice. The quantum Fisher information enhance-
ment relative to a two-level system F (M )

max /F (M=2)
max is shown

in Fig. 2(b) and clearly shows a quadratic dependence on M
for M 
 1.

V. EFFECT OF INTERACTIONS

Next, we will consider an interacting system in which
nonclassical correlations can be created that should improve
the quantum Fisher information. The initial state is the same
as in the previous section, and we imprint the information
about the unknown parameter and create the correlations at
the same time [52,53]. A representative surface plot of the
evolution of F (M,N )/T 2 with varying interaction strength U for
N = M = 3 is shown in Fig. 3(a). Like in the noninteracting
case, we also observe a sinusoidal-like evolution of F (M,N );
therefore, we limit our interest up to the time τ when the first
peak of F (M,N )/T 2 appears. What is notable, however, is that
a certain value of the interaction strength exists, which we
will call Ū , where the increase in F (M,N ) over the noninter-
acting case is maximal. For the parameters used in Fig. 3(a)
this corresponds to Ū ≈ 1.92J , and in general, we observe
an increase of F (M,N )

max as N and M increase [see Fig. 3(b)].
When F (M,N )

max is compared to a two-level system F (M=2,N )
max ,

we still observe an enhancement as M increases; however,
increasing the number of particles may not always yield a
larger enhancement, as shown in Fig. 3(c). Finally, when
F (M,N )

max is compared to the Heisenberg limit, the two-level
system yields a stronger enhancement over any M > 2 (for
small M), and we again observe that the increase in N does
not always provide a larger enhancement, as can be seen in
Fig. 3(d). While it might look like that for an increasing num-
ber of modes F (M,N )

max /FHL →∼ 0.2, our limited computational
resources currently do not allow us to explore this.

To better understand the behavior of the quantum Fisher
information F (M,N ), we take the high-frequency approxi-
mation [49,50,54,55] of the driven, tilted Bose-Hubbard
model up to first order in 1/ω, which leads to an effective,
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. (a) Density plot of the scaled F (M,N ) as a function of T and U for N = M = 3. (b) Growth of F (M,N )
max with M for N = 3, 4, 5, 6, 7.

The legend applies for (b)–(d). F (M,N )
max (c) scaled by F (M=2,N )

max and (d) scaled by the Heisenberg limit. Shown in (c) and (d) are all the data points
that we were able to numerically obtain. (e) and (f) The variance of ĥ(L)

γ and ĥ(O)
γ , respectively. In (g) the correlation function G (N ) is calculated

for varying U and T , and (h) shows the variance of ĥ(O)
γ overlaid by the correlation function. (See text for details.)

time-independent description of the system, given as

Heff = − JF

∑
j

(â†
j+1â je

−iφ j + H.c.) + U

2

∑
j

n̂ j (n̂ j − 1)

+ K

(
1

ω

)∑
j

(n̂ j+1 − n̂ j ) + O

(
1

ω2

)
, (12)

where JF = JJ1(2V/ω) is the renormalized tunneling coeffi-
cient and J1(x) is a Bessel function of the first kind. Since
the effective Hamiltonian in Eq. (12) is time independent, the
Fisher information can now be calculated from the local gen-
erator ĥγ using Eq. (2), and we look at the contributions from
the linear part ĥ(L)

γ and the oscillating part ĥ(O)
γ separately.

The respective variances are plotted in Figs. 3(e) and 3(f),
and one can see that 〈(�ĥ(L)

γ )2〉 dominates over 〈(�ĥ(O)
γ )2〉

at long times due to its quadratic dependence on time. The
sinusoidal-like behavior that is seen in the inset in Fig. 2(a)
originates from 〈(�ĥ(O)

γ )2〉, and τ sets the timescale for the
appearance of the first maximum of this term. The dependence
of these generators on the eigenstates of Heff is discussed in
Appendix B.

Finally, to illustrate that this enhancement of the quantum
Fisher information is related to an increase in nonclassical cor-
relations, we make use of the N th-order correlation function,
given as [56]

G (N ) =
∣∣∣∣ 1

C
〈ψ (t )|(â†

Mâ1)N |ψ (t )〉
∣∣∣∣, (13)

where C = N!/2 is a normalization constant. G (N ) quantifies
the N-particle correlation between the two outermost sites,
j = 1, M. One can show that for a generalized NOON state
|ψopt(t )〉, the correlation function is G (N ) = 1 at all times. On
the other hand, for an initial Fock state |ψFock〉, that is not
the case. A surface plot of G (N ) as a function of (T,U ) is
shown in Fig. 3(g) for |ψFock〉 and M = N = 3. One can see
that G (N ) has the same qualitative features as 〈(�ĥ(O)

γ )2〉, and

by superimposing 〈(�ĥ(O)
γ )2〉 on G (N ) [see Fig. 3(h)] one can

see that the maxima of 〈(�ĥ(O)
γ )2〉 lie in the region of large

G (N ). This comparison, however, does not always hold true, as
can be seen for small U when the correlator G (N ) suggests that
there can be a large correlation but the quantum Fisher infor-
mation is relatively small. However, we have confirmed that
for all combinations of N = 3, 4, 5 and M = 3, 4 the regions
of large 〈(�ĥ(O)

γ )2〉 also correspond to large correlations (not
shown). As one goes to larger N for a fixed M, the maximum
correlation no longer approaches unity, which could explain
why the scaled F (M,N )

max in Figs. 3(c) and 3(d) does not always
increase even if N is increased for a fixed M.

VI. CONCLUSIONS

In this work, we have investigated the use of a multimode
atomic system in the context of distributed quantum sensing.
We have shown that the driven, tilted Bose-Hubbard model
can make use of the additional degree of freedom of the
number of lattice sites or number of modes M in order to
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increase the quantum Fisher information of the system with
respect to some unknown parameter responsible for the tilt
(for example, gravitational acceleration could be a natural
candidate). A generalized NOON state maximizes the quan-
tum Fisher information at all times when the spatial dynamics
is frozen; however, extracting information from such a state
might require a complicated measurement procedure. An ini-
tial Fock state cannot saturate the Heisenberg limit but can
still benefit from the quadratic scaling in M. In this case, the
occupation of each site can be used as an optimal estimator
since no information about the unknown parameter is being
stored in the phase [57]. This quadratic scaling was made
possible through the introduction of the periodic drive, with a
period related to the unknown parameter, which translates the
information about the parameter into the tunneling dynamics
of the particles. On the other hand, for a distributed photonic
network, its quadratic scaling in M becomes linear once the
quantum Fisher information is expressed in terms of the total
number of particles. Additionally, by introducing interactions
to the system we have shown that parameter imprinting and
the creation of correlations can be achieved simultaneously, in
contrast to distributed photonic networks, where the creation
of the correlated state is performed before parameter imprint-
ing.

We emphasize that the enhancement with respect to the
number of modes is not an unexpected result. Suppose we
have a harmonic oscillator where the energy spacing is ω0,
and suppose further that there is a nonlinear process that can
drive the system from the ground state to the Mth level with
energy ωM = Mω0; then using the error propagation formula,
we find that the uncertainty in ω0 is given by �ω0 = �ωM/M.
This is the same enhancement we observe for the tilted, Bose-
Hubbard model using the generalized NOON state. The only
difference here is that no nonlinear process is used to couple
neighboring modes, which thus demonstrates the advantage of
utilizing a ladderlike system with multiple modes in metrol-
ogy. It is clear that the existence of the tilt (or any dispersion
which is of the form mα , where α � 1 and m is the mode
index) is what allows the enhancement with the number of
modes; therefore, other ladderlike systems can also exploit
this enhancement. That said, we would like to stress that the
enhancement with M is rather classical as it can be simply
related to the increased size of the lattice. An example of such
a system is the periodically forced Bose-Hubbard model [58],
given as HPF = H0 + � cos (ωt )

∑
j jn̂ j , where the difference

between this and the tilted Bose-Hubbard model is that the
tilt is no longer linear but instead is periodic in time. What is
interesting here is that if we precisely measure ω instead of
�, we find that the Heisenberg limit is (�NM )2T 4, where we
still have the enhancement in N and M but now the scaling
with time is superquadratic and can be achieved only if one
incorporates an additional optimal control Hamiltonian [51].
These ladderlike systems provide an avenue to study quan-
tum metrological setups which have the potential to further
increase precision measurements.
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APPENDIX A: FLOQUET FERMI’S GOLDEN RULE

The discussion below of the Floquet Fermi’s golden rule
for the driven, tilted Bose-Hubbard model closely follows
Ref. [60]. The key assumption here is that the interaction
strength U must satisfy U 	 V0, ω such that the interaction
term can be treated using a perturbative scattering theory.
We consider a two-band, tilted, driven Bose-Hubbard model
without interaction,

H = −
∑
<i, j>

(
J (a)â†

i â j + J (b)b̂†
i b̂ j

) + γ
∑

j

j
(
â†

j â j + b̂†
j b̂ j

)

+V0

∑
j

sin

(
ωt + φ j + θ

2

)(
â†

j â j

+ b̂†
j b̂ j

) + �g

∑
j

b̂†
j b̂ j . (A1)

Here, b̂† (b̂) corresponds to the creation (annihilation) op-
erator of the second band, and J (a) and J (b) are the
tunneling coefficients in the first and second bands, respec-
tively. The energy gap between the two bands is �g and
is the largest energy scale in the system, �g > V0, γ ≈
ω 
 J (a), J (b). The system is diagonalized in momentum
space by introducing âk = (1/

√
M )

∑
m e(−ikxm )âm and â†

k =
(1/

√
M )

∑
m e(ikxm )â†

m, where k is the quasimomentum and
xm = md , with d being the lattice spacing. This gives the
quasienergies

E (a)(κ ) = ±2J (a)
F cos (κ ),

E (b)(κ ) = ±2J (b)
F cos (κ ) + �g, (A2)

where J (β )
F = J (β )J1(2V/ω) is the renormalized tunneling

coefficient with β = {a, b} and κ = kd is a dimensionless
quasimomentum. Following Ref. [60], one can define a tran-
sition rate from an initial state to a final state γi→ f . If the
initial state is in the first band and the final state is in the
second band, this corresponds to the scattering of particles
to a higher band mediated by the absorption of energy mω

coming from the periodic drive, where m is an integer. In the
context of Floquet-engineered systems, this is considered a
heating process that we try to suppress using suitable driving
parameters {V0, ω}. The expression for the Floquet Fermi’s
golden rule can be written as

γi→ f =
∑

m,α,β

|cβcα|2 2π

h̄
δ(E (α) − E (β ) − mω)

× ∣∣〈〈�m
β

∣∣V̂ ∣∣�α

〉〉∣∣2
, (A3)
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FIG. 4. Stability diagram depicting the resonance condition for
a given {ω,V0} shown with the black shading. The orange dashed
line indicates the drive frequency ω we used in the simulations. The
parameters are J (a) = 1, J (b) = 1.5J , and �g = 123J .

where |�m
β (t )〉 = eimωt |�β (t )〉 and the extended scalar prod-

uct is defined as 〈〈u|v〉〉 = (1/T )
∫ T

0 dt〈u(t )|v(t )〉. Setting
α = a and β = b corresponding to energies E (a) and E (b) in
Eq. (A2), the Floquet Fermi’s golden rule in Eq. (A3) then
indicates a transition from the lowest band to the next-lowest
band is allowed through the absorption of m photons given
that an appropriate interaction term couples the two bands,
〈〈�m

b |V̂ |�a〉〉 �= 0. We focus on the energy requirement in
Eq. (A3) and assume that a scattering process can couple the
two lowest bands and that an arbitrary number of photons can
be absorbed. This leads us to the stability diagram shown in
Fig. 4. The shaded regions correspond to {V0, ω} for which
the energy requirement above is satisfied and thus scattering
of particles to higher bands is possible. The topmost region
corresponds to an absorption of energy mω = 7ω, and each
succeeding region corresponds to an increase in absorbed
energy by +ω. Notice that as we decrease the drive frequency
ω, the gap between neighboring regions becomes smaller, and
they can even overlap for specific values of the drive strength
V0. This illustrates that for our system, heating becomes
prominent as we move away from the high-frequency limit.
Although our initial state, |�i(t0)〉 = ∑

α cαe−iEαt0 |�α (t0)〉,
and final state, |� f (t )〉 = ∑

β cβe−iEβ t |�β (t )〉, are not eigen-
states of the system, we argue that the relevant states here
are found in the first and second bands and thus the stability
diagram is still valid.

APPENDIX B: EIGENDECOMPOSITION OF Heff

Another perspective on the local generator and quantum
Fisher information is to look at the eigenvalues Ek and eigen-
functions |φk〉 of the effective Hamiltonian in Eq. (12). In
Fig. 5(a) we plot the energy of each of the eigenfunctions
as a function of increasing interactions U , where the verti-

(a) (b)

(c) (d)

FIG. 5. The plots are determined for the case M = N = 3. In
(a) the eigenvalues Ek are shown as a function of increasing inter-
action strength U . The lowest line corresponds to the ground-state
energy. In (a) the vertical dashed line corresponds to U = Ū , while in
(b) and (d) the vertical dashed line corresponds to T = τ . In (b) and
(c) the variances 〈(�ĥ(O)

γ )2〉 and 〈(�ĥγ )2〉/T 2 as a function of T are

calculated using the full oscillating generator ĥ(O)
γ (blue solid line)

and the approximate generator ˜̂h(O)
γ (orange dashed line). (d) The site

occupation number 〈n̂ j〉 is plotted as a function of T . (b)–(d) are
calculated at fixed U = Ū . (See text for details.)

cal dashed line corresponds to U = Ū , at which we observe
F (M,N )

max . One can see immediately that at this critical value,
some of the eigenfunctions are close to degeneracy. This
determines which terms in the sum in Eq. (4) are dominant
when calculating 〈(�ĥ(O)

γ )2〉 since it contains 〈φl |∂γ φk〉 =
〈φl | ∂Heff

∂γ
|φk〉

Ek−El
. While in Fig. 5(a) we see that there are two pairs

of eigenfunctions that are close to being degenerate, only
one of these pairs gives a large contribution and corresponds
to the second- and third-largest eigenstates. The reason for
this is that these two states, |φns−1〉 and |φns−2〉, correspond
to the ones with the largest overlap with the initial Fock
state, |〈φns−1|ψFock〉|2 ≈ 0.17 and |〈φns−2|ψFock〉|2 ≈ 0.72, re-
spectively. The energy difference between this pair, � =
Ens−1 − Ens−2, is then related to the oscillation frequency of
〈(�ĥ(O)

γ )2〉, and thus, one can approximate τ as τ ∼ π
�

[see

Fig. 5(b)]. The oscillating part of the local generator ĥ(O)
γ can

then be approximated by just considering the states |φns−1〉
and |φns−2〉. We define this approximate generator as ˜̂h(O)

γ ,
and its variance is also shown in Fig. 5(b). At long times
this becomes a good approximation even when calculating the
quantum Fisher information, as shown in Fig. 5(c). Finally,
we determine the average occupation at each site 〈n̂ j〉 as a
function of T for U = Ū [see Fig. 5(d)]. Here, we observe
that at T ∼ τ the average occupations between the first and
last sites get close, which suggests that an observable such as
∼〈n̂1〉〈n̂M〉 can be a good estimator.
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