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Ferromagnetism in the SU(N) Kondo lattice model: SU(N) double exchange and supersymmetry
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We study the ground-state properties of the SU(N) generalization of the Kondo lattice model in one dimension
when the Kondo coupling JK (both ferromagnetic and antiferromagnetic) is sufficiently strong. Both cases can be
realized using alkaline-earth-metal-like cold gases in optical lattices. Specifically, we first carry out the strong-
coupling expansion and identify two insulating phases [one of which is the SU(N) analog of the well-known
gapped Kondo singlet phase]. We then rigorously establish that the ground state in the low-density (for JK < 0) or
the high-density (for JK > 0) region is ferromagnetic. The results are accounted for by generalizing the double-
exchange mechanism to SU(N) “spins.” Possible realizations of Bose-Fermi supersymmetry SU(N |1) in the
(generalized) SU(N) Kondo lattice model are discussed as well.
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I. INTRODUCTION

In physics, high symmetries have been playing crucial roles
in a unified understanding of seemingly different phenomena.
In such situations, we often work with simple unifying theo-
ries based on high symmetries and try to understand the actual
phases by taking into account the deviation from the idealized
high symmetries. In condensed-matter physics, systems with
high SU(N) symmetry (N � 3) have been studied for a few
decades and a variety of intriguing properties have been pre-
dicted so far. However, in the standard solid-state settings, the
realization of SU(N) symmetry exploits, on top of the spin
SU(2), additional symmetries [e.g., SU(2) symmetry associ-
ated with orbital, valley, multiple layers, etc.] that necessitate
some sort of fine tuning or idealization [1,2]. So far, it has
not been so clear to what extent physics found in those ideal-
ized systems with perfect SU(N) symmetry is robust against
possible deviations in realistic systems. The situation changed
when the possibility of realizing systems with almost perfect
SU(N) symmetry using alkaline-earth-metal(-like) cold gases
has been recognized [3,4]. This has paved the way for testing a
variety of remarkable predictions made in SU(N) fermion and
spin systems [5,6] in clean and well-controlled settings. For
instance, the SU(N) Mott insulator has been realized experi-
mentally [7,8], in which antiferromagnetic correlation among
the localized SU(N) magnetic moments has been observed
[9,10]. These are the first steps toward the quantum simulation
of even more exotic states of matter, e.g., SU(N) quantum spin
liquids [11–13].

The SU(N)-symmetric cold gases also provide us with a
playground for multicomponent itinerant fermions that are
predicted to exhibit a variety of interesting phenomena such
as the color superfluidity [14,15], the “baryonic” multiple-
fermion bound states (dubbed trion when N = 3) [16–18],
the generalized η-pairing [19], and itinerant ferromagnetism
[3,20–24]. One of the merits of using the alkaline-earth-metal
fermions is that one can easily implement two additional
“orbital” degrees of freedom [associated with the two SU(N)-

symmetric atomic states g and e] that enable us to simulate
Kondo physics. Since the suggestion of exploring the heavy-
fermion physics with the two-orbital alkaline-earth-metal
fermions [4], some advances have been made both theoret-
ically [25–27] and experimentally [28,29]. Although most
cold-atom literature focuses on the Kondo or heavy-fermion
physics in which the local moments tend to be screened by the
itinerant fermions, there is yet another important state of mat-
ter, itinerant ferromagnetism, in the Kondo lattice model. In
fact, in the usual (N = 2) Kondo lattice model, it is known that
the so-called double-exchange mechanism [30–32], which
has been originally introduced in the context of the mangan-
ites, stabilizes ferromagnetism when the Kondo coupling is
ferromagnetically large [33–35], and even when it is antiferro-
magnetic, metallic ferromagnetism is favored for sufficiently
large Kondo coupling [36–39] (see, e.g., Refs. [40,41] for
reviews of the one-dimensional Kondo lattice model).

In this paper, we will rigorously show that, even for
N � 3, ferromagnetism is one of the dominant phases in the
one-dimensional SU(N) Kondo lattice model. Some rigorous
results have been obtained so far on the SU(N) itinerant
ferromagnetism [20,22–24]. What we will establish here oc-
curs in a relatively simple setting and for a wide range of
fermion densities, and only needs relatively loose conditions.
The SU(N) Kondo lattice (type) systems not only exhibit
ferromagnetic and other interesting phases but also provide
us with a natural playground for emergent Bose-Fermi super-
symmetry. We will try to demonstrate how supersymmetry is
implemented into the low-energy degrees of freedom of the
Kondo lattice model.

This paper is structured as follows. In Sec. II, we intro-
duce the SU(N) Kondo lattice model as a particular limit of
the two-orbital SU(N) Hubbard model, which can be real-
ized using alkaline-earth-metal cold Fermi gases. Then, we
will quickly discuss the symmetries of the model which are
useful in capturing the global phase structure. Section III is
devoted to the determination of the ground-state phases for
strong Kondo coupling. After identifying the ground state in
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the strong-coupling limit, we derive the low-energy effective
Hamiltonians both for ferromagnetic and antiferromagnetic
Kondo coupling by taking into account the lowest-order cor-
rections from the kinetic energy. We use these results to prove
ferromagnetic ground states in Sec. IV. When JK < 0, the
effective Hamiltonian satisfies the conditions of the Perron-
Frobenius theorem, and ferromagnetism in the ground state
follows immediately. When JK is antiferromagnetic, on the
other hand, the lowest-order effective Hamiltonian does not
resolve the huge SU(N) “spin” degeneracy. We show that
taking into account higher-order corrections lift the degen-
eracy, thereby stabilizing ferromagnetism. We also explain
ferromagnetism in the ferromagnetic (JK < 0) Kondo lattice
model by generalizing the double-exchange mechanism to
SU(N). These are the central results of this paper.

The emergent Bose-Fermi supersymmetry SU(N |1) in the
SU(N) Kondo-Heisenberg model, which is a variant of the
SU(N) Kondo lattice model, will be discussed in Sec. V. The
main results and some technical details are summarized in
Sec. VI and in the Appendixes, respectively.

II. MODEL

A. Two-orbital Hubbard model for alkaline-earth-metal cold
fermions

To obtain the SU(N)-symmetric Kondo lattice model, we
start from the minimal model that describes the alkaline-earth-
metal cold fermions loaded in an optical lattice [4]:

HG = −
∑

i

∑
m=g,e

t (m)
N∑

α=1

(c†
mα, icmα, i+1 + H.c.)

+
∑

i

∑
m=g,e

U (m)

2
nm, i(nm, i − 1) −

∑
i

∑
m=g,e

μ
(m)
i nm, i

+ V g-e
H

∑
i

ng, ine, i + V g-e
ex

∑
i,αβ

c†
gα, ic

†
eβ, icgβ, iceα, i, (1)

where c†
mα, i (cmα, i) creates (annihilates) a fermion of the color

α (= 1, . . . , N ) in the “orbital” m (= g, e) at site i, and nm, i

is the corresponding number operator nm, i = ∑
α c†

mα, icmα, i.
In alkaline-earth-metal cold fermions, the orbital g (e) cor-
responds to the atomic state 1S0 ( 3P0). The local potential
μ

(m)
i can be site dependent in general (especially in the cold-

atom setting). The interactions U (m) and VH, respectively,
are the Hubbard interactions among the same species of
fermions and the density-density interaction between the g and
e fermions. The last term is the exchange interactions between
the fermions in different orbitals, which can be conveniently
recast as

−V g-e
ex

∑
i

⎛⎝N2−1∑
A=1

ŜA
g,iŜ

A
e,i

⎞⎠− 1

N
V g-e

ex

∑
i

ng,ine,i (2)

with ŜA
g,i and ŜA

e,i being the second-quantized SU(N) spins for
the g and e fermions, respectively:

ŜA
m,i :=

N∑
α,β=1

c†
mα,i[G

A]αβ cmβ,i (m = g, e). (3)

(a)

(b)

FIG. 1. (a) The SU(N) Kondo lattice model (6) with the SU(N)
local moments in N (i.e., the N-dimensional defining representation
�) and its realization with a state-dependent lattice (shown by the
red and blue curves). The e fermions localized at the bottoms of the
deeper lattice play the role of the local moments. (b) The Kondo-
Heisenberg model (8) with additional interaction JH among the local
moments.

The N-dimensional matrices GA (A = 1, . . . , N2 − 1) are the
SU(N) generators normalized as Tr(GAGB) = δAB, and satisfy

[GA, GB] = i f ABCGC
∑

A

[GA]αβ[GA]μν= δανδβμ − δαβδμν/N

(α, β, μ, ν = 1, . . . , N ) . (4)

Basically, the exchange interaction V g-e
ex is the same as the

Hund coupling which is ferromagnetic except that here it
comes from the atom-atom collision and can be both fer-
romagnetic and antiferromagnetic. Note that there is no
hybridization between the g and e fermions which may po-
tentially lead to the mixed-valence physics in heavy-fermion
systems [42].

Now we turn off the hopping of the e fermions: t (e) = 0
while keeping t (g) finite. Experimentally, this is achieved,
e.g., by employing the so-called state-dependent lattice (SDL)
[4,28,29] in which the g fermions moving in a shallow lat-
tice remain itinerant while the e fermions are localized in a
deeper lattice [see Fig. 1(a)]. The model parameters can be
estimated for actual optical lattices, e.g., for 173Yb and the
setting used in Ref. [29] as t (e)/V g-e

ex ∼ 10−2, t (e)/t (g) ∼ 10−3,
V g-e

H � V g-e
ex (> 0), U (g)/V g-e

ex ∼ 10−1, U (e) � V g-e
ex , which sug-

gest that we may treat the e fermions as localized.
When the deeper lattice sites are uniformly occupied by

the e fermions, i.e., ne,i = ne (= 1, . . . , N), the following
N!

ne!(N−ne )! -plet “spin” is formed at each site1

|[α1,...,αne ]〉 = c†
α1,i

. . . c†
αne ,i

|0〉

1To realize the situation ne = 1, strong enough U (e) is necessary.
As t (e) is negligibly small, we can easily find the condition for U (e)

with the effects of the harmonic trap (the trap frequency ωtrap) taken
into account: U (e) > (1/8)N 2

e mω2
trapa2

0 (a0 is the lattice constant and
Ne denotes the number of the e fermions). This condition is fulfilled
in the usual experimental settings.
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(the brackets [. . . ] denote antisymmetrization). By the Fermi
statistics, these SU(N) spin states are antisymmetric in the
spin labels {αk}, and we denote the corresponding irreducible
representation (rank-ne antisymmetric tensor) by the follow-
ing Young diagram:

ne

⎧⎪⎪⎨⎪⎪⎩ . (5)

In what follows, we will frequently use similar Young di-
agrams as the substitute for the spin “S” to specify the
SU(N) spins (irreducible representations, precisely). For a
quick explanation of the Young diagrams and the irreducible
representations, see Appendix A [for more details and other
useful knowledge of SU(N), see, e.g., Ref. [43]].

Under the condition ne,i = ne (= const), the interac-
tion V g-e

H

∑
i ng, ine, i in (1) reduces to Ṽ g-e

H

∑
i ng, ine, i →

neṼ
g-e

H

∑
i ng, i (Ṽ g-e

H := V g-e
H − V g-e

ex /N2), which just renormal-
izes the chemical potential, and can be regarded as a constant
in a sector with a fixed fermion number. If we drop the
Hubbard interaction U (g) temporarily, we obtain the following
SU(N) Kondo lattice model (KLM):

HKLM

= −t
∑

i

N∑
α=1

(
c†
α, ic

α
i+1 + H.c.

)+ JK

∑
i

⎛⎝N2−1∑
A=1

ŝA
i SA

i

⎞⎠,
(6)

where we have simplified the notations as

c†
α, i = c†

gα, i , cα
i = cgα, i , ŝA

i = ŜA
g,i , SA

i = ŜA
e,i,

t = t (g), JK = −V g-e
ex

(7)

(we shall discuss the effects of the neglected U (g) in
Sec. IV C). Throughout this paper, the number of lattice sites
is denoted by L, and we use Nc and nc for the total fermion
number

∑
i,α c†

α,ic
α
i = ∑

i ni and the fermion density (or, the
average fermion number per site Nc/L), respectively. The
fermion filling f (0 � f � 1) is defined by f = nc/N . Also,
unless otherwise stated, we consider only the one-dimensional
system with an open boundary condition.

The SU(N) generalization of the KLM has been originally
introduced in the context of spin-orbit-coupled heavy-fermion
materials in which N is the number of the ground-state j
multiplet (N = 2 j + 1) and investigated mostly in the large-N
limit [44,45] (for recent finite-N studies, see, e.g., Ref. [46]
and references cited therein).

Although the “SU(N) spin” (the irreducible representation,
precisely) of the local moment SA

i in (6) is constrained by
the fermion statistics to those given by (5) in the cold-atom
setting, we can think of arbitrary representations R in prin-
ciple. In what follows, we only consider the case ne = 1
(exactly one e atom) at each site, i.e., the local moments in
the N-dimensional representation R = [which is the SU(N)

2In typical experimental settings, Ṽ g-e
H > 0 for all N and alkaline-

earth-metal fermions. Due to positive U (e) and Ṽ g-e
H , states with e

fermions uniformly occupying the lattice ne,i = 1 are favored.

counterpart of S = 1
2 ], as it is the simplest and most realistic

in the above cold-gas setting. Note that the situation assumed
here is very different from that in the standard large-N treat-
ment [44,45] in which ne is proportional to N .

In the heavy-fermion setting, JK comes from the second-
order perturbation in the hybridization between the conduc-
tion electron and the localized f electron and is bound to be
positive and small [47]. In this sense, the large-JK physics we
will consider below is hard to access directly in heavy-fermion
systems. On the other hand, if (6) is realized in cold gases, the
sign of JK(= −V g-e

ex ) depends on that of the scattering lengths
for the g-e collision [4] and can take both signs, thereby allow-
ing us to explore both ferromagnetic and antiferromagnetic
SU(N) KLM at strong coupling. In fact, it is known exper-
imentally that JK is negative (ferromagnetic) for 87Sr [48]
and 173Yb [49,50], while it is positive (antiferromagnetic) for
171Yb [51].

We may also add an exchange interaction JH (> 0) between
the neighboring local spins, which can arise, e.g., from the vir-
tual hopping (∼t (e)2

/U (e)) of the almost localized e fermions,
to define the SU(N) Kondo-Heisenberg model:

HKHM = −t
∑

i

N∑
α=1

(
c†
α, icα, i+1 + H.c.

)

+ JK

∑
i

⎛⎝N2−1∑
A=1

ŝA
i SA

i

⎞⎠+ JH

∑
i

⎛⎝N2−1∑
A=1

SA
i SA

i+1

⎞⎠
+ V

∑
i

nini+1. (8)

In the above, we also have added the density-density inter-
action V which may exist (depending on the optical lattice),
though the name Kondo-Heisenberg model usually refers to
the model with V = 0. The model (8) will be discussed in
Sec. V in the context of the boson-fermion supersymmetry.

B. Symmetries

1. U(1) and SU(N)

Now we discuss several symmetries of the models (6)
and (8) which will be important in the following discus-
sion. First of all, they are invariant under the following
(site-independent) U(1) gauge transformation for the itinerant
fermion

cα
i → eiφcα

i , (9)

which is associated with the conservation of the total fermion
number

Nc =
∑

i

N∑
α=1

c†
α, ic

α
i .
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On top of the above U(1) symmetry, the two models are
invariant under the SU(N) transformation

cα
i →

N∑
β=1

U (θ)†
αβcβ

i ,

SA
i →

N2−1∑
B=1

SB
i [Radj(θ)]BA,

(10)

where the transformation U (θ) ∈ SU(N ) is defined by

U (θ) := exp

⎛⎝−i
N2−1∑
A=1

θAGA

⎞⎠,

and the adjoint representation Radj(θ) ∈ SO(N2 − 1) is related
to U as

Radj(θ) := exp

⎛⎝−i
N2−1∑
A=1

θAGA
adj

⎞⎠,

([
GA

adj

]
BC := −i f ABC,

[
GA

adj

]T = −GA
adj

)
.

The invariance of the Hamiltonians (6) and (8) can be seen if
we note that the Û transforms the fermion “spin” as

ŝA
i →

N2−1∑
B=1

ŝB
i [Radj(θ)]BA. (11)

As in SU(2), the SU(N) symmetry leads to several conserved
quantities. First, in SU(N), there are (N − 1) commuting gen-
erators that play the role of Sz, and correspondingly, we have
a set of the (N − 1) conserved quantities called weight; each
state in a given SU(N) multiplet has a unique weight [the con-
verse is not true for N � 3; see Ref. [43] for more details on
SU(N)]. In this paper, we denote the local weight associated
with ŝA

i + SA
i and its sum over the entire system by λi and �tot,

respectively. Giving the local weight λi and the local fermion
number ni + 1 (1 from the localized e fermion, 0 � ni � N)
is equivalent to specifying the color-resolved fermion den-
sity nα,i = ∑

m=g,e c†
mα, icmα, i (α = 1, . . . , N). On top of the

weight, there are N − 1 Casimir operators C2, . . . , CN that
are the SU(N) analog of the spin squared S2. Among them,
the quadratic Casimir C2 defined in Appendix B is crucial in
evaluating the Kondo energies.

2. Particle-hole transformation

The particle-hole (P-H) transformation that interchanges
the creation and annihilation operators for the itinerant
fermions

cα
i ↔ c†

α,i (α = 1, . . . , N ) (12)

plays a key role to understand the global phase structure of the
N = 2 KLM. The first hallmark of the SU(N � 3) KLM is the
absence of the particle-hole symmetry, as we will see below.
By the P-H transformation (12), physical quantities transform
as

ni =
∑

α

ni,↑
P-H−−→ N − ni ( f := nc/N

P-H−−→ 1 − f ),

(13a)

ŝA
i

P-H−−→
∑
σ,σ ′

c†
β,i[−(GA)T]βαcα

i =: ˆ̄sA
i , (13b)

(
c†
α,ic

α
j + c†

α, jc
α
i

) P-H−−→ −(c†
α,ic

α
j + c†

α, jc
α
i

)
. (13c)

The third equation implies that the P-H transformation flips
the sign of the hopping term

ti, j
P-H tr−−−→ −ti, j, (14)

which is not important on bipartite lattices as we can always
undo the minus sign by applying the gauge transformation (9)
with φ = π only on one of the sublattices. Equation (13b) tells
that the SU(N) spin (of the itinerant fermions) ŝi maps onto its
conjugate:

ŝi
P-H tr−−−→ ˆ̄si,

which in general is different from ŝi for N � 3 (see Ap-
pendix A for the conjugate representations). Therefore, the
Kondo coupling changes its form by the particle-hole trans-
formation

N2−1∑
A=1

ŝA
i SA

i
P-H tr−−−→

N2−1∑
A=1

ˆ̄sA
i SA

i

⎛⎝
=
N2−1∑
A=1

ŝA
i SA

i

⎞⎠ (15)

for N � 3.3 However, if we simultaneously replace the local
spin with its conjugate

SA
i

conjugate−−−−→ S
A
i = −(SA

i

)T
, (16)

the Kondo coupling changes to

N2−1∑
A=1

ŝA
i SA

i
P-H−−→

N2−1∑
A=1

ˆ̄sA
i SA

i
conjugate−−−−→

N2−1∑
A=1

ˆ̄sA
i S

A
i . (17)

As the quadratic Casimirs for an irreducible representation
(“spin”) R and its conjugate R are the same, the two different
Kondo couplings

∑
A ŝA

i SA
i and

∑
A

ˆ̄sA
i S

A
i share the same set

of the eigenvalues. Therefore, the particle-hole transformation
relates the SU(N) KLM at filling f with the local spins R to
the same model at filling 1 − f with the conjugate local spins
R (see Fig. 2):

HKLM(ti, j, JK, f ;R)
P-H tr.⇐⇒ HKLM(−ti, j, JK, 1 − f ;R) (18)

which means that the ground state of the KLM with local
moments in R at filling f is obtained from that of another
KLM with local moments R at filling 1 − f by particle-hole
transformation, and vice versa. Only for self-conjugate local
spins (R = R), particle-hole symmetry exists, guaranteeing
the symmetry of the phase diagram with respect to the half-
filling f = 1

2 .

III. STRONG-COUPLING LIMITS

In this section, we derive the effective Hamiltonians de-
scribing the low-energy physics of the SU(N) KLM (6) in the
limit of large |JK|. Throughout this and the next section IV,

3When N = 2, we can apply a unitary transformation iσ y to
(c↑, c↓)T to make ˆ̄s → ŝ.
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TABLE I. List of all the 2N × N onsite states and their Kondo
energies.

Fermion number Total spin Kondo energy Degeneracy

nc = 0 (empty) 0 N

1 � nc � N−1 nc

⎧⎪⎨⎪⎩
(
1 − nc

N

)
JK

nc (N+1)!
(nc+1)!(N−nc )!

nc+1
⎧⎪⎨⎪⎩ − N+1

N ncJK
N!

(nc+1)!(N−nc−1)!

nc = N (fully occupied) 0 N

we only consider the pure KLM (6) [or the model (8) with
JH = V = 0].

A. Strong-coupling ground state

To carry out the strong-coupling (t/JK) expansion, it is
necessary to first evaluate the local Kondo energy

JK

N2−1∑
A=1

ŝA
i SA

i =: JK ŝi·Si. (19)

As in the standard SU(2) case, the value depends on the
fermion number n = ∑

α c†
αcα and how the fermion spin ŝi

and the local moment Si are combined into the total SU(N)
spin. When the fermion number is nc (nc = 1, . . . , N − 1), the
following two “total spins” are possible [see Eq. (B4)]:

nc+1

⎧⎪⎪⎨⎪⎪⎩ , nc

⎧⎨⎩ (1 � nc � N − 1). (20)

When nc = 0 (empty) and nc = N (fully occupied), the itiner-
ant fermions are in the SU(N) singlets and only the local spin
contributes to the total spin:

•
fermions

⊗
local moment

∼ (N rep). (21)

The Kondo energies eK(nc) for these states are calculated
using the quadratic Casimir C2 introduced in Appendix B:

eK(nc) = −N + 1

N
ncJK for nc+1

⎧⎪⎪⎨⎪⎪⎩ ,

eK(nc) =
(

1 − nc

N

)
JK for nc

⎧⎨⎩
(1 � nc � N − 1),

eK(nc) = 0 (nc = 0, N ). (22)

The results are summarized in Table I. The Kondo energies
are plotted in Fig. 3 for N = 2 and 4 against the fermion
number (per site) nc. When N = 2, the energy is symmetric
with respect to nc = 1 (half-filling) reflecting the particle-hole
symmetry, while for N = 4, this symmetry is lost. It is well
known [40] that, for SU(2), a single fermion (electron) and
an S = 1

2 moment can form a spin-singlet called the Kondo

P-H tr.

FIG. 2. Particle-hole transformation for SU(N) Kondo lattice
model (6). When the local moments are not self-conjugate, SU(N)
Kondo lattice model with local moments R is mapped onto another
model in which the local moments are replaced with the conjugate
ones R.

singlet. However, a local spin in the N ( ) representation
cannot be screened by a single fermion, and in fact we need
N − 1 fermions to make an SU(N) singlet [see Fig. 3(b)]. With
this caution in mind, we take over the name Kondo singlet to
denote this SU(N) singlet state formed by (N − 1) fermions
and a local spin.

Now let us determine the strong-coupling ground state by
minimizing the total Kondo energy

∑
i JK ŝi·Si. To this end,

we start from the reference state in which the local fermion
number nc is integer and uniform. For 1 � nc � N − 1, the

states in nc+1
{

and nc

{
are selected at each site for

JK > 0 and JK < 0, respectively. Naively, the strong-coupling
ground state may be obtained by uniformly tiling one of
these two according to the sign of JK. However, this strategy
works only when nc = N − 1 (for JK > 0) or nc = 1 (for
JK < 0) at which the Kondo energy eK(nc) is concave (see
Fig. 3). The linear behavior of the Kondo energy for other nc

means that we can move one fermion from one site to another
[(nc, nc) → (nc + 1, nc − 1)] without changing the Kondo en-
ergy of the entire system. Repeating this procedure, we can
generate many inhomogeneous ground states which are de-
generate with the uniform one. Physically, we may expect that
the (strong-coupling) ground states at these commensurate
fillings f (= nc/N ) are metallic.

Kondo singlet
Kondo singlet

)b()a(

FIG. 3. Kondo energies (22) vs fermion number nc (0 � nc � N)
for (a) N = 2 and (b) N = 4 [red for antisymmetric (nc + 1)-tensor
representation]. Note that when N = 2 [i.e., SU(2)], the Kondo en-
ergy is symmetric with respect to nc = N/2 = 1 as a consequence of
the particle-hole symmetry, while this symmetry is lost for N � 3.
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(a) (b)

(d)(c)

FIG. 4. Ground and excited states in the strong-coupling limit
when the Kondo interaction is ferromagnetic (JK < 0). (a) Singlet
ground state, (b) single-particle excitation, (c) “hole” excitation, and
(d) particle-hole excitation. Red ovals denote “Kondo singlets.”

In what follows, we restrict ourselves to the two regions

(i) 0 � f � 1/N (JK < 0),

(i) 1 − 1/N � f � 1 (JK > 0)
(23)

in which the strong-coupling ground state is well under con-
trol. Specifically, in the case (i), each site is occupied either
by (nc = 0) or by (nc = 1) as is shown in Figs. 4(a) and
4(b), while in (ii), only the Kondo singlet • (nc = N − 1) and
the N-dimensional “spin” (nc = N) appear in the ground
states [see Figs. 6(a) and 6(c)]. In particular, when JK < 0, the
(spin-degenerate) ground states at the commensurate filling
f = 1/N (nc = 1 fermion at each site) are given by a uniform
tiling of the state [Fig. 4(a)]. When JK > 0, on the other
hand, the ground state at f = 1 − 1/N (nc = N − 1) is the
tensor product of the Kondo singlets [Fig. 6(a)] and is non-
degenerate.

B. Ferromagnetic Kondo coupling

1. Insulating phase at f = 1/N (nc = 1)

Having found the ground states at t = 0, let us consider
the excited states at the commensurate filling f = 1/N . The

(b-1)

Kondo singlets

(b-2)

(a-1) (a-2)

Kondo singlet

FIG. 5. Ground states in the strong-coupling limit at partial fill-
ing 0 � nc � 1 when JK < 0 (a-1) and N − 1 � nc � N when JK >

0 (b-1). The ground-state subspace is spanned by N and the rank-2
symmetric tensor (Kondo singlets • and N) in (a) [(b)]. The corre-
sponding effective Hamiltonians within the ground-state subspaces
are shown in (a-2) and (b-2).

(d)

(a)

Kondo singlet

(b)

(c)

FIG. 6. Ground and gapped excited states in the strong-coupling
limit (JK > 0). (a) Singlet ground state, (b) single-particle excitation,
(c) particle-hole excitation, and (d) “spin” excitation. Red ovals de-
note “Kondo singlets.”

energy cost by the addition of one fermion [Fig. 4(b)] is
calculated as

�+
c = −JK/N = |JK|/N, (24)

while, when a fermion is removed [see Fig. 4(c)], the cost is
given by

�−
c = −(N − 1)JK/N = (N − 1)|JK|/N. (25)

The two gaps are different for N � 3 as a consequence of the
absence of particle-hole symmetry. To move one fermion from
one site to another [Fig. 4(d)], we need extra energy:

�P-H
c = (1 − 2/N )JK − 2 × (1 − 1/N )JK = −JK = |JK|.

(26)
The three energies satisfy

�+
c � �−

c < �P-H
c (27)

(the equalities hold when N = 2). Therefore, we may ex-
pect that an insulating ground state forms at 1/N filling (i.e.,
nc = 1).

One may naively create the spin excitation by turning

one of the spins in Fig. 4(a) into . However, this
may not be the lowest spin excitation. The behavior of the
SU(N) spin sector is nontrivial as the strong-coupling (t = 0)
ground state is highly degenerate (the degree of degeneracy
is [N (N + 1)/2]L) with respect to the SU(N) spin states. The
second-order degenerate perturbation in t yields the following
effective SU(N) Heisenberg Hamiltonian for the spin sector:

Heff = t2

2|JK|
∑

i

SA
i ( )SA

i+1( ), (28)

with the spins Si belonging to the symmetric rank-2 tensor
[when N = 2, (28) reduces to the spin-1 Heisenberg chain].
The inclusion of the JH interaction merely renormalizes the
coupling: t2

2|JK| → t2

2|JK| + JH/4. According to the recent ana-
lytical and numerical studies [52–54], the low-energy physics
of the model (28) depends on the parity of N . That is, the
strong-coupling SU(N) Kondo lattice model (6) at filling
f = 1/N is a spin-gapped insulator when N is even, while
it is an insulator with algebraic spin correlations when N is

033317-6



FERROMAGNETISM IN THE SU(N) KONDO LATTICE … PHYSICAL REVIEW A 107, 033317 (2023)

odd. Except when N = 2, these spin-gapped insulators for
N = even are not the symmetry-protected topological phases
associated with PSU(N) [55].

2. Effective Hamiltonian for 0 � f � 1/N

When we move away from the commensurate filling f =
1/N , the strong-coupling ground states now contain a certain
number of sites in (nc = 0) as well as those in [see
Figs. 5(a-1) and 5(a-2)]. These ground states are highly de-
generate with respect not only to the locations of the spins
in the “sea” of but also to the SU(N) spin states at the
individual sites. This huge degeneracy might be partially or
fully resolved by the motion of the fermions.

To understand how the degeneracy is lifted, let us derive
an effective Hamiltonian within the ground-state subspace

by the first-order perturbation in t . To this end, we need to
find the expression of the hopping term projected onto the
ground-state manifold. To begin with, we explicitly write the
expressions of the spin states in and . As the fermionic
(F) part of the states with nc = 0 (empty) and nc = 1 are given,
respectively, by

nc = 0 : |0〉F,

nc = 1 : |α〉F,i := c†
α,i|0〉F (α = 1, . . . , N ),

(29)

the two types of spin states are given by (“S” stands for the
local-spin part of the state)

|N; α〉i = |α〉S,i ⊗ |0〉F (nc = 0, -spin) (30a)

and

|(α, β )〉i =
{

|α〉S,i ⊗ c†
α,i|0〉F (α = β ),

1√
2

{|α〉S,i ⊗ c†
β,i|0〉F,i + |β〉S,i ⊗ c†

α,i|0〉F,i
}

(a < β )

(nc = 1, spin) . (30b)

When no fermion occupies a pair of adjacent sites (i, i + 1), the hopping term simply annihilates the state. If each of the pair
is occupied by one fermion (i.e., − ), the action of the hopping always creates excited states:

| 〉i ⊗ | 〉i+1

c†
μ,i+1cμ

i−−−−→ | 〉i ⊗
∣∣∣∣ 〉

i+1

(�E = |JK|),

| 〉i ⊗ | 〉i+1

c†
μ,ic

μ
i+1−−−→

∣∣∣∣ 〉
i

⊗ | 〉i+1 (�E = |JK|)
(31)

and does not contribute to the first-order perturbation. Therefore, only the pairs of the form - or - can contribute to the
effective Hamiltonian. To investigate the action of the hopping operator onto the above pair, it is convenient to use the following
expressions of the fermion operators c̃α

i and c̃†
α,i projected onto the ground-state manifold:

c̃α
i = |N; α〉i〈(α, α)|i + 1√

2

∑
β<α

|N; β〉i〈(β, α)|i + 1√
2

∑
β>α

|N; β〉i〈(α, β )|i,

c̃†
α,i = |(α, α)〉i〈N; α|i + 1√

2

∑
β<α

|(β, α)〉i〈N; β|i + 1√
2

∑
β>α

|(α, β )〉i〈N; β|i. (32)

In writing the effective Hamiltonian, we also need to keep track of the sign factors arising from the fermion exchange.
Fortunately, for open boundary conditions, no extra sign appears in the subspace considered here, and we obtain the following
effective Hamiltonian:

− t
N∑

μ=1

c̃†
μ,ic̃

μ
j |N; α〉i︸ ︷︷ ︸⊗ |(β, γ )〉 j︸ ︷︷ ︸

=

⎧⎪⎪⎨⎪⎪⎩
− t√

2
|(α, β )〉i ⊗ |N; β〉 j − t√

2
(
√

2 − 1)δαβ |(α, α)〉i ⊗ |N; α〉 j when β = γ ,

− t
2 |(α, γ )〉i ⊗ |N; β〉 j − t

2 |(α, β )〉i ⊗ |N; γ 〉 j

− t
2 (

√
2 − 1)δαγ |(α, α)〉i ⊗ |N; β〉 j − t

2 (
√

2 − 1)δαβ |(α, α)〉i ⊗ |N; γ 〉 j

when β 
= γ .

(33)

Obviously, all the nonzero off-diagonal matrix elements ap-
pearing here are negative when t > 0. In the cold-atom
realization, t is positive and this condition is satisfied from
the outset. When the system is periodic, hopping across the
boundary yields a fermion sign (−1)Nc−1 that necessitates an
additional condition Nc = odd for the nonpositivity.

C. Antiferromagnetic Kondo coupling

1. Insulating phase at f = 1 − 1/N

As has been discussed in Sec. III A, the strong-coupling
ground state when f = 1 − 1/N (or nc = N − 1 fermions at
each site) and JK > 0 is the product of the local Kondo singlets

033317-7



KEISUKE TOTSUKA PHYSICAL REVIEW A 107, 033317 (2023)

shown in Fig. 6(a) and is nondegenerate. Adding (removing)
one fermion to (from) this ground state costs finite energy
[Fig. 6(b)]:

�+
c = (N2 − 1)JK/N [�−

c = (N + 1)JK/N]. (34)

The addition always costs more energy, i.e., �+
c − �−

c =
(N + 1)(N − 2)JK/N > 0 when N � 3 (due to the absence of
the particle-hole symmetry). On the other hand, moving one
fermion from one site to another [particle-hole excitations; see
Fig. 6(c)] also costs an energy

�P-H
c = (N + 1)JK. (35)

To create a “spin” excitation in the ground state, one needs
to excite one of the SU(N) Kondo singlets to the adjoint [see
Fig. 6(d)]

N

⎧⎪⎪⎨⎪⎪⎩ → N−1

⎧⎨⎩ . (36)

The energy cost of this “magnetic” excitation is �s = NJK.
These imply that for large enough JK (> 0), the ground state
of HKLM (6) at f = 1 − 1/N is a spin-gapped insulator, which
is the SU(N) analog of the well-known Kondo insulator at
half-filling in the SU(2) KLM [56].

2. Effective Hamiltonian for 1 − 1/N � f � 1

Now let us find the effective Hamiltonian which is first
order in t . The ground-state manifold in this region is spanned
by the following two types of fermion states:

nc = N : |f〉F,i :=
N∏

β=1

c†
i,β |0〉F = c†

i,1 . . . c†
i,N |0〉F,

nc = N − 1 : |α〉F,i := cα
i |f〉F,i = (−1)α−1

∏
β 
=α

c†
i,β |0〉F.

(37)

Due to the strong JK > 0, the above states with nc = N − 1
(conjugate N) and nc = N (singlet), together with the local
moment in N, form the SU(N) multiplets in • (Kondo singlet)
and N ( ), respectively [see Fig. 5(b-2)]. Written explicitly,
these multiplets are given as

|•〉i := 1√
N

N∑
α=1

|α〉S,i ⊗ |α〉F,i = 1√
N

N∑
α=1

|α〉S,i ⊗ cα
i |f〉F,i

(38a)

when m = N − 1, and

|N; α〉i := |α〉S,i ⊗ |f〉F,i (α = 1, . . . , N ) when m = N,

(38b)
where |α〉S,i denotes the states of the local spin in N. When
nc = N − 1, there is yet another multiplet in the adjoint rep-

resentation (N−1{ ):

|adj; A〉i =
N∑

α,β=1

[GA]αβ |α〉S,i ⊗ |β〉F,i, (39)

which is not allowed energetically in the ground state when JK

is positively large but is necessary for considering the higher-
order corrections in Sec. IV B 2.

It is straightforward to write the expressions of the fermion
operators projected onto the subspace spanned by the above
two states (38a) and (38b), which are given (up to the many-
body fermion sign) by

c̃†
α,i = 1√

N
|N; α〉i〈•|i , c̃α

i = 1√
N

|•〉i〈N; α|i. (40)

Note that they now obey the nonstandard anticommutation
relations {̃

cα
i , c̃β

i

} = {̃
c†
α,i, c̃†

β,i

} = 0,{̃
cα

i , c̃†
β,i

} = 1

N
δβ

α|•〉〈•| + 1

N
|N; α〉〈N; β|.

(41)

We will see in Sec. V that these commutation relations are
closely related to Bose-Fermi supersymmetry.

If we use the following for the fermionic part of the many-
body basis states∣∣iα1

1 , iα2
2 , . . . , iαn

n

〉
F

=
n∏

k=1

(−1)(N−1)ik | . . . 〉F ⊗ |α1〉F,i1 ⊗ · · · ⊗ |α2〉F,i2

⊗ · · · ⊗ |αn〉F,in ⊗ | . . . 〉F ,

(42)

the effective Hamiltonian (up to the first order in t) is given by

− t
N∑

β=1

c̃†
β,i+1c̃β

i | . . . 〉 ⊗ |N; α〉i ⊗ |•〉′i+1 ⊗ | . . . 〉

= − t

N
| . . . 〉 ⊗ |•〉′i ⊗ |N; α〉i+1 ⊗ | . . . 〉, (43a)

− t
N∑

β=1

c̃†
β,ĩc

β

i+1 | . . . 〉 ⊗ |•〉′i ⊗ |N; α〉i+1 ⊗ | . . . 〉

= − t

N
| . . . 〉 ⊗ |N; α〉i ⊗ |•〉′i+1 ⊗ | . . . 〉, (43b)

with |•〉′i now being defined by

|•〉′i := (−1)(N−1)i 1√
N

N∑
α=1

|α〉S,i ⊗ cα
i |f〉F,i. (44)

The extra sign factor (−1)(N−1)i in Eqs. (42) and (44) has been
introduced to eliminate the many-body fermion sign.

IV. FERROMAGNETISM

In this section, we prove that the ground state of the SU(N)
KLM (6) is ferromagnetic in the two regions considered in
the previous section. Before doing so, we first characterize the
ferromagnetic states in SU(N)-symmetric systems in physical
terms. In the ordinary SU(2)-symmetric systems, the standard
intuitive picture of ferromagnetic states is that all the spins
depicted as arrows are aligned in a particular direction. In
general, this simple picture holds only in SU(2) where all the
spin S can be represented by the (symmetrized) product of
2S spin 1

2 s and any S = 1
2 states can be uniquely represented
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(a)

(b) (c)

FIG. 7. Semiclassical (coherent-state) representation of the states
|z〉 of SU(N) “spins” (�) and the corresponding SU(N) moment �S.
Generic configuration (a) and ferromagnetic ones (b), (c). The SU(N)
“spin” moment is represented by an (N2 − 1)-dimensional (real)
vector �S = (S1, . . . , SN2−1) given by SA = z†GAz [see Eq. (56)].

by points on the unit sphere. In SU(N), even a pair of SU(N)
“spins” that are coupled ferromagnetically may not point in
the same direction. Nevertheless, in the situations considered
here (i.e., N-component fermions coupled to N-component
local spins), we can use, instead of the three-component unit
vector in SU(2), a complex unit vector z = (z1, . . . , zN ) to
uniquely specify the state of a single N-component fermion
(for both itinerant and localized fermions);4 the coincidence
of z up to phases means the same SU(N) spin state and the
same spin 〈SA〉 [see Fig. 7(b) and Eq. (56)]. As will be seen
in Sec. IV D, the coherent state |z〉 specified by the complex
vector z coincides with the “fully polarized” state |1〉 = c†

1|0〉
up to SU(N) rotation. Therefore, we may think of the ferro-
magnetic state in the present cases as the one in which all the
constituent SU(N) spins (both itinerant and local; the spins

are treated as made of two ’s) are in the same state, e.g.,
|1〉 [z = (1, 0, . . . , 0); see Fig. 7(c)] and those obtained from
it by applying the SU(N) lowering operators.

A. Ferromagnetism in low-density region 0 < f < 1/N

As we have seen, the strong-coupling effective Hamilto-
nian (33) for large ferromagnetic JK is given by a nonpositive
matrix when t > 0. Of course, as the effective Hamiltonian
(33) preserves the total SU(N) weight, the full effective
Hamiltonian for an L-site system decomposes into several
blocks with respect to the conserved weight �tot. In the fol-
lowing, we consider one of those blocks with a given total
SU(N) weight �tot, which we denote by Heff(�tot; L). To
prove ferromagnetism, we need one more important prop-
erty called irreducibility or indecomposability on top of the
nonpositivity. A given real Hamiltonian matrix H is said ir-
reducible if there exists a sequence of nonzero off-diagonal
matrix elements Hikn−1Hkn−1kn−2 . . .Hk1 j (n � 1) for any pair of
(i, j) (i 
= j). Physically, this implies that repeated application
of H can connect any pair of the initial ( j) and final (i) states.
For simplicity of the argument, we assume the open boundary

4In fact, the state space of an N-component fermion is isomorphic
to CPN−1.

condition.5 Then, it is straightforward to show, by the mathe-
matical induction, that the block Hamiltonian Heff(�tot; L) is
irreducible (see Appendix C for the sketch of the proof).

Now, by the Perron-Frobenius theorem (see, e.g., Ref. [57]
for a physicist-friendly exposition of the theorem), we can
prove that the ground state |�g.s.(�tot )〉 of Heff(�tot; L) is
unique and is given by a superposition of all the possible
tensor products of the states (30a) and (30b) (allowed for the
value of �tot) with strictly positive coefficients. Obviously, the
ferromagnetic states [with the same SU(N) weight �tot] have
a similar sign property, which implies

Pferro(�tot )|�g.s.(�tot )〉 
= 0 (45)

with Pferro(�tot ) being the projector onto the ferromag-
netic states in the subspace with �tot. Since the block
Hamiltonian Heff(�tot; L) commutes with Pferro(�tot ), we im-
mediately see that Pferro(�tot )|�g.s.(�tot )〉 is a ground state
of Heff(�tot; L), which is allowed, by the uniqueness, if and
only if |�g.s.(�tot )〉 ∝ Pferro(�tot )|�g.s.(�tot )〉, i.e., the unique
ground state is ferromagnetic. This generalizes the rigorous
statement for the SU(2) model in Ref. [33] to arbitrary N .

B. Ferromagnetism in high-density region

1. Perculiarity in 1D

Now let us consider the effective Hamiltonian for JK > 0
which describes the dynamics of the mobile spins in the
background of the Kondo singlets •. The first-order effective
Hamiltonian (43a) and (43b) in one dimension (1D) [which
we denote by H(1); see Fig. 5(b-2)] has nonpositive off-
diagonal matrix elements when t > 0. However, when the
open boundary condition is chosen, these off-diagonal ele-
ments simply exchange an adjacent pair of a spin and a
Kondo singlet • without changing the background SU(N) spin
configurations {αk},6 and the lowest-order effective Hamilto-
nian H(1) does not stabilize any particular magnetic orders,
as is well known in the one-dimensional Hubbard model at
U = ∞ [58,59]. Nevertheless, the effective Hamiltonian H(1)

partially resolves the positional degeneracy thereby reducing
the degree of degeneracy ( L

N�
) × NN� [with N� = Nc −

(N − 1)L being the number of spins] down to NN� ; the full
H(1) decomposes into NN� identical diagonal blocks each of
which describes the hopping of N� noninteracting spinless
fermions. By the Perron-Frobenius theorem, the ground state
of each block (with a given fixed spin configuration {αk}) is
unique and constructed by summing up all the possible states
with the same sequence {αk} over the positions of the N�
fermions with strictly positive coefficients.

5In periodic systems, the matrix elements for the hopping across
the boundary acquire an additional fermion sign (−1)Nc−1 (Nc is the
total fermion number in the system). Due to this factor, the condition
for positivity depends explicitly on the parity of the fermion number.

6When the periodic boundary condition is imposed, on the other
hand, cyclic permutation of the spin configurations is allowed [58].
However, it is clear that cyclic permutations do not connect all the
allowed states which still prevents the application of the Perron-
Frobenius theorem. In fact, for finite periodic systems, states other
than ferromagnetic ones can have lower energies.
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This peculiar situation in one dimension is a natural con-
sequence of the equivalence between the one-dimensional
SU(N) KLM (6) and the one-dimensional SU(N) Hubbard
model:

HHubbard = −tH
∑

i

N∑
α=1

{c†
α,ic

α
i+1 + H.c.} + U

∑
i

ni(ni − 1),

(46)
which generalizes the known equivalence [60] in SU(2) to
SU(N). Specifically, the U = ∞ effective Hamiltonian of the
model (46) with tH = t/N for filling 0 � f � 1/N coincides
with that of the JK = ∞ SU(N) KLM for filling 1 − 1/N �
f � 1 [(43a) and (43b)].

The above equivalence still holds with the identification
tH = t/N even in higher dimensions if we treat the spins
as fermions (see Sec. V B for more details). However, the
nonpositivity is nontrivial since we now have complicated
fermion sign factors in front of t . These sign factors are
under control, e.g., when there is only one hole (i.e., Nc =
NN� − 1 with N� being the number of lattice sites). In the
Hubbard language, the fermion number N (KLM)

c = NN� − 1
corresponds to N (Hubbard)

c = N� − 1, i.e., one less fermion
from 1/N filling, at which we expect the SU(N) analog of
the Nagaoka’s ferromagnetism to occur for tH < 0 [20,23]
if the lattice structure is properly chosen. Therefore, we can
borrow the results in the Hubbard model to show that the
ground state of the SU(N) Kondo lattice model in dimensions
greater than 1 is ferromagnetic when there is exactly one hole
Nc = NN� − 1 and the lattice satisfies certain conditions.

2. Higher-order corrections

The first-order effective Hamiltonian H(1) only resolves
the degeneracy in the positions of the spins leaving the
NN� -fold spin degeneracy intact. To lift the huge SU(N)-spin
degeneracy in the JK = ∞ KLM, we need to go to higher
orders in t . We follow the strategy of Ref. [36] and consider
the second-order effective Hamiltonian within the (smaller)
subspace consisting of the ground states of the first-order
Hamiltonian H(1).

We begin with the second-order processes involving two
neighboring sites (see Fig. 8). It is easy to see that these t2

corrections are all diagonal:

|N, α〉i ⊗ |N, b〉i+1 −→ 0, (47a)

|N, α〉i ⊗ |•〉i+1 −→ −
(

1 − 1

N2

)
t2

NJK
|N, α〉i ⊗ |•〉i+1,

(47b)

|•〉i ⊗ |•〉i+1 −→ −N − 1

N + 1

2t2

NJK
|•〉i ⊗ |•〉i+1, (47c)

from which we can read off the effective interactions

2(N − 1)(2N + 1)t2

(N + 1)N3JK

∑
i

ni( )ni+1( )

+ 2(N − 1)
(
N2 − 2N − 1

)
t2

(N + 1)N3JK

∑
i

{
ni( ) − N2

N2 − 2N − 1

}
(48)

(a)

(b)

Kondo singlet

adj.

FIG. 8. Two types of second-order processes occurring on a two-
site pair •−• or N−•. For the N−N pair, second-order processes
are forbidden. The results can be compactly written as a two-body
interaction (48).

with ni( ) = 1 (= 0) when the site i is occupied by (•).
Therefore, to find off-diagonal processes, we need to consider
three-site processes.

At the order of t2, only two types of three-site processes
are possible (see Fig. 9):

(i)
N−1• −

N
� −

N
� t⇒

N
� −

N−1

(adj.) −
N
�

t⇒
N
� −

N
� − N−1• (�E = NJK),

(49a)

(ii)
N−1• − N−1• −

N
� t⇒

N
� −

N−2

(N) −
N
�

t⇒
N
� − N−1• − N−1• [�E = (N + 1)JK].

(49b)

(b)

(a)

adj.

Kondo singlet

FIG. 9. Second-order processes occurring on three consecutive
sites. In the first type, the Kondo singlet moves to the next-nearest-
neighbor (NNN) site with the help of the fermion in the middle site.
This type of hopping includes (a) the three-site processes that can
change the spin states of the two Ns involved [see (50a)] and (b) those
moving the Kondo singlet without changing the background spin
configurations [Eq. (50b)]. The second type is just NNN (correlated)
hopping of N.
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The corresponding matrix elements read as

(i) |•, Nα, Nβ〉

−→ − t2

N2JK
|Nβ, Nα, •〉 + t2

N3JK
|Nα, Nβ, •〉,

(50a)

(ii) |•, •, Nα〉 −→ N − 1

N2(N + 1)JK
t2|Nα, •, •〉, (50b)

where Nα is the shorthand notation for |N; α〉. In the first term
in (50a), a Kondo singlet • and Nβ interchange their positions
with the help of Nα sitting in the middle [Fig. 9(a)], while
in the second, a Kondo singlet • just goes through Nα and
Nβ without disturbing the spin configurations. Obviously, the
type-(ii) processes (50b) do not change the spin configurations
[Fig. 9(b)].

Now we are at the place of constructing the (spin-only)
effective Hamiltonian for the NN� -dimensional subspace of
the spin-degenerate ground states. Let us evaluate the ma-
trix elements of the first term in (50a) that change the spin
configurations. Using the properties of the ground states (of
H1) mentioned in Sec. IV B 1, we readily see that the off-
diagonal matrix elements of the second-order Hamiltonian are
all nonpositive, which allows us to apply the Perron-Frobenius
theorem again to prove that the ground state of the Kondo lat-
tice model (6) for sufficiently large JK(> 0) is ferromagnetic
when t > 0.

C. Effects of residual interactions

A few remarks are in order about the effects of several
terms that existed in the original two-orbital model (1) but
are not explicitly taken into account in the KLM Hamilto-
nian (6). First, we note that what is crucial to the proof of
ferromagnetism is the nonpositivity of the off-diagonal matrix
elements. Therefore, the conclusion does not change even if
we add any kind of diagonal terms (e.g., a nonuniform onsite
potential associated with the harmonic trap) as far as they
do not conflict with the prerequisites of the strong-coupling
expansion.

Also, in deriving the SU(N) KLM (6) in Sec. II A, we have
tentatively dropped the Hubbard U (g) interaction among the
itinerant g fermions

U (g)ni(ni − 1)/2

which may modify the effective Hamiltonians derived in
Secs. III B and III C. When −JK (> 0) is large enough and
0 � f � 1/N , we may keep only the ni = 0, 1 states in which
the Hubbard interaction is identically zero. When JK is anti-
ferromagnetically large and 1 − 1/N � f � 1, only the states
with ni = N − 1 and N are retained. Even in this case, we see
that the Hubbard-U (g) is totally irrelevant if we note

1
2U (g)ni(ni − 1)

= 1
2U (g){ni − (N − 1)}(ni − N ) + (N − 1)U (g)ni

− 1
2 (N − 1)NU (g). (51)

Therefore, we may conclude that none of the residual terms in
(1) destabilize the SU(N) ferromagnetic phases found above.
Of course, when these terms are comparable to or larger than
the Kondo coupling JK which is assumed to be the dominant
energy scale here, we expect other phases, e.g., conventional
density-wave phases and more exotic symmetry-protected
topological phases, to be stabilized [6,61].

D. SU(N) double exchange

In the previous sections, we have rigorously shown that the
strong-coupling ground state of the SU(N) KLM is ferromag-
netic in certain regions of the phase diagram. To understand its
mechanism simply, we try to generalize the double-exchange
mechanism of ferromagnetism put forward in Refs. [30–32]
to SU(N) fermion systems. In order to treat both the itinerant
fermions and the local spins within the same framework, we
regain the orbital indices m = g, e (g for the itinerant fermions
and e for the local spins) used in Sec. II A. We start from the
“fully polarized” state of a local moment (i.e., an immobile e
fermion):

|ψ0〉S,i = c†
e1,i|0〉S = |1〉S,i (52)

which is the SU(N) analog of |↑〉 in SU(2). In fact, the above
reference state is invariant under the U(1) × U(N − 1) (stabi-
lizer) subgroup of U(N) of the form

(
eiθ 0
0 U (N − 1)

)
.

Therefore, only a subset of U(N) that are parametrized by an
(N − 1)-dimensional complex row vector q as

Û (q) = exp[−iM̂(q)] ,

M̂(q) = (c†
e1, . . . , c†

eN )

(
0 q

qT 0N−1

)⎛⎜⎝ce1
...

ceN

⎞⎟⎠ (53)

changes the reference state. Roughly, the (N − 1)-
dimensional vector q plays the same role as the unit vector
� (or the azimuthal and polar angles) in the Bloch coherent
state. The fermion operators in the “rotated” frame are

c̄†
mα (q) = Û (q)c†

mαÛ†(q) =
N∑

β=1

c†
mβ [U (q)]βα,

c̄mα (q) = Û (q)cmαÛ†(q) =
N∑

β=1

[U †(q)]αβcmβ (m = g, e)

(54)
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with the N × N unitary U (q) given by

U (q) = exp

[
−i

(
0 q
q† 0N−1

)]
.

Using these rotated operators, the coherent state of the local
spin at site i is defined by

|qi〉S,i := c̄†
e1,i|0〉S = Û (qi )|ψ0〉S,i

=
N∑

β=1

[U (qi )]β1|β〉S,i =:
N∑

β=1

[z(qi )]β |β〉S,i. (55)

The N-dimensional complex vector z(qi ), which appeared at
the beginning of Sec. IV, is given by the first column vector
of U (qi ) and satisfies |z(qi )| = 1. This is the SU(N) general-
ization of the Bloch coherent state

|�i〉 = e−i χi
2

{
e−i φi

2 cos
θi

2
|↑〉 + e+i φi

2 sin
θi

2
|↓〉

}

in which the role of the reference state |ψ0〉 is played by
|↑〉. Instead of the vector spin �i(φi, θi ), we use the complex
unit vector z(qi ) to specify the state |qi〉S,i of the local SU(N)
moment at site i. In the semiclassical approximation, we treat
the complex vector z(qi ) as the classical variable which we
can fix at will like the classical vector spin. Specifically, we
approximate the local (quantum) SU(N) spins SA

i by a set of c
numbers

SA(qi ) = 〈qi|SA
i |qi〉 = z†(qi )G

Az(qi ) (56)

[with GA being the N × N SU(N) generators defined in
Sec. II]. The exchange interaction between two such semi-
classical spins

∑
A

SA(pi )S
A(qi ) = |z∗(pi )·z(qi )|2 − 1/N

attains its (exact) maximal value (1 − 1/N ) when z(pi ) =
z(qi ) up to a phase, i.e., when the two spins are coupled
ferromagnetically: SA(pi ) = SA(qi ). Therefore, when JK <

0, the strong Kondo coupling forces the itinerant and lo-
cal spins on the same site to be parallel to each other.
For the antiferromagnetic JK (> 0), on the other hand, the
Kondo energy is minimized for any configurations satisfying
z∗(itinerant)·z(local) = 0. This implies that when N � 3, the
direction of the itinerant spin is not determined even if we fix
the local moment.

Now let us consider the hopping term. To this end, working
with the itinerant (g) fermion in the same q frame as the
local spin is convenient. Clearly, the α = 1 component c̄g1,i

of the rotated fermions corresponds to the direction of the
local spin SA(qi ). With the help of Eq. (54), we can express
the original hopping term by the rotated fermions c̄gα,i(qi ),
and the resulting expression contains all the possible hopping
processes (including the off-diagonal ones) c̄†

gα,i c̄gβ,i+1 with
the matrix elements

−t[U †(qi )U (qi+1)]αβ.

The effect of the strong ferromagnetic Kondo coupling is
taken into account by keeping only the α = β = 1 component
which is “parallel” to the local spin7:

−t
∑

i

{[z†(qi )·z(qi+1)]c̄†
g1,ic̄g1,i+1 + H.c.}. (57)

The matrix element can also be written as the overlap
〈qi|qi+1〉S between the local-spin states (55) on the neigh-
boring sites. Clearly, the hopping amplitude |z†(qi )·z(qi+1)|
of the fermions parallel to the local SU(N) spin SA(qi ) is
optimized when z(qi ) = z(qi+1) up to a phase, i.e., when the
system is ferromagnetic: SA(qi ) = SA(qi+1) [see Fig. 7(b)].
This is the generalization of the double-exchange mechanism
of ferromagnetism in Refs. [30–32] to SU(N). Our proof for
JK < 0 tells that this simple argument can be made rigorous in
one dimension without relying on the semiclassical approxi-
mation.

Difference between SU(N = 2) and SU(N � 3) becomes
manifest in the antiferromagnetic case JK > 0. In fact, when
N = 2, we can easily generalize the above mechanism to the
case of antiferromagnetic JK by keeping itinerant fermions
antiparallel to the local moments. However, as strong JK alone
no longer fixes the relative direction between the itinerant
fermion and the local moment for N � 3, the simple double-
exchange scenario breaks down when JK > 0. Nevertheless,
ferromagnetism occurs in the large-JK(> 0) SU(N) KLM as
we have shown rigorously in Sec. IV B.

V. SUPERSYMMETRY

In Sec. III, we have seen that the strong-coupling effective
Hamiltonian contains two local degrees of freedom: two types
of mobile spins and when JK < 0, or • and when
JK > 0 [see Figs. 5(a-2) and 5(b-2)]. In the case of JK > 0,
for instance, each site can take two different SU(N) states
• (which may be viewed as a hole) and (a particle). As
has been mentioned there, the creation and annihilation op-
erators associated with these two (particle and hole) states
no longer obey the standard anticommutation relations for
fermions [see Eq. (41)]. The situation is more involved when
JK < 0 as is expected from Eq. (32). Nevertheless, we can
regard these mobile spins as a kind of fermionic particles, and
the boson-fermion supersymmetry SU(N |1) provides us with
a convenient framework to handle these particles in a unifying

7When JK is antiferromagnetic, the condition of the minimal Kondo
coupling z∗

c,i·z(qi ) = 0 does not favor a particular direction of the
fermion state z∗

c,i and the following argument fails.
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way [a quick summary of the super Lie algebra SU(N |1) is
given in Appendix D].

A. Supersymmetric SU(N) t-J model

The super Lie algebra SU(N |1) consists of N2 bosonic [see
Eq. (D1)] and 2N fermionic [Eq. (D2)] generators satisfying
particular algebraic relations (D4a)–(D4d). The state vector of
the simplest (N + 1)-dimensional irreducible representation
decomposes into two parts; the first N components and the
last one of the state vectors correspond to two different SU(N)
representations N ( ) and the singlet (•), respectively [see
Eq. (D1)]. The N2 bosonic generators are all block diagonal
with respect to these two sectors, while the 2N fermionic ones
bring about the transitions between them.

The simplest SU(N |1)-symmetric interaction can be found
by considering the quadratic Casimir (D6) which is a super-
Lie-algebraic analog of S2 in SU(2):

C2 =
N2−1∑
A=1

SASA − 1

N (N − 1)
K2 −

N∑
α=1

(QαQ̃α − Q̃αQα )

with the bosonic generators X = SA,K (A = 1, . . . , N2 − 1)
and the fermionic ones X = Qα, Q̃α (α = 1, . . . , N) given,
respectively, by Eqs. (D1) and (D2). Then, it is straightforward
to write the SU(N |1)-symmetric interaction as

C2(Xi + X j )

= C2(Xi ) + C2(X j ) − 2
N∑

α=1

(Qα,iQ̃α, j − Q̃α,iQα, j )

+ 2

⎧⎨⎩
N2−1∑
A=1

SA
i SA

j − 1

N (N − 1)
KiK j

⎫⎬⎭, (58)

where the constant C2(X ) = N (N−2)
N−1 . Depending both on the

irreducible representation we use and on how the local de-
grees of freedom realize in specific physical systems, the
Hamiltonian (58) describes different physical situations. For
instance, if we use the simplest (N + 1)-dimensional repre-
sentation and identify the first N and the last one components
as describing a fermionic particle carrying the SU(N) spin
and a hole, respectively, Qα (Q̃α) creates (annihilates) the
particle; the term Qα,iQ̃α, j − Q̃α,iQα, j simply expresses the
hopping of the spin, and the model (58) describes interacting
(fermionic) particles hopping in the background of holes
(•). Typically, this situation occurs in the U = ∞ SU(N)
Hubbard model. In this simplest realization, the model (58)
is known as the supersymmetric SU(N) t-J model [62–64]
which is an SU(N)-generalization of the usual supersymmet-
ric t-J model for N = 2 [65,66]. Thanks to the exact solution,
low-energy physics is well understood and is known to be
described by the N-component U(1) × SU(N )1 Tomonaga-
Luttinger liquid [63].

B. Antierromagnetic Kondo coupling

To realize a supersymmetric model in the strong-coupling
limit of the antiferromagnetic SU(N) KLM, we first need to
identify the projected fermion operators c̃†

α,i and c̃α
i (40) with

TABLE II. Interpretation of the SU(N) and SUSY states in
terms of fermionic states. In the ground-state subspace, the projected
fermion number ñ takes N − 1 and N .

Fermionic states ñ SU(N) irreps (nF, nB)

|f〉F,i N |N; α〉i ( ) (1,0)
|α〉F,i = cα

i |f〉F,i N − 1 |•〉i (Kondo singlet) (0,1)

the fermionic generators (D2) of SU(N |1). The idea is to
combine the N states (|N; α〉) with a spin occupying the site
and the Kondo singlet (|•〉) into a single (N + 1)-component
multiplet. Looking at the structure of the SU(N |1) representa-
tion (D9), we see that the n = 1 case of the F-B construction
(D7a) and (D7b) works. Specifically, we identify the states
|N; α〉 and the Kondo singlet |•〉 with the states with the
boson-fermion occupation (nF, nB) = (1, 0) and (nF, nB) =
(0, 1), respectively (see Table II; this seems quite natural from
the original spirit of the slave-boson construction [67]). The
commutation relations (D4c) suggest us to identify

Qα ↔ c̃†
α , Q̃α ↔ c̃α (α = 1, . . . , N )

up to an overall factor. If we assign the states |N; α〉 (α =
1, . . . , N) to the first N components, and the Kondo singlet |•〉
to the (N + 1)th component [note that the SU(N) singlet |•〉
here is not necessarily the same as the physical Kondo singlet
|•〉′], the anticommutator (D4b) reads as [use (D5)]

{Qα, Q̃β} = |N; α〉〈N; β| + δβ
α|•〉〈•|. (59)

If we identify the many-body basis states

| . . . 〉 ⊗ |N; αi1〉i1 ⊗ | . . . 〉 ⊗ |N; αi2〉i2 ⊗ · · ·

(where | . . . 〉 stands for the product of the physical Kondo
singlets |•〉′i) in Eqs. (43a), (43b), and (44) with the states

Qαi1 ,i1Qαi2 ,i2 . . . |•〉⊗L,

all the sign factors arising from the anticommutation of the
original fermions c†

α,i and cα
i are taken into account by that

of Qα,i and Q̃α,i on different sites. With this identification, we
see that the fermionic generators {Qα,i, Q̃α,i} are related to the
projected fermion operators as

Qα,i = (−1)N−1
√

N c̃†
α,i, Q̃α,i = (−1)N−1

√
N c̃α

i , (60)

which correctly reproduces (41) from (59). The bosonic gen-
erator Ki essentially counts the number of the Kondo singlets
at site i [multiplied by a factor (N − 1)] which physically
corresponds to that of holes:

Ki = 1 + (N − 1)|•〉〈•|i = 1 + (N − 1)(N − ñi )

= (N2 − N + 1) − (N − 1)ñi (ñi = N − 1, N ). (61)

The bosonic SU(N) spin operators SA are given in Eq. (D1).
Using the relations (60) and (61), we see that the follow-

ing effective Hamiltonian at the special point J = t/N is
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SU(N |1) symmetric:

H(AF)
SUSY = −t

∑
i

N∑
α=1

(c̃†
α,ic̃α,i+1 + c̃†

α,i+1c̃α,i )

+ J
∑

i

⎧⎨⎩
N2−1∑
A=1

SA
i SA

i+1 − N − 1

N
ñiñi+1

⎫⎬⎭
+ 2(N2 − N + 1)

N2
t
∑

i

ñi + const. (62)

The two terms in the second line do not exist in the effec-
tive Hamiltonian of the usual SU(N) KLM (6). In fact, the
local SU(N) spin SA projected onto the ground-state subspace
spanned by the states (38a) and (38b) is either 0 (when the
site is occupied by the Kondo singlet) or SA( ) = GA (when
the site is in ). This perfectly fits the form of the SU(N |1)
generators SA in Eq. (D1):

SA proj−−→ S̃A =
(

SA( ) 0
0 0

)
= SA. (63)

Therefore, the first term is obtained just by projecting the
Heisenberg interaction among the local spins:

JH SA
i SA

j
proj−−→ JH SA

i SA
j .

The second is provided by an attractive interaction between
the fermions at sites i and j. Summarizing all these, we
conclude that the supersymmetric interaction (62) is obtained
in the JK = ∞ limit of the (generalized) Kondo-Heisenberg
model (8):

HKHM = −t
∑

i

N∑
α=1

(c†
α, icα, i+1 + H.c.)

+ JK

∑
i

⎛⎝N2−1∑
A=1

ŝA
i SA

i

⎞⎠+ JH

∑
i

⎛⎝N2−1∑
A=1

SA
i SA

i+1

⎞⎠
+ V

∑
i

nini+1

with

JH = t

N
, V = −N − 1

N2
t . (64)

A few remarks are in order about the supersymmetric point.
By construction, it is obvious that the supersymmetric interac-
tion (58) is defined with respect, not to the physical operators
(e.g., c†

α , cα), but to the supersymmetry (SUSY) generators
{SA,K,Q, Q̃}. Therefore, depending on how we identify the
SU(N |1) generators with the physical operators (and how we
define the local degrees of freedom), the resulting supersym-
metric models may be different. For instance, if we realize
the SU(N) t-J model (62) in the large-U limit of the SU(N)
Hubbard model in which multiply occupied sites are projected
out, we have different relations Qα = c̃†

α and Q̃α = c̃α instead
of (60). Plugging these into Eq. (58), we see that now J = t

TABLE III. Correspondence among fermionic states, SU(N)-
spin, and SUSY representation.

Fermionic states ñ SU(N) spin states (nB, nF)

|α〉F,i = c†
α,i|0〉F,i 1 |(α, β )〉i ( ) (2,0)

|0〉F,i 0 |N; α〉i ( ) (1,1)

corresponds to the supersymmetric point.8 On the other hand,
the exchange interaction is given by J = 2t2/U which must
be much smaller than t . In this sense, the supersymmetric
model (derived from the large-U Hubbard model) with J = t
seems unrealistic. However, when we use the large-JK limit of
the SU(N) Kondo-Heisenberg model (8) to realize the same
SU(N) t-J model, the supersymmetric point corresponds to
J = JH = t

N (< t ), which seems more feasible.

C. Ferromagnetic Kondo coupling

When JK is ferromagnetically large, the effective Hamilto-
nian contains the two types of mobile spins and instead
of and the Kondo singlets • for JK > 0. Accordingly, the
local SU(N) spin operators are given either by SA( ) or by
SA( ). To describe these two states on an equal footing,
we now use SU(N |1) in the “B-F” (or, slave-fermion) con-
struction (D10a) and (D10b) with the total particle number
n = nB + nF = 2, in which the boson-fermion occupations
(nB, nF) = (2, 0) and (nB, nF) = (1, 1) correspond to the
states and , respectively [see Eq. (D12)]. The correspon-
dence among the (projected) fermion number ñ, the SU(N)
representations, and the SU(N |1) states is summarized in
Table III.

As in the previous section, we begin with identifying the
projected fermion operators (32) with the fermionic genera-
tors Q and Q̃ in the n = 2 representation which is different
from the one used in the previous section. Using (D13a) and
(D13b), we can write the matrix elements of the fermionic
generators that create the spin out of as

Qα =
√

2 |(α, α)〉〈N; α|
+
∑
β>α

|(α, β )〉〈N; β| +
∑
β<α

|(β, α)〉〈N; β|

= Q̃†
α, (65)

which immediately enables us to identify

Qα,i =
√

2 c̃†
α,i, Q̃α,i =

√
2 c̃α

i . (66a)

This is natural since c†
α,i (cα

i ) creates (annihilates) the
particles. The two bosonic generators are now given in terms
of the physical operators by

SA
i =

(
SA

i ( ) 0
0 SA

i ( )

)
(66b)

8If we normalize the SU(N) generators as Tr(SASB ) = δAB/2, the
condition reads as J = 2t which is well known in the SU(2) litera-
ture.
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[with SA
i ( ) being the SU(N) generator in the [N (N + 1)/2]-

dimensional representation ] and

Ki = nB + NnF = (N + 1) − (N − 1)ñi

=
(

2 × 1N (N+1)/2 0
0 (N + 1) × 1N

)
,

(66c)

where we have used nB + nF = 2 and nB = ñi + 1 (with the
local c-fermion number ñi = 0, 1). Out of these generators,
we can readily construct the supersymmetric Hamiltonian
(58):

H(FM)
SUSY = −t

∑
i

N∑
α=1

(
c̃†
α,i c̃

α
i+1 + c̃†

α,i+1c̃α
i

)

+ J
∑

i

⎧⎨⎩
N2−1∑
A=1

SA
i SA

i+1 − N − 1

N
ñiñi+1

⎫⎬⎭
+ N + 1

N
t
∑

i

ñi + const (67)

with J = t/2. This looks the same as (62) except that now
the particles created or annihilated by c̃†

α,i and c̃α
i are

spins embedded in the background [see Fig. 5(a-2)]. Cor-
respondingly, the supersymmetric point in the physical model
is shifted: J = t/N (AF) → t/2 (FM). Interestingly, the two
supersymmetric models (62) and (67) emerge from the same
Kondo-Heisenberg model depending on the sign of JK and
filling ( f = 1/N or 1 − 1/N).

The origin of the interactions other than the spin exchange
is obvious. One may think that, as in the antiferromagnetic
case, the spin exchange SA

i SA
i+1 comes from the spin-spin

interaction (JH) among the local spins. However, as the local
SU(N) spin SA acts differently on the two local degrees of
freedom ( and ), its projected expression is now given by
[see Eq. (63)]

S̃A
i =

(
1
2 SA

i ( ) 0
0 SA

i ( )

)
(68)

which is different from the generator SA
i appearing in (67)

[see Eq. (66b) for the definition of SA
i ]. Therefore, to realize

the supersymmetric interaction, we need to slightly modify
the JH interaction in the Kondo-Heisenberg model (8) in such
a way that it includes diagonal (i.e., off-site) Kondo couplings
as well:

JH

∑
i

⎛⎝N2−1∑
A=1

SA
i SA

i+1

⎞⎠
→ JH

∑
i

⎧⎨⎩
N2−1∑
A=1

(
ŝA

i + SA
i

)(
ŝA

i+1 + SA
i+1

)⎫⎬⎭. (69)

Then, setting

JH = t

2
, V = −N − 1

2N
t (70)

and JK = −∞ in the generalized Kondo-Heisenberg model
(8) realizes the supersymmetric model (67).

Unfortunately, the behavior of the “higher-spin” SU(N) t-J
model (67) is not known except at J = 0 where we have
rigorously established in Sec. IV A that the ground state is
ferromagnetic. The inclusion of the J (> 0) term that favors
antiferromagnetic correlation may destabilize the ferromag-
netic ground state as in the N = 2 case [68,69]. In this sense,
the supersymmetric point at which the two tendencies com-
pete might play a special role and the search for the exactly
solvable supersymmetric “spin” Hamiltonians [70–72] would
be interesting.

VI. SUMMARY AND DISCUSSION

In this paper, we have considered the ground state of the
SU(N) Kondo lattice model with the local spins in the N-
dimensional defining representation ( ) for sufficiently strong
Kondo coupling. Specifically, we have shown rigorously that
the ground state of the one-dimensional model (with open
boundary condition) for fillings 0 < f < 1/N (when JK < 0)
and 1 − 1/N < f < 1 (when JK > 0) is ferromagnetic. The
corresponding ferromagnetic states are shown schematically
in Figs. 10(b) and 10(c). The proof is based on the Perron-
Frobenius theorem on the spectral properties of irreducible
nonpositive matrices. In higher dimensions, we can make
a similar statement on ferromagnetism, e.g., when there is
precisely one fewer fermion from the commensurate filling
f = 1/N or 1. We can also treat the problem with one fermion
or one hole exactly for any JK 
= 0 (i.e., without relying on
the strong-coupling limit) to prove the ferromagnetic ground
states. Therefore, in the extreme limits f → 0 (JK < 0) and
f → 1 (JK > 0), the ferromagnetic phases are expected to
persist down to JK → ±0 (see Fig. 11). For the situation con-
sidered in this paper, we can generalize the double-exchange
scenario to SU(N) with due complication, which semiclassi-
cally explains the occurrence of ferromagnetism for JK < 0.
Considering the large positive scattering g-e length of 173Yb
which suggests a large ferromagnetic JK, 173Yb would be a
promising system to test the SU(N) double-exchange mecha-
nism in the strongly coupled KLM.

At the special filling fractions f = 1/N and 1 − 1/N , the
system is insulating. When f = 1 − 1/N and JK � t , the sys-
tem is a spin-gapped insulator, which is the SU(N) analog of
the well-known Kondo insulator in the usual SU(2) KLM at
half-filling. On the other hand, in the insulating phase at f =
1/N and −JK � t , the behavior of the spin sector depends on
the parity of N ; the spin correlation is algebraic (exponentially
decaying) when N = odd (N = even). The schematic phase
diagram that summarizes the main results of this paper is
given in Fig. 11.

As has been seen in Sec. III, the low-energy physics at
strong coupling is described by two different degrees of free-
dom [Kondo singlets and mobile N spins for JK > 0, and
mobile two species of spins N ( ) and for JK < 0]. We
have found that the language of super Lie algebra SU(N |1)
perfectly fits into these situations and can describe the low-
energy processes in a natural way. In fact, for particular sets
of parameters, we can realize the supersymmetric models in
the limit of strong Kondo coupling. The resulting conditions
for supersymmetry are milder (or more realistic) than the one
known for the t-J model.
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(a)

(b)

(c)

singlet

fermion

“hole”

Kondo singlet

“hole”

FIG. 10. Ferromagnetic ground states established here (for N =
3). (a) A generic configuration and (b) the ferromagnetic ground
state for JK > 0. For the total “hole” number 0 � Nh � L (Nh =
NL − Nc), the same number of the local spins are quenched by
forming the Kondo singlets and only the surviving L − Nh un-
quenched moments (colored in red) form the ferromagnetic state.
(c) Ferromagnetic ground state for JK < 0 and total fermion number
Nc (0 � Nc � L), in which both Nc itinerant and L local spins
participate in ferromagnetism.
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APPENDIX A: YOUNG DIAGRAMS AND SU(N)
REPRESENTATIONS

In this Appendix, we give a quick explanation of what the
Young diagrams stand for in physical terms. Let us first intro-
duce the fundamental representations that are building blocks
of all possible irreducible representations. There are N − 1
fundamental representations Rn each of which is realized by
a fixed number n(= 1, . . . , N − 1) of N-colored fermions c†

α

(α = 1, . . . , N) [the two cases n = 0, N correspond to SU(N)
singlet and are trivial]. The n-fermion representation Rn is
spanned by the states of the form (the brackets [. . . ] stand for
antisymmetrization)

|[α1,...,αn]〉 := c†
α1

c†
α2

. . . c†
αn

|0〉F (A1)

and has dimensions N!
(N−n)!n! . If necessary, we can easily

calculate the corresponding matrix representation using the
second-quantized generators similar to (3). We assign the
following single-column Young diagrams

Rn : n

⎧⎪⎪⎨⎪⎪⎩ (n = 1, . . . , N − 1) (A2)

to these representations. By construction, the n boxes in the
same column are antisymmetrized. The simplest of them is
the N-dimensional representation which is spanned by the
following N single-fermion (n = 1) states:

|α〉 := c†
α|0〉F (α = 1, . . . , N )

and has been used for the local spins of the models (6) and (8).
The conjugate representation Rn of Rn is obtained by

applying the particle-hole transformation:

|[α1,...,αn]〉 := cαn . . . cα1 |f〉F

= 1

(N − n)!

∑
{βi}

εα1...αnβn+1...βN | [βn+1,...,βN ]︸ ︷︷ ︸
N−n

〉

(|f〉F = c†
1 . . . c†

N |0〉F).

As the right-hand side transforms like RN−n, the conjugation
transforms the Young diagram as

n

⎧⎪⎪⎨⎪⎪⎩ (Rn)
conjugate−−−−→ N−n

{
(Rn = RN−n). (A3)

Clearly, the N one-hole states

|α〉 = cα|f〉F = (−1)α−1
∏
β 
=α

c†
β |0〉F (α = 1, . . . , N )

appearing in Eq. (37) span the conjugate R1 of the one-
fermion representation R1 ( ).
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FIG. 12. The Young diagram corresponding to the SU(N)
irreducible representation specified by the Dynkin labels
(d1, d2, . . . , dN−1).

The generic irreducible representations are constructed by
tensoring the N − 1 fundamental representations Rn:

R⊗d1
1 ⊗ · · · ⊗ R⊗dN−1

N−1 . (A4)

In doing so with fermions, we need to introduce an ad-
ditional degree of freedom (“flavor”) on top of the color
α(= 1, . . . , N). The set of non-negative integers (Dynkin
labels) (d1, . . . , dN−1) uniquely specifies the irreducible rep-
resentation. The Young diagram corresponding to a generic
representation (d1, . . . , dN−1) is made of d1 length-1 columns,
d2 length-2 ones, and so on (see Fig. 12). In SU(2), only the
representations of the form

︸ ︷︷ ︸
2S

are allowed and the number of boxes d1 = 2S suffices to label
them.

For example, the diagram

stands for the representation (2, 1, 0, . . . , 0), while the adjoint
representation (1, 0, . . . , 0, 1) under which the SU(N) gener-
ators transform is specified as

N−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ . (A5)

The conjugate of a given representation is obtained by ap-
plying the rule (A3) to each column of the corresponding
Young diagram and then rearranging the columns into the
correct form. For instance, the adjoint representation (A5) is
self-conjugate.

APPENDIX B: SU(N) KONDO ENERGY

In this Appendix, we explicitly calculate the Kondo energy

eK = JK

N2−1∑
A=1

ŝA
i (RF)SA

i (RS)

when the itinerant fermions and the local spin are in the
SU(N) spin states RF and RS, respectively. In this paper, we

only consider the case with RS = , and, when there are nc

fermions,

RF = nc

⎧⎨⎩ .

The Kondo energy is conveniently calculated by using the
quadratic Casimir C2(R) = ∑

A SA(R)SA(R) which is essen-
tially the squared spin:

C2(RF,RS) =
N2−1∑
A=1

{ŝA(Rc) + SA(RS)}2

= C2(RF) + C2(RS ) + 2
N2−1∑
A=1

ŝA(RF)SA(RS),

(B1)

where C2 is given explicitly by

C2(λ) =
N−1∑
i, j=1

(m + e)i(K
−1)i j (m + e) j − 1

12
N (N2 − 1),

(B2)
where the (N − 1) × (N − 1) matrix K−1 is the inverse of the
Cartan matrix:

(K−1)i j =
{

1
N i(N − j) for i � j,

1
N (N − i) j for i > j

(B3)

and

e := (1, 1, . . . , 1)︸ ︷︷ ︸
N−1

.

The vector m is the collection of the Dynkin label mi [m =
(m1, . . . , mN−1)] which is the number of length-i columns in
the Young diagram. For instance,

nc

⎧⎨⎩ ⇔ m = (2, 0, . . . , 0, 1
nc

, 0, . . . , 0).

For the fermion density nc (i.e., nc fermions per site, or filling
f = nc/N), we need the following decomposition:

nc

⎧⎨⎩︸ ︷︷ ︸
itinerant

⊗ ︸︷︷︸
local spin

∼ nc+1

⎧⎪⎪⎨⎪⎪⎩ ⊕ nc

⎧⎨⎩
(1 � nc � N − 1).

(B4)

The cases nc = 0 and N correspond, respectively, to the empty
and doubly occupied sites in the usual SU(2) Kondo lattice
and are trivial:

•︸︷︷︸
itinerant

⊗ ︸︷︷︸
local spin

∼ (nc = 0, N ). (B5)

The values of the quadratic Casimir for the representations
appearing in (B4) and (B5) are

C2( ) = 1

N
(N2 − 1) (defining rep), (B6a)
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C2

⎛⎜⎜⎝nc+1

⎧⎪⎪⎨⎪⎪⎩
⎞⎟⎟⎠ = N + 1

N
(nc + 1){N − (nc + 1)}

[antisymmetric (nc + 1) tensor],

(B6b)

C2

⎛⎝nc

⎧⎨⎩
⎞⎠

= nc + 1

N
{N[N − (nc + 1)] + [3N − (nc + 1)]}

(1 � nc � N − 1).

(B6c)

From these, the Kondo energy (19) is readily calculated as

eK = −N + 1

N
ncJK for nc+1

⎧⎪⎪⎨⎪⎪⎩ ,

eK =
(

1 − nc

N

)
JK for nc

⎧⎨⎩ (1 � nc � N − 1),

eK = 0 (nc = 0, N ).
(B7)

As is shown in Fig. 3, the Kondo energy eK is concave at nc =
1 (when JK < 0) or nc = N − 1 (when JK > 0), and except
there it is linear in nc.

APPENDIX C: IRREDUCIBILITY OF THE HAMILTONIAN

In this Appendix, we sketch the proof of the irreducibility
of the one-dimensional effective Hamiltonian (33). The proof
is based on mathematical induction with respect to the system
size L(� 2) [69]. Suppose that the Hamiltonian is irreducible
for a system sizes L = L0, and for all values of Nc (1 � Nc �
L0 − 1) and any total weights �tot allowed for L0 and Nc.
Since the Hamiltonian is identically zero when Nc = 0 (no
fermion to move) and when Nc = L0 (no hole to move), we
must exclude these cases as trivial.

To find the connectivity structure, we group the basis states
of the (L0 + 1)-site system [with the total SU(N) weight �tot

and the fermion number 1 � Nc � L0] according to the states
at the site (L0 + 1):

(i) |{λi}; α〉i1,i2,...,iNc

=
∣∣∣i1, i2, . . . , iNc ; {λi}∑L0

i=1 λi=�tot−λα

〉
⊗ | ; λα〉L0+1

(α = 1, . . . , N ),

(ii) |{λi}; (α, β )〉i1,i2,...,iNc−1,L0+1

=
∣∣∣i1, i2, . . . , iNc−1; {λi}∑L0

i=1 λi=�tot−λα−λβ

〉
⊗ ∣∣ ; λ̃(α,β )

〉
L0+1 (1 � α � β � N ),

(C1)

where the sequence {i1, i2, . . . , iNc} specifies the positions
of fermions (i.e., those of spins), and the set of the

(a)

)c()b(

FIG. 13. Graphical representation of the connectivity introduced
by the hopping between L0 and (L0 + 1) for (a) N = 2, (b) N = 3,
and (c) N = 4. The N (N + 3)/2 groups of the basis states in (C1) are
represented by the vertices (both red and blue). By the assumption,
all the states within each group are connected to each other by the
L0-site Hamiltonian. The hopping between the sites L0 and L0 + 1
introduces the edges connecting these vertices (see the text for how
these graphs are drawn).

local SU(N) weights {λi} (i = 1, . . . , L0) satisfies
∑L0

i=1 λi +
λL0+1 = �tot (λL0+1 = λα, λ̃(α,β ); λ̃(α,β ) = λα + λβ). In (i),
all the Nc fermions are contained in the L0-site subsystem,
while in (ii), one of the fermions is sitting at site (L0 + 1).

When the hopping between the sites L0 and (L0 + 1) is
absent, the effective Hamiltonian assumes a block-diagonal
form, in which each of the block matrices is irreducible
by the assumption except for Nc = 1 and L0.9 We denote
these N (N + 3)/2 diagonal blocks by Bα (α = 1, . . . , N) and
B(α,β ) (1 � α, β � N). When the hopping between L0 and
(L0 + 1) is switched on, the following transitions are allowed:

|{λi}; α〉i1,i2,...,iNc−1,iNc =L0

→
N∑

β=1

|{λ′
i}; (α, β )〉i1,i2,...,iNc−1,L0+1

× [λ′
i = λi (i = 1, . . . , L0 − 1), λ′

L0
= λL0 − λβ],

|{λi}; (α, β )〉i1,i2,...,iNc−1(<L0 ),L0+1

→
∑

γ

|{λ′
i}; γ 〉i1,i2,...,iNc =L0

(γ = α, β when α 
= β, γ = α when

α = β;
L0∑

i=1

λ′
i = �tot − λγ ), (C2)

where we have omitted the nonzero numerical coefficients.
The new connectivity structure introduced by the hopping be-
tween the sites L0 and (L0 + 1) may be best visualized by the
graphs shown in Fig. 13. To construct the graph representing
the connectivity among the N (N + 3)/2 groups of basis states,
we first draw a complete graph made of N vertices (colored in
pink) α = 1, . . . , N , in which each vertex represents one of

9When Nc = 1, B(α,β ) are not irreducible, while when Nc = L0, Bα

is not. Therefore, these two cases must be treated separately.
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the type-(i) groups of states in (C1) and is associated with the
block matrices Bα . By the assumption, all the states contained
in the vertex α are connected to each other by the action of Bα .
Then, on the edges (α, β ) (α < β), we add N (N − 1)/2 new
vertices (α, β ) (colored in blue) corresponding to the type-
(ii) basis states in (C1). Last, we add N new vertices (α, α)
(α = 1, . . . , N) and connect them to the vertices α. Obviously,
all the vertices are connected, which immediately means that
any given basis state of the form (C1) can be transferred to an
arbitrary state by the action of the Hamiltonian except when
Nc = 1, L0.

The two exceptional cases Nc = 1 and L0 can be handled
without relying on the induction. In fact, in the above two
cases we use strings of (projected) hopping operators to re-
alize SU(N) “spin flips” on a pair of distant sites that allow
us to transform any given state to an arbitrary one. Therefore,
we see that the effective Hamiltonian (33) is irreducible in the
(L0 + 1)-site system as well, which completes the proof.

APPENDIX D: SUPERSYMMETRY SU(N|1)

In Eq. (41), we have seen that the fermion operators (40)
projected onto the subspace spanned by the Kondo singlet |•〉i

and the fully occupied state |N; α〉i do not obey the standard
anticommutation relations. In fact, they satisfy the anticom-
mutation relations of the fermionic generators of the super
Lie algebra SU(N |1) [for a quick introduction to SU(N |1), see
Appendix A of Ref. [73]].

1. Definition

The superalgebra SU(N |1) consists of N2 bosonic and 2N
fermionic generators. The bosonic generators are given by the
following (N + 1) × (N + 1) block-diagonal matrices:

SA =
(

GA 0
0 0

)
(A = 1, . . . , N2 − 1),

K =
(

1N 0
0 N

)
(D1)

with GA being the SU(N) generators in the defining represen-
tations N which are normalized as

Tr(GAGB) = δAB.

On top of the above N2 bosonic generators, there are 2N
fermionic ones:

Qα :=
(

0N τα

01×N 0

)
, Q̃α :=

(
0N 0N×1

(τα )T 0

)
(α = 1, . . . , N ),

(D2)

where the N-component column vector τα1 has only one
nonzero entry:

τα = (0, . . . , 0, 1
α
, 0 . . . , 0)T (D3)

and hence Q̃α = (Qα )T holds. Physically, the fermionic gen-
erators bring about transitions between the first N × N block
and the second one-dimensional one.

The above generators satisfy the following algebra:

[SA,SB] = i f ABCSC, [K,SA] = 0, (D4a)

{Qα,Qβ} = {Q̃α, Q̃β} = 0,

{Qα, Q̃β} = [GA]βαSA + 1

N
δαβK, (D4b)

[SA,Qα] = Qβ[SA]βα,

[SA, Q̃α] = −Q̃β[SA]αβ = Q̃β[−(SA)T]βα, (D4c)

[K,Qα] = −(N − 1)Qα , [K, Q̃α] = (N − 1)Q̃α.

(D4d)

It is helpful to write the right-hand side of (D4b) explicitly in
the matrix form

[GA]βαSA + 1

N
δαβK =

(
eαβ 0
0 δαβ

)
, (D5)

where the N × N matrices eαβ (α, β = 1, . . . , N) are defined
by [eαβ]i j = δiαδ jβ . Out of the above N (N + 2) generators,
we can construct the quadratic Casimir as

C2 =
N2−1∑
A=1

SASA − 1

N (N − 1)
K2 −

N∑
α=1

(QαQ̃α − Q̃αQα ).

(D6)

2. Fock representations

a. Abrikosov construction (slave boson)

There are two different ways to realize the SU(N |1) algebra
(D4a)–(D4d) in terms of bosons and fermions. One is to use N
species of (ordinary) fermions { f †

α } and one species of boson
b (construction “F-B”) which is known as the slave-boson
representation [67]:

ŜA = f †
α [SA]αβ fβ, K̂ = nF + NnB, (D7a)

Q̂α = f †
α b ,

̂̃Qα = b† fα (α = 1, . . . , N ), (D7b)

where the fermion and boson numbers are defined by nF =∑
α f †

α f α and nB = b†b, respectively. Obviously, n := nF +
nB is conserved and can be used to label irreducible repre-
sentations of SU(N |1). In fact, the quadratic Casimir in (D6)
is given by

CF-B
2 (n) = N

N − 1
n{(N − 1) − n}. (D8)

We can easily check that the choice n = 1 correctly repro-
duces the expressions (D1) and (D2). For general n, the
representation consists of min(N, n) + 1 different irreducible
representations of SU(N)

min(N,n)⊕
nF=0

⎡⎢⎢⎣nF

⎧⎪⎪⎨⎪⎪⎩ (nB = n − nF)

⎤⎥⎥⎦ (D9)

corresponding to the possible fermion numbers nF [=
0, . . . , min(N, n)].
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b. Schwinger construction (slave fermion)

Another construction uses N species of bosons b†
α and

one fermion f † (construction “B-F”; slave-fermion represen-
tation):

ŜA = b†
α[SA]αβbβ, K̂ = nB + NnF, (D10a)

Q̂α = b†
α f , ̂̃Qα = f †bα (α = 1, . . . , N ). (D10b)

The boson and fermion numbers are defined by nB =∑
α b†

αbα and nF = f † f , respectively, and the quadratic
Casimir C2 now is determined by n = nF + nB as

CB-F
2 (n) = N − 2

N − 1
n{(N − 1) + n}. (D11)

Since the fermion number can take only two values nF =
0, 1, the representation specified by n is made of two SU(N)

irreducible representations:[
︸ ︷︷ ︸

n

(nF = 0)

]
⊕
⎡⎣︸ ︷︷ ︸

n−1

(nF = 1)

⎤⎦. (D12)

Although the conserved n = nF + nB again plays a crucial
role in specifying the irreducible representations, the repre-
sentations (D7a)–(D7b) and (D10a) and (D10b) in general
realize different irreducible representations even for the same
n (except for n = 1).

The n = 2 representation used in Sec. V C is constructed
as follows. First, the N (N + 3)/2 basis states are given by

(nB, nF) = (2, 0) : . . . |(α, α)〉 = 1√
2

(b†
α )2|0〉

×|(α, β )〉 = b†
αb†

β |0〉 (α < β ), (D13a)

(nB, nF) = (1, 1) : . . . |N; α〉 = b†
α f †|0〉

(α = 1, . . . , N ). (D13b)

We can find all the matrix elements of the generators by ap-
plying the expressions (D10a) and (D10b) to the above basis
states.
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