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Dynamic stability in spinor Bose gases in moiré lattices with square and hexagonal symmetries

C. Madroiiero® and R. Paredes”

Instituto de Fisica, Universidad Nacional Auténoma de México, Apartado Postal 20-364, México D.F. 01000, Mexico

® (Received 3 May 2022; accepted 1 March 2023; published 16 March 2023)

A broad range of phenomena in correlated electrons traveling in moiré lattices has emerged in both scenarios,
experiments and theory. In this paper we report the observation of a dynamic stability that arises in an analogous
system to that of electrons, a weakly interacting spinor Bose gas of ultracold 2*Na atoms lying in a single layer
having a moiré pattern with square and hexagonal symmetries. Our paper is based on the dynamical description
of two magnetic domains represented by two hyperfine spin components of a Bose condensate initially localized
in the left and right halves of a moiré lattice defined by a specific angle 8 plus a harmonic confinement. To
demonstrate the persistence of such an initial condition under the competence of the moiré pattern and harmonic
confinements we studied both single noninteracting and double-domain interacting cases. We solve the time
dependent Gross-Pitaevskii equations, and track the time evolution of several observables on each half as a
function of the twisting angle. In the case of square moiré lattices we found a dynamic stability for angles larger
than a special one 6;, except for the Pythagorean angles. The value of such an angle depends on the existence
of a harmonic trap when interactions are absent, while this dependence is negligible for the interacting case.
Hexagonal moiré lattices exhibit the dynamic stability starting from a certain angle that also depends on the

harmonic confinement for the noninteracting case.
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I. INTRODUCTION

The investigation here addressed is connected with the
phenomenology and physical properties arising in two-
dimensional (2D) structures, in particular, with the properties
persisting in patterns formed when two periodic lattices lie
on top of each other with a relative twist between them. In
recent years exotic transport and magnetic properties have
been measured in assemblies of monolayers of transition-
metal dichalcogenides [1-4]. It is believed that as a result
of the incommensurate lattice structure arising from the in-
terlayer twist, and/or lattice constant mismatch, anomalous
interlayer couplings are originated, and consequently, pro-
found effects on the transport and optical properties in the
bilayer arrays arise. This novel class of 2D materials exhibits
ultrafast interlayer charge transfer that facilitates the pho-
tocurrent generation and the formation of interlayer excitons.
Even more, twisted bilayer graphene has been demonstrated
to exhibit superconductivity for the so-called magic angles of
rotation [5], correlated insulating behavior [6], and magnetiza-
tion textures in 2D magnets [7]. Even more, it has been proven
that in certain mixtures there exist other rotation angles for
which unexpected properties arise, as the emergence of flat
bands [8].

The theoretical study of properties rising in twisted bi-
layers has been addressed from several routes. While the
emergence of superconductivity for the magic angles was ex-
plained in terms of a continuum model that predicts flats bands
[9], the emergence of ferromagnetism was predicted in twisted
bilayer graphene using first-principles density-functional the-
ory calculations [10,11]. An effective model has suggested
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the existence of a ferromagnetic Mott insulator for maximally
localized Wannier wave functions in twisted graphene bilayers
[12]. The phase diagram at mean-field level for a moiré-
Hubbard model has revealed a variety of phases including
Wigner crystals with charge-density wave forms and Chern
insulators [13]. Perhaps the most common feature found in
those theoretical investigations is the existence of a particular
angle of rotation among graphene layers for which phases and
particular properties are displayed.

The interest of the present paper is to establish how the
appearance of a dynamic stability can be controlled by the
twisting angle between two primitive lattices with either
square or honeycomb 2D structure. To accomplish this pur-
pose we consider an analogous system to electrons traveling
through ion cores of a 2D solid having a moiré pattern, a
weakly interacting bicomponent Bose gas in its ground state
confined in a 2D moir€ pattern of light. In particular, we track
the dynamics of a double magnetic domain that evolves under
the influence of either square or hexagonal moiré patterns plus
a harmonic confinement. Although such a harmonic constraint
does not have its analogy in solid state, it is generally present
in experiments with ultracold Bose gases. Three years ago a
theoretical proposal considered cold bosons confined in a bi-
layer in which it is possible to control the inter- and intralayer
coupling [14]. Such an array, in which a spinor Bose-Einstein
condensate is loaded into spin-dependent optical lattices that
form the moiré structure, is the ideal scenario to investigate
the physics behind the superconductivity in twisted-bilayer
graphene [15]. Other techniques through which optical moiré
patterns can be created are by means of laser interference
lithography [16] or digital micromirror devices [17,18]. Re-
garding the role of the electron-electron interactions, they
have also their counterpart in bosonic samples in their
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degenerate state. Indeed, interactions in ultracold atoms can
be varied by adjusting either the effective interaction coupling
or the condensate density. In our paper we shall consider
the largest size of the lattices for which our numerical ex-
periments can be performed, lattices with ~90 x 90 sites.
The evolution for sufficiently long times resulting from the
coupled time-dependent Gross-Pitaevskii (GP) equations re-
vealed a dynamic stability of the initial state. Such stability
disappears in two different situations: for moir¢ lattices asso-
ciated with angles belonging to an interval that diminishes as
the effective interatomic interaction is increased, or for angles
coming from Pythagorean triples in the case of square moiré
lattices. In the case of hexagonal moiré lattices, there are
certain angles satisfying a Diophantine equation that promote
a slowdown in the dynamics.

The paper is structured as follows. First in Sec. II we
present the coupled equations that characterize the dynamics
of two hyperfine spin components. Then, in Sec. II we explain
how to generate the initial state composed of two magnetic do-
mains lying in definite moiré patterns. Afterwards, in Sec. III
we discuss the dynamics developed by the ferromagnetic state
as a function of the angle that defines a given moiré pattern
for both noninteracting (Sec. III A) and weakly interacting
(Sec. IIIB) cases. Finally, we summarize our findings in
Sec. IV, and provide an outlook of future directions of our

paper.

II. TWO-COMPONENT BOSE GAS CONFINED
IN MOIRE LATTICES

In this section we establish the model to describe the dy-
namics of two magnetic domains evolving under the influence
of weak interactions among its constituents, and lying in
moiré lattices plus a harmonic confinement. The single layer
moiré structures that we shall consider result from superim-
posing a pair of 2D rotated square or hexagonal lattices. Our
particular interest is to establish the persistence of a given
initial state formed by two hyperfine spin components lying
on a moir€ structure. The initial state that we consider will be
set, as described in Sec. II, with two halves in which a couple
of different spin components of sodium atoms are placed. As
described in the Introduction, the system under study belongs
to the ultracold quantum matter context, a weakly interacting
F =1 spinor Bose condensate on **Na atoms confined in a
2D optical lattice having a moiré like structure. Particularly,
we concentrate on the dynamics of two hyperfine spin compo-
nents, |1) =|F =1, mp=1)and ||) = |F = 1,mp = —1),
lying in the 2D moiré lattices, represented by Vex (7). The
importance of selecting a particular atomic species relies in
the necessity of having a system whose nature is a polar one
[19]. Within the mean-field formalism the wave functions W,
and W of the two species |1) and || ), respectively, obey the
following effective coupled GP equations:
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= [Ho(F) + g1 | W4 [* + 1419, PTW4 (7, 1),

= [Ho(F) + g |¥, 1 + g4 194 P10, (7, 1), (1)

where Ho(7) = — V2 4 Vi (F) with V2 = 2 + 2 is the
Laplacian operator in 2D, m is the equal mass of the two spin
components, and 7 = xi 4+ yj. The external potential in 2D

has the following form:

Vio(x, ¥) + 2[Vig(xr, ) + Vig (', )]

i coy @
Vho(x, y) + Q[Vhex(x’ ¥) + Vhex (x', )]

Vext(xs y) = :

where Vigo (x, y) = $m(wix® + ®}y*) is a harmonic oscillator,
that is usually present when an ultracold gas is produced
in a laboratory. The values of the frequencies that we shall
consider for our analysis are w, = 0, = ,, where w,/wy =
0,0.4,0.7, and 1, with wy = 2 x 50 rad/s; this value of the
frequency is a typical one in experiments with ultracold atoms
[20,21]. The variables x” and y’ belong to a system rotated an

angle 6 as follows:
x' cosf —sinf)[x
(y/> - <sin9 cosf )(y) @)
The second contribution of Eq. (2) is the term from which

emerge the square and hexagonal moiré lattices, each lattice
being given by

Vig (x, ¥) = Vplcos? (kx) + cos?(ky)],

Vhex (X, y) = V| cos Ay + cos 2kx  Zky
hex (X, Y) = Vo 3 \/g 3

T cos (% n 2%)} 0

Regarding the values of the effective interaction couplings
g0 With 0,0’ = {4, |}, they are written in terms of the
s-wave scattering lengths a;, with i = 0 and 2 being the labels
of collision channels 0 and 2, respectively. In g4 =g, =
4nNRay/m and gy = 4T NK* /m(352), N is the number
of particles of each component in the condensate, with N =
Ny = N,. Itis worth pointing out that the nature of the ground
state of the hyperfine components of 2*Na atoms is polar as a
consequence of the condition ay < a; [22,23]. This inequality
guarantees the possibility that the hyperfine components can
be mixed as they evolve in time given an initial state. In this
paper we shall analyze the role of the effective interaction
8s.0» by varying N, ensuring that the hyperfine components
are far from the Mott insulating phase. It is important to
stress here that since originally the GP equation describes
the ground state of the condensate in three dimensions, these
interaction coefficients must be substituted by effective inter-
action couplings that take into account that the atom collision
processes occur in 2D [24-30]. The effective scattering length
in the plane x-y becomes a; — a;/~/2nl., with [, = /i/maw.,
w, being a typical frequency of condensates confined in 2D
[20,21]. The potential depth is scaled in units of the recoil en-
ergy Er = '22—’1;2, where k = 7 /a and a are the lattice constants
of the primitive square and hexagonal lattices. As previously
shown in the literature, the mean-field approximation de-
scribes well the dynamics of initial magnetic domains, that
evolve in time under given conditions [31-35].
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FIG. 1. Density profiles prepared from the superposition of two
square lattices rotated a twisting angle 6. Left (purple) and right
(yellow) sides correspond to the superfluid density associated to
the spin components | and 1. Frequency of the harmonic trap is
w, = 0.4wy.

Preparation of the initial state

The initial state associated to a given angle 6 for which a
double ferromagnetic state lies in a moir€ lattice, either square
or hexagonal, is set as we describe in the next lines. First we
determine the stationary state for the coupled equations (1)
for optical lattices defined by the potential Ve (x, ¥), having a
constant depth Vy/Er = 2. For this purpose free-energy min-
imization is performed by means of imaginary time evolution
T — it [36-38]. After this procedure, we manually remove
the particles having spin component ¢ = 4 from the left half
layer, while we remove particles with o = | from the right
half layer. In Figs. 1 and 2 we plot some of the density profiles
prepared as the initial state for the square and hexagonal
moiré structures, respectively. The frequency of the harmonic
trap in these figures is w, = 0.4wy. At the bottom of each
subfigure the twisting angle is indicated. Purple and yellow
colors identify the density profiles of the | and 1 components.
Notice that equal ground-state densities of different hyperfine
states remain at each half in the 2D moiré lattices. The re-
moval of particles proposed to set these initial states mimics
experimental procedures in which a digital mirror device is
used to optically remove the particles at specific positions
[17,18]. Certainly, another route to achieve ferromagnetic
domains is by means of a magnetic field [39]. These patterns
manually created, the two ferromagnetic domains for a given
value of the twisting angle 6, are our starting point to study its
time evolution under the influence of the moiré confinement.
We should note here that the initial state prepared for each
angle 6 is nonstationary, and consequently it evolves under
their own dynamics. We must point out that this kind of
state from which a system evolves under its own dynamics
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FIG. 2. Density profiles prepared from the superposition of two
rotated hexagonal lattices rotated a twisting angle 6. Left (purple)
and right (yellow) sides correspond to the superfluid density associ-
ated to the spin components |, and 1. Frequency of the harmonic trap
is w, = 0.4wy.

is the so-called quantum quench created in the laboratory.
Our particular interest is to investigate how the local mag-
netization of the ferromagnetic domains evolves in a weakly
interacting 2D Bose mixture in the absence of other external
fields, except the one produced from the superposition of the
lattices forming the moiré patterns associated to either square
or hexagonal moiré patterns. It is important to mention that
the effective coupling interaction coefficients must be rescaled
for t > 0 since half of the population is removed to have the
magnetic domains, that is, 2N — N. Due to the symmetry of
the lattices, the twisting angles that shall be considered for
the analysis of the evolution in time are 6 € (0°, 30°] and
(0°, 45°] for the hexagonal and square lattices, respectively.
Angles larger than those produce the same results because of
the mirror symmetry.

III. DYNAMICS OF A DOUBLE MAGNETIC DOMAIN
IN MOIRE LATTICES

The physical observable that accounts for the magnetic
character of the system here analyzed is the spin texture. This
quantity is defined as

T(x,y, 1) = Vix,y, OFW(x, y, 1), (5)

where the operator F is written in terms of the Pauli matrices
F = (6x,6y,6;), and W(x,y 1) = (W (x,y, 1), ¥, (x,y,1)).
Thus the spin texture, which is a real quantity, is given by

T(x,y, 1) = [WiW, + W WF R +i[WiW, — W Wi]p
+ [y 2 = W, 202 (6)

The component along axis Z is the local magnetization at
time ¢. This is precisely the observable that we shall track to
determine in a quantitative way either the persistence or the
absence of the initial state as a function of time, for a given
value of the twisting angle 6. In addition, we must empha-
size that this observable is the natural quantity that can be
accessed in typical experiments with ultracold atoms [40], or
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within the context of condensed matter. The observables to be
studied are the magnetizations m;, and mg, in the left and right
sides of the lattice, as a function of time for different values
of 6, and as stated above, for given values of the coupling
interaction. These quantities are defined in terms of the lo-
cal magnetization m(x, y;t) = p4(x, y;t) — p, (x, y;1), where
py(x,y;t) and p| (x, y;t) are the densities associated with the
components 1 and |, respectively. Thus, magnetizations in
left and right sides are

my = // dx dy m(x, y;t),
Qr

mg = /f dx dym(x, y;t), @)
Qr

where 2, and Q are the left and right halves of the system,
respectively. Because of the particular election of the initial
state we have that my (t = 0) = —0.5 and mz(t = 0) = 0.5.

The evolution in time of the initial states will be followed
in dimensionless time t = Et//. It is important to mention
here that all of our numerical calculations were performed
ensuring that changing t — —7, at any temporal step along
the time dynamics, allows us to recover the initial state. The
time during which the magnetization in left and right sides
will be tracked coincides with that at which the magnetization
in both sides becomes null for a twisting angle 6§ = 0°. In
other words, the magnetization associated with 6 = 0° when
no moiré patterns exist provides a reference in terms of which
one can evaluate the influence of changing the angle 6, either
diminishing or preserving the magnetization. As we describe
below, the presence of the harmonic confinement also plays a
role in the evolution of the given initial state.

A. Noninteracting case

For comparison purposes with the weakly interacting sce-
nario, we first analyze the time evolution of the noninteracting
bosonic mixture given the initial ferromagnetic state described
in the previous section. That is, we solve the Schrédinger
equation that corresponds to set g,,» = 0 for o, ¢’ = {4, |}.
As stated in the above paragraphs, the magnetization was
followed for a time interval in which it becomes null. In
Fig. 3 we plot the magnetization on the right side for square
(top panel) and hexagonal (bottom panel) structures. Different
lines correspond to different values of w,. The behavior shown
in these figures is the starting point to analyze the dynamics
of moiré lattices, namely, when the rotation angle is nonzero.
It is worth noting that magnetization on the left and right
sides satisfies mg(t) = —my (7). As the angle 6 varies, one
can appreciate how magnetization on the right side suffers
a distortion with respect to & = 0° (see Fig. 3). To illustrate
these modifications, in the main panels of Figs. 4 and 5 we
plot the magnetization on the right side for 8 = 5° and 30°,
and 8 = 10° and 25° for square and hexagonal lattices, respec-
tively. In the insets of the bottom panels in these figures we
plot the magnetization as a function of time for the whole
range of angles considered in our analysis. As can be seen
from the main panels in Figs. 4 and 5, mg shows oscillations
of large amplitude for 6 = 5° and 10°, while there is an
almost imperceptible variation for 6 = 30° and 25° for square
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FIG. 3. Magnetization as a function of time in the right side in
square (top panel) and hexagonal (bottom panel) lattices. Different
curves in both panels are associated with the size of the harmonic
confinement as indicated in the bottom panel. (noninteracting case).

and hexagonal lattices, respectively. It is important to notice
that the oscillation period for & = 5° and 10° for square and
hexagonal lattices, respectively, is independent of the value of
the frequency w,. This behavior must be related with the type
of moiré lattice that emerges as the rotation angle 6 varies.
In Appendix A we analyze the stationary states that arise in
two square and two hexagonal rotated lattices. From the insets
of bottom panels in Figs. 4 and 5 that condense the entire
information of mg(7) in terms of the rotation angle, interesting
facts can be noticed. On one side we have the existence of a
sharp transition at a special value of the angle, that here and
henceforth we shall call 6;.

To appreciate the transition, as well as have a proper iden-
tification of 65, we make an amplification near the values of
6 where the magnetization develops the abrupt change. In
Figs. 6 and 7 we show the behavior of my in these regions. As
one can appreciate, a crossover replaces the abrupt transition.
In other words, considering shorter intervals of the angles
where the change occurs, A#, leads us to recognize a region
of rotation angles, namely, certain moiré crystals, in which a
dynamic stability disappears. One can also see that the angle
at which the abrupt transition occurs depends on whether the
harmonic frequency is zero or nonzero only. As can be seen
from Fig. 6, we have that if @, = 0 then 6; ~ 3.5°, while if
o, # 0 then 6, ~ 11.98° for lattices with square symmetry.
Regarding the lattices with hexagonal symmetry, as illustrated
in Fig. 7, we found that if w, = 0 then 6; =~ 4.77°, while if
w, #~ 0 then 6; ~ 13.88°.

In the case of the square moiré patterns, for angles larger
than those belonging to the yellow region, one can recognize
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FIG. 4. Magnetization as a function of time in the right side
of a moiré pattern created from the superposition of two square
lattices rotated an angle 6. Panels on top and bottom correspond
to 6 = 5° and 30°, respectively. Different lines in both panels are
associated with the size of the harmonic confinement as indicated in
the top panel. The insets at the bottom figure are the value of the
magnetization as a function of time for the whole range of angles
considered in our analysis.

particular values of 6 for which the magnetization decreases
(see white arrows in dark zones of Fig. 4). This behavior
of my for special angles is associated with particular values
of integer numbers m and n such that tan6 = n/m. These
numbers satisfy the Diophantine equation m? 4 n? = 2, with
[ being also an integer number [41]. The angles satisfying
the previous condition are called Pythagorean, while the sets
(m, n,l) are known as Pythagorean triples. Besides the re-
gions indicated with white arrows, there are some other angles
for which the magnetization shows the mentioned decay,
but they are not visible with respect to the color scale in
Fig. 4. In fact, there are 14 additional Pythagorean angles
for the square lattice. In other sublattices where the primitive
cell is not a square, as the hexagonal one, the Diophantine
equation satisfied by the triples is m? 4+ n? + nm = [, and
tan & = nv/3/2m + n), (m, n, ) being integer numbers. Sur-
prisingly, in photonic moiré lattices [41] light propagation
shows signatures similar to those found in matter, namely, a
localized-extended transition occurs. As we shall see in the
next section, when interactions are considered, Diophantine
angles show a reminiscent localized-extended behavior exhib-
ited in the case of light.

The above findings, that is, the dynamics in the absence
of interactions, suggest that the stability is not related with
the spin imbalance but with the presence of the moiré lat-
tice. To better appreciate the emergence of the transition at
special angles, we introduce an observable that quantifies the

—_— =0 . wr = 0.4wy - w, = 0.Twy Wy = Wy
0.41 *© PRSIAGN
0.2 N\ / \
x \ i \Y
g 00 5 \
0.2 \ / \
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04 30 "0
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031 =
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0.1
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0.0 T T 9 = 95°
0 100 200 300

T

FIG. 5. Magnetization as a function of time in the right side of
a moiré pattern created from the superposition of two hexagonal
lattices rotated an angle 6. Panels on top and bottom correspond
to & = 10° and 25°, respectively. Different lines in both panels are
associated with the size of the harmonic confinement as indicated in
the top panel. The insets in the bottom figure are the value of the
magnetization in the right side as a function of time for the whole
range of angles considered in our analysis.

probability that a wave function initially localized on the right
side remains there for a large enough time. For this analysis
we select the 1 component. We evaluate the following quan-
tity:

1o
Iy) = — f dr f dxdy py(6,yi0), ()
7o Jo Qr

mpr
0.5

0.4

3407100 200 300
T 0.3
0.2

12.00
0.1
_ 11.95 -

20100 200 300 0 100 TZOO 300

0 100 200 300 T 0.0

T

FIG. 6. Magnetization as a function of time plotted in a density
color scheme. The angle in the vertical axis corresponds to the rota-
tion angle that defines moiré patterns created from the superposition
of two square lattices rotated an angle 6. (noninteracting case).
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FIG. 7. Magnetization as a function of time plotted in a density
color scheme. The angle in the vertical axis corresponds to the rota-
tion angle that defines moiré patterns created from the superposition
of two hexagonal lattices rotated an angle 6 (noninteracting case).

where the time 1y corresponds to twice the time interval in
which the magnetization on the right side becomes null in
the absence of moiré confinement, that is, when the rotation
angle is 6 = 0 (see Fig. 3). In Figs. 8 and 9 we illustrate the
behavior of (Ig,) as a function of the rotation angle 6 for
square and hexagonal lattices, respectively. The main panels
in these figures show the behavior of (I, ) for the whole range
of angles analyzed in both geometries. The insets in these
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FIG. 8. Time average of density in the right side, (Ig,), as a
function of the rotation angle that generates the square moiré lattice.
Upper and lower panels correspond to two different values of the
harmonic frequency w, = 0 and w,. The insets show a restricted
region of the angles where the transition from extended to localized
transition is better appreciated.
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FIG. 9. Time average of density in the right side, (Ig,), as a
function of the rotation angle that generates the hexagonal moiré
lattice. Upper and lower panels correspond to two different values of
the harmonic frequency @, = 0 and w,. The insets show a restricted
region of the angles where the transition from extended to localized
transition is better appreciated.

figures correspond to a restricted region of the angles where
the transition is better appreciated (see yellow dots). Upper
and lower panels in each figure correspond to two different
values of the harmonic frequency w, = 0 and wy.

The points labeled with an asterisk in Fig. 8 correspond
to values of 6 associated with diophantine triads. If the wave
function remains at the half where it was placed, g, then one
recognizes a localized state and the value of (I, ) approaches
1. In contrast, if the wave function distributes across the whole
space, then the value of the quantity will be near 0.5. We
should point out that in the case of Pythagorean angles (Ig,)
is less than 1. As stated above Pythagorean angles are labeled
with asterisks.

We must stress that the analysis for the noninteracting
case reveals the crucial role that the twist angle has on the
identification of the sharp transition. Here we must point
out the analogous behavior of this finding and that exhibited
in graphene van der Waals heterostructures, as well as light
localization in photonic moiré lattices [6,41].

B. Weakly interacting case

In the next paragraphs we shall characterize the evolution
of the initial ferromagnetic state through the study of the mag-
netization as a function of both the rotation angle that defines
the moiré pattern and the amplitude of the effective mean-field
interaction g,, . In Fig. 10 we plot the magnetization on the
right side for 6 = 0° for N = 300. Top and bottom panels
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FIG. 10. Magnetization as a function of time in the right side in
square (top panel) and hexagonal (bottom panel) lattices. Different
curves in both panels are associated with the size of the harmonic
confinement as indicated in the bottom panel. The effective interac-
tion coupling g, = 4TNi’a/m and g,y = 4w NK* /m(*52) with
N = 300.

correspond to square and hexagonal structures, respectively.
One can appreciate from these figures the influence of the
effective interaction in the demagnetization process in the
primitive square and hexagonal lattices. While for g,,» =0
the initial domains are destroyed around 7 = 300, in the
weakly interacting case the ferromagnetic state in left and
right sides is retained for longer times, t ~ 500.

In analogy with the noninteracting case, the scenario
completely changes when the two superimposed lattices are
rotated with respect to one other. Taking as a reference the
behavior of the magnetization for 6 = 0°, we proceed with
the analysis of the magnetization dynamics as a function of
6 for the square and hexagonal moiré patterns, considering
also the influence of the effective interaction strength gs-.
The main conclusion is the identification of a set of twisting
angles for which the initial state is preserved. For the square
lattice this set is [6;, 45°], excluding the Pythagorean angles.
For the hexagonal lattices the interval of angles for which the
dynamic stability exists is [0;, 30°]. We should point out that
the value of 6; depends on whether the harmonic confinement
is present or not.

In Fig. 11 we plot the magnetization on the right side
for square (top panel) and hexagonal (bottom panel) moiré
patterns for N = 300. In each panel we include two different
values of the twisting angle 8. Curves in yellow tones are
associated with 8 = 30° and 25° for square and hexagonal
lattices, respectively, and curves in purple tones correspond
to & = 5° for both geometries. To illustrate the dependence

— 0, =) - w, = 0.4w —- w, = 0.7Tw —

Wy = Wo

wr=0 = w, = 04wy wyr = 0.7Twy Wy =Wy

=4 P
0.0 \-p.——-‘_r‘:-_.,gu—-'-.r\—._*:lf-,a;_';_.. L

0 100 200 300 400 500

Hexagonal

0 100 200 300 400 500
T

FIG. 11. Magnetization as a function of time in the right side for
moiré patterns created from the superposition of primitives square
(top panel) and hexagonal (bottom panel) rotated an angle 6. Curves
in yellow tones correspond to & = 30° and 25° for square and hexag-
onal lattices, and curves in purple tones are associated with 6 = 5°
for both kinds of geometries. The effective interaction coupling
g, = 4N ay/mand gy = 4w NK /m(*52) with N = 300.

of mg(t) on the moiré structures under the presence of a
harmonic confinement, we chose four different values of the
frequencies w, = w, = 0, 0.4wy, 0.7y, and wy. The behavior
as a function of time for different values of these frequencies
was identified with solid, dotted, dashed, and dashed-dotted
lines, respectively. Similarly to the noninteracting case, mg
shows an oscillatory behavior for & = 5° (see purple curves
in both panels of Fig. 11), with the role of the harmonic con-
finement captured as a limited shift with respect to w, /wg = 0.
The net effect of the effective mean-field interaction g,, 7% 0
against the noninteracting scenario is the diminishing of the
oscillation period of myg. Interestingly, yellow curves associ-
ated with 0 = 30° and 25° for square and hexagonal lattices,
respectively, exhibit an oscillatory behavior reminiscent of
that observed in Figs. 4 and 5, but with a small amplitude.

To illustrate the influence that the moiré structures have
on preserving the initial state, we followed the dynamics of
mpg(7) in the whole interval of rotation angles that give rise
to the formation of square and hexagonal moiré patterns for
three different values of N. In the panels of Fig. 12 we plot
in a density color scheme the behavior of mg(7) for w, =
wo for square (top panels) and hexagonal (bottom panels)
moiré structures for different values of N, from left to right
N =300, 600, and 900. As can be appreciated from these
panels, the marked variations of mg(7) for 6 € [0°,45°] and
[0°, 30°] for square and hexagonal lattices, respectively, are
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FIG. 12. Magnetization as a function of time in the right side
in the density color scheme for moiré patterns created from the su-
perposition of primitives square (top panels) and hexagonal (bottom
panels) rotated an angle 6, for wy = w,. Each panel corresponds to
a given value of the N in the effective interaction coupling g,, =
4nNi*ay/mand g,y = 4w NR* /m(*%52) with N = 300.

mostly restricted to certain angles. We observe from these
figures that moiré patterns arising from rotation angles larger
than 6 2 10° constitute structures in which the initial state
is preserved, with the exception of Pythagorean angles in
the case of the square symmetry. It is worth noticing, as in
the noninteracting case, that decreasing of magnetization is
observed for angles that satisfy Diophantine equations. To
illustrate this behavior in Fig. 13 we plot the magnetization
in square (top panel) and hexagonal (bottom panel) patterns
for two different angles. Solid and dashed lines correspond
to rotation angles associated with a given moiré structure.
Dashed lines label angles that satisfy a particular Diophantine
equation. (m, n,[) triples are (4,3,5) and (3,5,7) for square
and hexagonal symmetries, respectively. While in the case
of the square moiré lattice one observes a decay of mg, a
slowdown in the dynamics is appreciated for the hexagonal
lattice.

A general conclusion that can be outlined from the time
evolution of the initial double ferromagnetic state is that a
dynamic stability emerges for certain rotation angles in both
square and hexagonal moiré patterns. In other words, we
found that the qualitative behavior of my is dominated by the
moiré structure against the influence of both the mean-field
interactions and the presence of the harmonic confinement.
Certainly, by looking at the detailed quantitative behavior of
mpg one can appreciate differences between the noninteracting
and interacting cases (see Figs. 4, 5, and 11). Also, it is impor-
tant to stress that the dynamics, that is, oscillations between 1
and | in left and right sides, takes place at the central region
where the spin components share a frontier.

IV. CONCLUSIONS

We have investigated the time dynamics of a two-
component weakly interacting Bose gas lying in moiré
patterns with square or honeycomb symmetries. The pat-
terns considered are the result of superimposing two primitive
square or hexagonal lattices lying on top of each other, rotated
by an angle 6, plus the presence of an isotropic harmonic con-
finement in 2D. The system, far away from the Mott insulating

hal S
~ -
~
L
0.4 N
§ \\\ <
0.3
—_— ) = 30°
- 0= m’ctan(%) i?llil'{f}o
0.2 0 100 200 300 400 500
0.4
st
g
0.3
— 6=25
0 = arctan(22) Hexagonal
Wy = Wy
0.2 0 100 200 300 400 500

T

FIG. 13. Magnetization as a function of time in the right side for
square (top panel) and hexagonal (bottom panel) moiré lattices. Solid
and dashed lines indicate the rotation angles associated with a given
moiré structure. Dashed lines correspond to angles that satisfy a par-
ticular Diophantine equation for square and hexagonal symmetries.
wy = o, and the effective interaction coupling g,, = 47N Pay/m
and gy = 4w NA* /m(*%5*2) with N = 300.

regime, was described within the mean-field approach through
the time dependent Gross-Pitaevskii equation that was solved
for lattices with a number of sites up to 290 x 90.

The initial state was prepared by situating two different
hyperfine spin components of an F = 1 **Na Bose-Einstein
condensate on the left and right sides of a given moiré lat-
tice, and then allowed to evolve under the influence of the
effective mean-field interactions, the potential created from
the superposition of the rotated lattices, and the isotropic
harmonic confinement. In our paper we considered both cases,
the noninteracting and the weakly interacting ones. *’Na
were the atoms considered in the investigation since the na-
ture of their ground-state F = 1 spinor components is polar
and thus the hyperfine components can mix during its time
evolution. We identified particular values of the rotation angle
6 for which a dynamic stability is found. The angles belong
to the interval [6;, 45°] and [6,, 30°] for square and hexago-
nal lattices, respectively, 6; being an angle that depends on
whether interactions are considered or not. In the interacting
case 6; &~ 10°, this value being independent of the harmonic
frequency. In contrast, in the noninteracting case, 6, depends
both on the presence of the harmonic confinement and the lat-
tice geometry. We must stress that in the case of square lattices
the dynamic stability is damaged for angles 6 = arctann/m, n
and m being part of the triple (m, n, [) that satisfies m?> + n?> =
I%. In case of the hexagonal lattice, the dynamic stability is
unaffected for angles satisfying tan @ = n+/3/(2m + n) with
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m? 4+ n? + nm = 12, where m, n, I € Z in both lattices. Also it
is important to accentuate that the role of the interaction is to
reduce the magnetization oscillation amplitude. These results
are reminiscent of the phenomenon in which light localizes in
photonic moiré lattices [41].

In summary, we conclude that although the confinement
provided by the harmonic trap and the effective mean-field
interactions play an important role on the dynamics of the
double magnetic domain, the dominant effect behind the oc-
currence of the dynamic stability is provided by moiré lattices.
The role of the twisting angle is crucial to identify the sharp
transition towards the dynamic stability.

The investigation here presented adds to the understand-
ing of properties that arise in moiré lattices in 2D. While
the proposal here presented employs the ultracold quantum
gases as an ideal platform to set and probe the dynamics
of particles moving in a moiré structure, graphene moiré
heterostructures have been suggested as a condensed-matter
quantum simulator [42] to explore elusive states of matter in
the laboratory. In both cases the prominent conclusion is the
existence and identification of the special or magic twisting
angles for which an abrupt transition happens. In this sense
our analysis is relevant within the current context of the de-
sign of quantum materials belonging to the emerging field of
twistronics.
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APPENDIX A: SQUARE AND HEXAGONAL MOIRE
CRYSTALS

In this Appendix we briefly revisit the discussion of the
stationary moiré patterns used to prepare the initial states. The
large size of the lattices considered in our paper, namely, 90 x
90 sites, allowed us to establish several conclusions regarding
the twisting angle and the patterns emerging from the super-
position of the lattices. From the stationary density profiles
of each component, for a frequency w, = 0, we observe that
starting at low angles of relative rotation the so-called moiré
crystals appear [15,43]. These moiré crystals, also called su-
perlattices, are characterized by having a lattice constant that
depends on the twisting angle 6. We observe that such lattices
are present for twisting angles in the intervals 6 € (0°, 30°)
and (0°,45°) for hexagonal and square geometries, respec-

TABLE 1. Parameters for the numerical simulation.

Name Symbol Value
Number of grid points in the x direction Ny  512-1024
Number of grid points in the y direction Ny 512-1024
Spatial extension of the numerical grid in the x direction L 40-90 a
Spatial extension of the numerical grid in the y direction L, 40-90 a
Step size used in real time evolution dt 0.0005

120
pr(@,y:0) 20 =, 10.2° pi(w,y:0)
P g @ B WS
3 100 = 0.008 0.016
B 80 ”f 0.006 0.012
i2) = 0.004 0.008
= 60 =z
% = 0.002 0.004
= 40 ~40-20 0 20 40 00 725000 10 20 00
= 2(units of a) 2(units of a)
S 20
0 e —e—o = &
0 5 10 5 20 25 30 35 40
0(degrees)

FIG. 14. Lattice constant ayc of square moiré crystals as a func-
tion of the twisting angle 6. Dots in this curve are fitted by the
formula in Eq. (Al) (solid line). The insets show the superfluid
density of the stationary state for one of the spin components for two
different rotation angles. The purple color scheme in the bar indicates
the size of the superfluid density. Left and right sides correspond to
6 = 5° and 10.2°, respectively.

tively. In Figs. 14 and 15 we plot the lattice constant ayic as a
function of the angle 6. The lattice constant of the superlattice
is measured in units of the lattice parameter a that character-
izes the original square and hexagonal structures. To illustrate
the dependence of the lattice constant ayc on the twisting
angle 6, in Figs. 14 and 15, besides the behavior of ayc vs 9,
we show in the insets a couple of density profiles for the single
component W, associated with two different values of 6. The
amplitude of the profiles is shown in a density color scheme
scaled with the bar at the right of the insets. As one can see
from these profiles, instead of observing sharply defined spots
of the superfluid density, we observe a basis of patterns at each
node of the superlattice. We notice how these patterns inherit
the symmetry of the original square and hexagonal structures.
It is important to point out that in the case of moiré lattices
arising from hexagonal patterns two superlattices emerge as
a result of the relative rotation between the original lattices.
These lattices having hexagonal and triangular symmetries are
such that, for some values of the twisting angle, one of them
has a density profile with a larger intensity with respect to the
other (see in Fig. 15 the color density scheme at the bar on the
right of each profile). Purple and green colors correspond to
triangular and hexagonal moiré crystals.

TABLE II. Physical parameters used in the numerical simulation.

Name Symbol Value
Particle number N 300, 600, 900
23Na mass m 22.989 amu
Lattice constant a 532 nm
Reference trap frequency o 2 x 50 rad/s
Trap frequency (z) W, 2m x 5000 rad/s
Bare s-wave scattering length for the O canal ag 50.0 ap
Bare s-wave scattering length for the 2 canal a 55.1ap
Potential depth Vo 2 Eg
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FIG. 15. Lattice constant ayc of hexagonal moiré crystals as a
function of the twisting angle 6. Purple and green dots in the curves
are fitted by the formula in Eq. (A1) (solid lines) and correspond
to two superimposed triangular and hexagonal lattices, that emerge
when two hexagonal lattices are rotated an angle 6. The insets show
the superfluid density of the stationary state for one of the spin com-
ponents for two different rotation angles. Purple and green density
color schemes in the bars indicate the size of the superfluid density.
Left and right sides correspond to 6 = 4.4° and 9.4°, respectively.

The formula that fits the dependence of ayic as a function
of 0 for the superlattice is [15,43]

a
(AL)

ame = ncy sin(@/con)’
where n is a nonzero integer number, and ¢; = ¢, = 1 for
the square and hexagonal moir¢ crystals, while ¢; = 1.56 and
¢ = 2.70 for the triangular moiré crystal.

As expected, the moiré patterns that result from two
superimposed square and hexagonal structures, for the par-
ticular angles & = 45° and 30°, have octagonal and hexagonal
quasicrystalline geometries, respectively. In Fig. 16 we illus-
trate these quasicrystalline structures associated to 1 and |

DO
o

—
o

y(units of a)

TS0 —100 0 10 20 =20 =10 O 10 20

x(units of a)

FIG. 16. Density profiles prepared from the superposition of two
rotated square (left) and two rotated hexagonal (right) lattices, the
rotation angles being 6 = 45° and 30°, respectively. For those an-
gles the resulting structures are quasicrystals with octagonal and
hexagonal rotation symmetry. Left (purple) and right (yellow) sides
in each panel correspond to the superfluid density associated with
the pseudospin components | and 4, respectively. Frequency of the
harmonic trap is w, = 0.

components for the case in which the harmonic confinement
is absent. Those quasicrystalline moiré patterns shall also be
considered as the initial state, to follow its time evolution.

APPENDIX B: NUMERICAL CALCULATION DETAILS

The results here reported were obtained from numerical
solution of the coupled GP equations. In this Appendix we
present additional details related to the technical part of the
calculations performed. To find the solution of Eq. (1) we use
the fourth-order Runge-Kutta method, which we used both
to obtain the ground state and to study the dynamics of the
system. The numerical parameters used for the simulations are
shown in Table I, while the physical parameters of the system
are presented in Table II.
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