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Vortex generation in stirred binary Bose-Einstein condensates
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Binary Bose-Einstein condensates of two distinct atomic species are studied, with interesting effects being ver-
ified due to the imbalance of atomic masses. We study the formation of vortices and associated turbulence flows
created by stirring two mass-imbalanced coupled Bose-Einstein condensates in the miscible regime. We consider
the mixture in the laboratory frame, confined in a pancake-like harmonic trap slightly perturbed elliptically by
a time-dependent periodic potential, which introduces turbulent dynamics with final stable patterns of vortices,
induced by the periodicity of the perturbation. Derived rotational frequencies are shown to be associated with
the observed vortex patterns in the asymptotic regime, with a correspondence between the stirring procedure
and a direct time-independent approach being indicated. It was also confirmed that a larger pattern of vortices
is supported by the higher mass condensed species at the same frequency. For the experimentally accessible
mixtures Rb-*3Cs and ¥Rb-%Rb, we numerically solve the equations of motion and analyze the system
dynamics using a range of measures including energy spectra. In the transient turbulent regime, spectral analysis
shows evidence for the characteristic k=>/3 Kolmogorov classical law associated with turbulence, modified by

the universal k=3 vortex core scaling in the ultraviolet regime.
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I. INTRODUCTION

The experimental observations of vortices in Bose-Einstein
condensates (BECs) [1-8] have been motivated by looking
at their predicted relevance to fundamental aspects of quan-
tum mechanics, such as superfluidity, which was previously
verified in rotating superfluid of helium, with the forma-
tion of vortex arrays [9] (see Refs. [10-12] for reviews).
The theoretical and experimental investigations related to the
dynamical formation of vortices in BECs, as well as the in-
duced mechanisms to generate them, are outlined in several
reviews [13—17], which describe the advances following the
first experiments. Techniques such as rotating the magnetic
trap, laser stirring, and oscillating excitation superimposing
the trapping potential have been used to nucleate vortices in
BECs [2,3,17].

Concepts of fluid turbulence were applied to rotating BECs
by considering a weak time-dependent elliptical deformation
of the confining potential [18]. The deformation generates
turbulent flow via quadrupole instability. Energy injected dur-
ing the instability is damped by vortex-sound interactions and
particle loss, and a vortex lattice forms at long times in equi-
librium with the drive. The classical and quantum regimes of
two-dimensional turbulence produced in trapped BECs have
been studied in a number of works [19-23], using spectral
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analysis that decomposes the kinetic energy into compress-
ible (sound) and incompressible (vortex) components; see
Refs. [24-26] for reviews of the maturing field of quantum
turbulence in quantum gases.

More recently, the fundamental differences between quan-
tum and classical turbulence in rotating systems have been
investigated [27]. In binary systems, recent studies have con-
sidered vortex dynamics leading to pattern formation [28,29],
motivating further study to understand vortex mechanisms
and their relation with sound-wave excitations [30,31]. In a
disordered two-dimensional (2D) turbulent quantum fluid, the
emergence of high-energy coherent vortex structures has been
observed in simulations [21], consistent with recent experi-
ments [23]. Three-dimensional structures of vortices have also
been studied in dipolar BECs, by considering fully anisotropic
traps, with increasing eccentricity [32].

The production of vortices in multicomponent BECs is
more intriguing due to the diverse vortex lattice phases,
which can be observed in addition to the more fundamental
Abrikosov triangular kind of patterns first predicted in type
II superconductors [33-35]. See Ref. [36] for a more recent
overview of vortex lattice theory focusing on experiments
in Bose-Einstein condensates. With two different hyperfine
states of the same rubidium isotope, 87Rb, the first production
of two overlapping BECs [37] was followed by studies on
collective oscillations of two colliding BECs [38] and investi-
gations of atomic and molecular properties of coupled BECs
[39].

For two different isotopes of rubidium, ¥Rb and ®'Rb,
existing theory already indicates that a stable mixed-
isotope double condensate could be formed by sympathetic
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evaporative cooling, allowing partial control of the interac-
tions between hyperfine states [40], and was followed quickly
by the experimental production of potassium-rubidium (*'K
and 8’Rb) condensed coupled mixture [41]. Their collisional
properties were further studied [42], including control of
the interspecies interactions [43]. Observation of controllable
phase separation [44] was followed by production of 8’Rb
and '*3Cs coupled BECs [45], strontium isotopes 58 Sr [46],
potassium K [47], and sodium >*Na [48]. Strongly dipolar
ultracold gases of dysprosium (Dy) and erbium (Er) [49,50]
led to several new works on dipolar mixtures.

High experimental control of two-component coupled bi-
nary systems suggests the possibility of rotating BECs in
atomic mixtures. Such studies have mainly been concen-
trated on ground-state vortex structures regarding miscibility,
which is a relevant characteristic of multicomponent ultracold
gases. Their miscible behavior depends on the nature of the
interatomic interactions between different species. Miscible
or immiscible two-component BECs can be distinguished
by the spatial overlap or separation of the respective wave
functions of each component. For different binary trapped
dipolar mixtures, some rotational properties have been es-
tablished, for example, in Refs. [51-54]. Following that,
the miscible-immiscible transition of dipolar BEC mixtures
with vortices was studied within pancake- and cigar-type ge-
ometries, by considering dysprosium ('**!%Dy) and erbium
(‘*8Er) isotopes. Following studies exploring occurrences of
vortex patterns in rotating binary mixtures [55,56], the mass-
imbalance sensitivity of dipolar mixtures was pointed out in
Ref. [57], along with the role of dipole-dipole interactions in
causing phase separations.

In the present work, our aim is to analyze the route to
vortex generation and stabilization in stirred mass-imbalanced
binary BECs. As exemplar systems, we study the two
experimentally accessible BEC mixtures 5°Rb-!3Cs and
85Rb-®Rb, which allow us to distinguish mass-imbalance
effects. To understand the process of vortex generation, we
analyze the kinetic energy decomposition into compressible
and incompressible parts for both components of the mixture.
We take extra care to remove rigid body rotation effects on the
kinetic energy spectra by computing an instantaneous average
rotational frequency in which the analysis can be affected
without artifact.

The following Sec. II is split into four parts, with details of
the mean-field formalism given in Sec. Il A. In Sec. I[IB we
have a description of the parameters and numerical approach.
In Sec. IT C, the time-dependent energetic relations for the stir-
ring model are given with an analysis of vortex formation. The
formalism concerned with the kinetic energy spectra in the
rotating-frame field is included in Sec. IID. In Secs. III and
IV, we have the main results, where relevant aspects due to
mass differences in the mixtures are discussed concerning the
vortex patterns and energetic distribution. Section III provides
details on the time evolution of observables related to the two
kinds of mass-imbalanced coupled systems we are studying,
considering the stirring potential. The final vortex pattern
results are also compared with ground-state results, obtained
without the stirring potential, but assuming the corresponding
classical rotational frequency. In Sect. IV, we perform an anal-
ysis related to the kinetic energy spectra, with the main focus

concerned with the behavior of the incompressible kinetic
energy spectra during the time evolution, before the nucleation
of vortices until the time region when stable vortex patterns
are established. Finally, in Sec. V we present a summary with
our general conclusions and perspectives.

II. STIRRED BOSE-EINSTEIN CONDENSATES

In our present approach, we assume a binary coupled
system, in which the two atomic species i = 1, 2 have non-
identical masses m;. We further assume that both species have
an identical number of atoms N; = N and are confined by
strongly pancake-shaped harmonic traps, with longitudinal
and transversal frequencies given, respectively, by w; . and
w; 1, with fixed aspect ratios given by A = A; = w; ;/w; | =
10. As our study will be mainly concerned with the analysis
of the dynamic occurrence of vortices in an originally stable
miscible binary system, the intraspecies scattering lengths are
assumed to be fixed and identical, a1 = ax, = 60ay (Where ag
is the Bohr radius), such that the relative strength is controlled
by the interspecies scattering length aj,. Also, to guarantee
that the coupled system is in a miscible state, we assume
apx/a; = 1/2, the interspecies interaction being about half of
the intraspecies ones. These assumptions related to the nonlin-
ear interactions rely on the actual experimental possibilities to
control the interactions via Feshbach resonance mechanisms
[58].

The coupled Gross-Pitaevskii (GP) equation is cast in a
dimensionless format, with the energy and length units given,
respectively, by iiw, and £, = \/li/(m w,), in which we are
assuming the first species (the less-massive one) as our refer-
ence in our unit system, such that w, = w; | Correspondingly,
the full-dimensional space r and time ¢ variables are, respec-
tively, replaced by dimensionless ones. For convenience, we
kept the same representation, r/{, — r and w,t — ¢, with
the new variables understood as dimensionless. Within these
units, for simplicity, we first adjust the confining trap fre-
quencies of both species with my@3 | = m 7, such that the
dimensionless nonperturbed three-dimensional (3D) traps for
both species can be represented by the same expression, given
by

Visp(r) = 207 +y* + 2727 = Vo, ») + 34°2%, (D

where Vj(x, y) is the 2D harmonic trap. In this way, there is no
explicit mass-dependent factor in the trap potential, which will
remain only in the kinetic energy term. By fixing to very large
values the aspect ratio A, we can follow the usual approxima-
tion, in which we have the factorization of the total 3D wave
function, ¥;(x,y, )xi(z), with xi(z) = (h;/7)/4e*</2. In
this case, the ground-state energy for the harmonic trap in
the z direction becomes a constant factor to be added to the
total energy. It is safe to assume a common mass-independent
transversal wave function for both components, with A; = A,
as any possible mass dependence can be absorbed by changing
the corresponding aspect ratio. This approach for the reduc-
tion to 2D implies that we also need to alter the nonlinear
parameters accordingly, as the integration on the z direction
will bring us a A dependence in the nonlinear parameters.
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A. Gross-Pitaevskii equations

Motivated by some previous studies, in which single
condensed atomic species have been submitted to stirring
potentials [2,6,7], in our approach we assume binary cou-
pled condensates, in which both components are confined
in pancake-like harmonic traps affected by laboratory-frame
time-dependent stirring potentials, represented by identical
elliptical trap perturbations oscillating in both x and y direc-
tions, as the one considered in Ref. [18]. So, the assumed
expression for the 2D time-dependent stirring potential is
given by

Vi(x, 1) = %[(x2 — %) cos(2Qgt) — 2xysin(2Qgt)], (2)

where Qg (given in units of @,) is the laser stirring frequency
parameter, with € the corresponding strength. With the har-
monic trap Vy(x, y) perturbed by Vi(x, y, 1), the corresponding
dimensionless coupled 2D GP equation can be written as

0
l_
Jt

= |:2—n”:V2 + W, y) +Vilx, v, 1) + Zgij|1ﬁj|2:| Vi,
J

3)
where the two-component wave functions, ¥; = ¥;(x, y, 1),
are normalized to one, [° dx [*_ dy|yi|> = [d*r |y =
1, with —iV = —i(e, > +éy%) being the 2D momentum
operator. The parameters g;; are the two-body contact interac-
tions, related to the intra- and interspecies two-body scattering

lengths (respectively, a;; and a;,), which are given by

gy = Namn il @)
wijlp

where p;; = mym;/(m; + m;) is the reduced mass. In the next,
for our numerical simulations, the length unit will be adjusted
to £, = lum ~1.89 x 10%ao, such that a;; can be conve-
niently expressed in terms of ag. The total trap interaction,
given by Egs. (1) and the time-dependent perturbation (2),
can also be written in polar coordinates, whenever convenient,
with x =rcosf,y =rsinf (0 <r <o00,0< 60 < 2m), and
r? = x> 4+ y*. Within these coordinates, assuming a stirring
potential with identical form for both components, the total
trap potential, Vy(x, y) + Vi (x, y, 1), can be written as

2
V(r0.1) = %[1 +e cos (20 4+ 29Q51)]. (5)

So, the usual trap interaction is affected by a small perturba-
tion, which we assume has strength € = 0.025 (as in Ref. [18])
to maintain the condensates with approximate symmetric 2D
shape during the evolution, following some experimental real-
izations with anharmonic potentials [2,6]. This small periodic
perturbation serves to trigger the dynamics by affecting the
axial angular position 6. The full trapped strength oscillates
between 1 — € and 1 + € (in half period T = 7 /Qg), imply-
ing that, averaging in a long time interval, it does not change
the strength of the trap. However, the stirring frequency has
the role to trigger the dynamics, which go through different
stages, provoking turbulence, with a final pattern of vortices
being formed. So, the time-dependent stirring approach in-
duces asymptotically a rotation in the trap, but differs from an
approach in which the rotating frame trap rotation is directly

obtained by applying the angular momentum operator in the
ground state.

With the above stirred trap potential applied to the coupled
condensates, the dynamical process starts with energy injected
into the condensates, exciting a quadrupolar mode oscillation.
The full dynamical process relies on the appropriate perturbed
frequency Q2 of the elliptical small perturbation, which
should be close to a quadrupole resonance when the ampli-
tude of the oscillations becomes enough large. By changing
Qp to values where the quadrupole oscillations have reduced
amplitude, the system turns out to be stable. Therefore, in
this dynamical process the excitation mimics rotation yet the
system remains irrotational, as noticed in Ref. [18].

As we are concerned only with the vortex pattern for-
mations, without the time-dependent perturbation, we also
consider an independent approach by going to the rotating
frame with direct trap rotation, applying the angular momen-
tum operator in the ground-state wave function. In practice,
the GP formalism (3) has the following change:

Vilx, y,1) = QL. = —iﬂo%- (6)

This model serves the purpose of verifying the correspon-
dence between the asymptotic classical rotational frequency
obtained from the stirring model and a direct time-
independent approach for the vortex pattern productions. As
it will be shown, similar patterns are produced in the quantum
fluid, with a rotating frame frequency 2y < 1, which can be
associated with the asymptotic classical rotational frequency.
In our present study, we have mass-imbalanced coupled
condensed systems, such that the full dynamics is expected to
be more complex within the stirring mechanism, taking longer
than in the single condensed case to reach the final stage, with
stable configurations of vortices in both condensates. Beyond
the dynamics, which is verified by the interaction between
the inner and outer cloud densities of a single condensed
system, we additionally have the coupling between two mass-
imbalanced condensates. In the stirred trap (5), common for
both coupled condensates, after assuming that a small value
€ = 0.025 for the strength of the perturbation, within our nu-
merical simulations, we search for the appropriate parameter
Qg to trigger the dynamics in such a way that in the long time
interval it can produce stable vortex pattern configurations
in each of the condensed clouds. For that it was found that
Qr needs to be larger than 0.9, with Qp = 1.25 being fixed
when considering a pattern with nearly 10 or more vortices.
This reflects that a smaller effective trap rotation is induced
asymptotically in the trap, with Qg being just a frequency pa-
rameter in the small time-dependent perturbation, generating
a quadrupole instability necessary to initiate and maintain the
dynamics. As no damping is assumed in the formalism, all the
produced kinetic energies are transferred to the production of
sound waves (compressible part) and vorticity (incompress-
ible part), as it will be shown. Therefore, we first explore
the full dynamics provided by Eq. (3) with the elliptically
deformed time-dependent perturbation (5), in which a given
laser frequency induces the dynamics in the coupled system,
going through different regimes in the long-time evolution
to reach stable patterns of vortices. Next, by considering the
results obtained with the stirring potential model, we follow a
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semiclassical analysis for the relevant rotational observables,
in order to define an effective classical frequency €2.;, which
was obtained by time averaging. So, with Q¢ = 2., by going
to the rotating frame without the time-dependent perturbation,
an approximate correspondence was established between both
approaches to generate similar vortex patterns.

B. Numerical approach and parameters

In our approach to reach the numerical results presented
in the next sections, we solve the 2D coupled GP mean-field
equation by the split time-step Crank-Nicolson method, with
an appropriate algorithm for discretization as prescribed in
Ref. [59]. Within our dimensionless units, in which the time
unit is the inverse of the transversal trap frequency 1/w, and
the length unit is £, = //i/(miw,) = 1 um, we consider the
space step sizes as 0.05, with time steps 10~ This space-time
discretization was found with enough smaller steps to provide
stable results along the time evolution of the coupled system.
The space steps are more than four times smaller than the
healing lengths, which are the cutoff lengths at the vortex core
sizes.

With the binary mixture considered in a completely misci-
ble state, with identical intraspecies scattering lengths (a;; =
ax), the miscibility parameter § = ajp/a;; must be smaller
than 1. For that, we assume that both intraspecies scattering
lengths are repulsive, with a; = 60aq being twice the inter-
species one ajp = 30ay, such that § = 0.5. We also consider
both species with an identical number of atoms, Ny = N, =
10*. With these parameters, we observe that the miscible-state
condition é = 0.5 will correspond to g12/g11, given by (4),
slightly smaller due to the mass differences of the considered
binary systems.

The healing lengths are associated with the dimensionless
chemical potentials w; (units fiw,), which are obtained from
the stationary solutions, v; = ./me """, given by Eq. (3)
with V; = 0. So, with energies in units of /iw,, the healing
lengths are in units of £, = 1 pm, with the speed of sound
in units of ¢,w,. For the binary mixture 3°Rb-'3*Cs, the
respective chemical potentials are w; = ussg, = 15.10 and
W = pincg = 12.87. Correspondingly, the healing lengths
& and sound velocities v; are & = &sp, = 0.257, & =
é;'lsscs = 0.223, Us,1 = UssRp = 3.43, and Vg2 = Uigg = 3.71.
In the case of the almost identical mass mixture, ¥Rb - *Rb,
these values are given by w; = ussgp, = 15.53, (o = usigp =
15.40, & = &gy = 0.254, & = &g, = 0.252, and v; =
Usspp, & U = Usirp = 4.04. Notice that, due to our choice of
units based on the first component, the corresponding full-
dimensional expressions of the healing lengths are given by
& = £,3/miJ(m;i;) = €,&;, with the second component car-
rying a mass factor in relation to the chemical potential.

C. Analysis of vortex formation

In general, quantum gases are compressible fluids such that
their corresponding density can change when submitted to a
force. This is true to a certain degree, as part of the fluid can
behave as an incompressible fluid, similar to a liquid. In our
present case, the condensate is submitted to a time-dependent
stirring potential, associated with a torque, which is mainly

due to the compressible part of the kinetic energy. Therefore,
for the analysis of this behavior, we start by considering
the total energy, in which only the harmonic trap with the
time-dependent stirring potential is assumed for the total trap
potential, in Eq. (3). So, for each component of the mixture,
the total energies E;(t) are given by

Ei(t) = /dzrliﬂ|vwl|2 + ‘/i(-xv s t)ni(-x1 s t)i|
2m,-

+3 Y o [Ernnonenn. @)
j=1.2

where n,_; »(x, y, t) = |;|* are the respective time-dependent

densities. For each species, with the current densities j;(x, y, t)

expressed in terms of the respective densities and velocity

fields v;(x, y,t), such that j;(x,y,t) = n; vi(x,y,t), we can

write

1
Vi(x, y, 1) = W[WV%—WW]- (8

The associated kinetic energies,

Ef(t) = m

[ deneyomeornt. ©
2m;

can be decomposed in compressible Ef(#) and incom-
pressible E[(z) parts. For that, the component i of the
density-weighted velocity field, defined as w;(x,y,t) =
J/ni(x, y, £)vi(x,y,t), can be split into an incompressible
part, u}”") = uE"C)(x, v, 1) satisfying V - uf"c) =0, and a com-
pressible one, u;c) = ufc)(x, y, 1), satisfying V x ufc) =0.
Therefore, with w;(x,y,t) = ul("c)(x, v, 1) +u§c> (x,y,1), the
kinetic energies are split as

EF(t) =E!“(t) + Ef (1)

_ M 2 0|2 ©)2
=— [dr||u; : . 10
o [P+ P a0
In 2D momentum space, with k = (k,, k,) and d*k = dk.dk,,
these two parts of the kinetic energies, with (o) = (c), (nc),
can be written as
my

/dzk\f;“)(k, 1)
2mi

m .
— 1 /.de/.ere—lk-ruga)
872m;

To analyze the contributions of sound waves as well as
vortices, both compressible and incompressible parts of the ki-
netic energies are determined. The torque experienced by the
time-dependent stirring potential, V,(r, 6,¢), which is given
by Eq. (5), can be obtained through the corresponding torque
operator,

@)y — 2
El’a (t)_ )

2

(1)

3
(1) = =2 Vi(n6.1) = ¢ 2 sin(20 + 2Qt), (12)

which corresponds to applying a rotation in the elliptical time-
dependent part of the potential, with 2Qgt — 2Qpt — 7 /2.
Due to this change in the time-dependent potential, it follows
that the expected values of the induced angular momenta,
(L;(1));, and respective moment of inertia, (I(¢));, are given
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by

(L(t))i = —i f d*r w,-*%m/f,- and (I(1)); = / d*rlyil* r?,

with the associated classical rotational velocity being
oy = L
(1))

We are aware that it is a nontrivial problem to calculate the
moment of inertia of a superfluid or a condensate system. In
the literature, the perturbation theory is commonly used to cal-
culate the momentum of inertia for trapped ideal Bose gases. It
is a temperature-dependent treatment, in which the condensed
and noncondensed parts are considered in the calculation of
the moment of inertia of a quantum system. Since we are
working with a pure GP model, the noncondensate thermal
clouds are not taken into account. We just use the classical
relation to obtain approximate rotational velocities.

The structure factor provides us with information about
the periodicity of the condensate density. For triangular lat-
tice geometry, there are periodic peaks of regular hexagonal
geometry. By looking at the position of peaks of the structure
factor, we can distinguish between the Abrikosov lattice and
the pinned vortex lattice.

We can also consider for the coupled system the density

structure factor [60], which is a function of the k = /kf + k)?

13)

that provides information on the lattice order, the periodicity
of the condensate density. This structure factor can be ex-
pressed by

1 .

sik) = 5~ / dr |yiPe™"T. (14)
2

D. Kinetic energy spectrum in rotating frame

The rotating-frame velocity field, at a given frequency €2, is
defined by subtracting the corresponding rigid-body velocity
field, as

Vo=V—(R xr), (15)

such that, for each density component 7;, the associated parti-
cle current j; o(r, t) = n;(r, t)v; (T, ¢) satisfies the continuity
equation
on;(r,t)
ot

Therefore, by following Eqgs. (9)—(11), when considering a
rotating frame at a given frequency €2, we obtain

+V o) = 0. (16)

o m o 2
B0 = 5 [ KFE D)

oo
_m @
= — dk E;'G(k, 1), an
m; Jo '
which is defining the velocity power spectral density in k space
as given by

2
Ef (k1) =kf d9k|fif‘;;(k,t)|2. (18)
0

Within this definition, for convenience, we are removing
the relative mass ratio difference, which does not affect the

corresponding spectral behavior of each component. This
equation is used to calculate the kinetic energy (or velocity)
power spectra densities presented in this work. The compu-
tational methods for calculating the velocity power spectrum
using decomposed kinetic energies are discussed in more de-
tail in Ref. [61].

III. VORTEX FORMATION

In our study, we have considered two mass-imbalanced
mixtures, such that we can contrast the results obtained by a
mixture with a large mass difference between the components,
given by ¥Rb - 1**Cs, with the results obtained by a system
with a negligible mass difference, exemplified by ®°Rb - 8Rb.
Once stable lattice patterns are verified for both cases, aver-
aged frequencies are derived from the results given by the
stirring model, which is further considered to obtain the lattice
patterns from the ground-state time-independent results.

Therefore, we split our results into two parts, correspond-
ing to the two binary systems we are studying.

A. Binary 3Rb - '**Cs mixture

In this subsection, we are presenting the main results con-
sidering the binary mass-imbalanced system composed of the
85Rb and '*3Cs. As previously stated, the sample results we
have obtained are for fixed scattering lengths in a miscible
configuration, such that § = 0.5. In view of the actual ex-
perimental control on the condensation of these two atomic
species, we understand that Feshbach resonance techniques
[58] can be considered to approximately bring the coupled
system to this hypothetical condition. In Fig. 1, through the
time evolution of the densities, we have the main results for
the densities, in which the route to the vortex lattice generated
by the stirring potential was shown. By considering four sets
of panels, within the 2D space defined by the Cartesian coor-
dinates (units of £,,), we provide the results for the densities at
some specific time intervals, characterizing specific regimes,
for both 35Rb (upper panels labeled 1) and '*3Cs (lower
panels labeled 2) species. To obtain stable nonrotating ground-
state solutions, we first solve the coupled Eq. (3) by using
imaginary time (t — —it), with € = 0 (without the stirring
potential). Next, this ground-state solution is evolved in real
time, by considering a rotating elliptical frequency Qr = 1.25
with the strength of the stirring potential € = 0.025, as given
in Eq. (5). The first coupled panels of Fig. 1, (a;) and (ay),
are for t = 200, which refers to the time interval when shape
deformations start to occur in the system. As verified, the con-
densed system is already displaying elliptical deformations
(quadrupole excitations), due to the stirring potential, which
periodically reverses back to the symmetric 2D trap, with the
expected full cycle given by 7 /Q2g. The shape deformation is
more noticeable in the first lighter component (®*Rb) than in
the second one (1**Cs). This periodic behavior goes on until
a break occurs in the symmetry, with vortex nucleations hap-
pening at the surface of the condensed species, after enough
long-time evolution (¢t > 3000). For this second interval, just
before and at the time the nucleation of vortices starts to
appear, we select two sets of plots in Fig. 1, for r = 3600
[panels (b;) and (by)] and for ¢+ = 4000 [panels (c;) and (c,)].
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FIG. 1. Set of panels indicating the time evolution of the densities for the condensed mixture 8°Rb - '**Cs in a miscible configuration with
8 = 0.5. The upper panels are for 3>Rb (component 1), with the lower panels for '**Cs (component 2). By starting with a ground-state solution,
the system is evolved in real-time with Qz = 1.25 and € = 0.025. The density levels are indicated at the top of the panels. Within given units,

all quantities are dimensionless.

The time interval in which we can observe the break
in the symmetry is represented by the two sets of pan-
els (b;) and (c;), within an interval of Ar =400 (with
t = 3600 and 4000). As the time increases, after an inter-
val in which turbulent behaviors are verified, the nucleated
vortices move from the surface to the inner part of the
condensates, lattice patterns start appearing in both cou-
pled condensates, and their positions become stable. At
the final configuration, we noticed that the number of
nucleated vortices emerging in the heavier component is
significantly larger than the number of vortices obtained for
the lighter species. The density evolutions represented in
Fig. 1 can be better analyzed by considering the correspond-
ing evolution of the associated kinetic energies, which are
shown in Fig. 2 in the laboratory frame. For that, consider-
ing the two condensed species, the total kinetic energies are
shown in Fig. 2(a), which are decomposed in two parts as
shown in Fig. 2(b), one of which is compressible and the
other incompressible. In the initial time interval, the energy
oscillations correspond to the breathing mode oscillations of
the condensates. The energies display increasing behaviors
from the elliptical deformation phases of the condensates,
returning to the established energies as they follow the trap
symmetry. The shape deformation is more noticeable in the
first component (3Rb) than in the second one ('*3Cs), which
can be understood by the different inertia of the species. The
increase of both component energies occurs due to the vortex
nucleations. In this case, we observed that a more drastic
increase is verified for the second, heavier one. At the final
configuration, it is also noticed that the number of nucleated
vortices emerging in the condensed heavier component is sig-
nificantly larger than the lighter one. In general, the energies
in the rotating frame decrease when the rotation frequency

or vortex number increases. The laboratory-frame continuous
growth of the energies, verified even after saturation of the
vortex number, is associated with the applied time-dependent
stirring potential to a coupled system.

To analyze the different dynamical behaviors, one relevant
observable is the kinetic energy, which we separate from the
total energy. The kinetic energy is decomposed into two parts,
considering the compressibility of each condensed part of the
mixture. The behaviors of the total kinetic energies of both
components are presented in Fig. 2(a), with the correspond-
ing decomposition in compressible and incompressible parts
shown in Fig. 2(b). The increase in the energies can be visually
verified in the plots shown in Fig. 2, which become linear in
the long time interval, as for ¢ > 10*. 1t is more significant
to analyze the kinetic energy of the system to understand
the vortex generation, because all the information about the
velocity fields can be extracted from the associated kinetic
energies, such as the elements related to sound-wave propa-
gation and vortex generation. Therefore, it is appropriate to
distinguish, in the total kinetic energy, the parts correspond-
ing to acoustic wave propagations (compressible) from the
ones related to vortex generation (incompressible). The total
kinetic energy contribution has a similar oscillating behavior
as the total energy in the initial time evolution, with huge
energy contributions arising due to vortex and sound-wave
productions along the long-time dynamical rotation. In this
process, the main contributions in the kinetic energies will
come from the incompressible energies, but significant con-
tributions also from the compressible parts, as verified in
Fig. 2(b). As compared with the total energy (not shown in
the figure), we should point out that in the first stage of time
evolution, before the nucleation of vortices, the kinetic energy
is just a small fraction of the total energy, with the oscillating
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FIG. 2. For each component of the mixture, 8Rb (i = 1, solid
blue lines) and '**Cs (i = 2, dashed red lines), the time evolutions
are presented (in the laboratory frame) for (a) the kinetic energies,
E[.K = E,.K (), and (b) their corresponding compressible (Ef, indi-
cated with bullets) and incompressible (£, indicated with triangles)
parts. With the initial configuration being ellipsoidal, the evolution is
shown until stable vortex patterns are verified. Within given units, all
quantities are dimensionless.

behavior stronger in the lighter component. However, in the
longer time evolution, the total kinetic energy of the '33Cs
component grows to be more than 20% of the total energy,
whereas the corresponding total kinetic energy increase of
the 8Rb element becomes near 16% of the total energy. This
is consistent with the observed number of vortices emerging
in the case of '**Cs when compared with the corresponding
number for the 33Rb, as verified by the results given in Fig. 1.

The vortex nucleation responsible for the increase in the
kinetic energies starts to occur at the surface, moving to
the inner part of the condensates, with the incompressible
parts providing the main contribution to the total kinetic en-
ergy. While comparing both components, the compressible
and incompressible parts of the kinetic energy of the second
component (133Cs) are larger than the ones obtained for the
first component (3°Rb), by a factor that, in a longer time
interval, can be associated with the corresponding mass ratio
between the two species. To improve our understanding of
the dynamics of the vortex lattice formation from the rotating
elliptical trap, in this case of a large mass-imbalanced mixture,
we also plot the complete time evolution of the current density
(j = nv) and corresponding torque for the two species until
the vortex patterns are generated and become stable. The

10°t

FIG. 3. For the ®Rb (i = 1) and '**Cs (i = 2) mixture, the re-
spective time evolutions of the current densities [(a), given by (8)]
and torques [(b), given by (12)] are shown until stable vortex patterns
are verified. Within given units, all quantities are dimensionless.

results are presented in Fig. 3, with the current densities shown
in Fig. 3(a), and the torques given in Fig. 3(b). As verified,
in the initial evolution the current densities are zero for both
components of the mixture, until a symmetry breaking occurs
near ¢t ~ 3000, with vortices being nucleated at the surface.
The current densities reach their maxima around ¢ ~ 5000,
when the mixture is in a turbulent condition, decreasing to an
average value consistent with the stabilization of the number
of vortices being generated. Consistently, in all the time evolu-
tion, the current is higher for the more massive element of the
mixture, the '*3Cs in the present case. This higher current is
consistent with the larger number of vortices being generated.

In Fig. 3(b), in correspondence with Fig. 3(a), the torques
experienced by both components due to the stirring potential
are shown during the time evolution of the system. The time-
dependent stirring trap potential provides the initial rotational
energy for the system to rotate. This increase in the rotational
energy is distributed between the two components, being more
effective in the case of the lighter component, with the peak
in the torque reaching its maximum in the time interval ¢ <
3000. The heavier element, with corresponding higher inertia,
is feeling an initial torque that is about 30% of the lighter
one. However, in the longer time interval, with both averaged
values varying close to fixed stable points, it is verified that
the heavier element experiences higher torque than the lighter
one. These results can be associated approximately with the
number of vortices induced in the densities of both compo-
nents shown in Fig. 1. The square root of the torque ratio is of
the same order as the square of the mass ratios, and also the
ratio between the number of vortices.

The time evolutions obtained for the classical rotational ve-
locities €2;(¢) are shown in Fig. 4, obtained from the expected
value ratios between the induced angular momentum (L;);
and the corresponding momentum of inertia (/);, as given by
Eq. (13). The rotating condensates always reflect the angular
momentum, which is a conserved quantity, at the equilibrium
state. When the angular momentum of the system increases,
the rotational velocity also increases correspondingly. We can
clearly observe three time intervals in the evolution of the
rotational velocity, given by Eq. (13), as indicated inside the

033314-7



DA SILVA, KUMAR, BRADLEY, AND TOMIO

PHYSICAL REVIEW A 107, 033314 (2023)

|
0 5 10 15

S
=]

10.3 t 20 25 30

FIG. 4. Time evolutions of the rotational frequencies [Eq. (13)]:
Q,(z), for Rb (solid red line); ,(¢), for **Cs (dot-dashed green
line), and with the corresponding averaging, $2,,(t) = [Q2:(¢) +
©,(t)]/2 (dashed blue line). The vertical lines are approximately
separating three time intervals: (I) shape deformations; (II) turbulent
regime, with starting vortex nucleations; and (IIT) when vortex pat-
terns are settled. Within given units, all quantities are dimensionless.

figure. The initial interval I corresponds to the period in which
we have the shape deformations of the condensates. The nu-
cleation of vortices occurs in the region identified by II in
the figure, which corresponds to the increase of the velocities
observed in Fig. 3(a). In region III, we have the vortex lattice
formations, with €2;(¢) converging to almost constant values.

The overall time evolution of the expected values will
provide the corresponding time-dependent defined classical
rotational frequency for each component of the mixture, given
by a red solid line for the lighter species (*’Rb) and a green
dot-dashed line for the heavier species ('**Cs). As shown in
Fig. 4, the frequencies grow faster for the lighter component
than for the heavier one in the initial time interval, when the
coupled system is still in the time interval given by region I,
before the nucleation of vortices. In region II, we notice the
transition with vortices nucleation at the surface, when the
frequencies start to grow faster for the heavier element. The
stabilization of the frequencies, which happens faster for the
larger mass component, is verified in the long time interval
given by region III, with the emergence of stable vortex pat-
terns.

In order to simulate the ground-state solution within a time-
independent approach, as given by the replacement (6), we
consider the frequency €2 as corresponding to a time averag-
ing of both rotational frequencies €2;(¢), in which we assume
for the total averaging time the interval from zero up to the
point in which the frequency becomes almost constant, such
that Q;(r > T) =~ Q,;(T). With this prescription, we obtain

1T 1 [T
QOE?/O Qav(t)dtzﬁ](; (200 + L)1, (19)

From the results shown in Fig. 4, in which T ~ 30000 and
the saturated averaged frequency is ©2,,(T) ~ 0.72, the above
prescription will give us €29 ~ 0.63. As shown in Fig. 5, this
prescription is providing an approximate good value for the
classical rotational frequency, when used in Eq. (3), without
the stirring potential.

In Fig. 5 we provide a comparison between the results
for the coupled densities obtained with the stirring potential

0 0.024 0 0.027
—_——

0 0.022 0 0.022
)

FIG. 5. Vortex-pattern solutions, obtained at = 27 000 with the
stirring potential [(a;) = (d;) of Fig. 1], are compared with ground-
state solutions of Eq. (3), using (6) with €2y = 0.63 [shown in panels
(b;)]. The density levels are indicated at the top of each panel. Within
given units, the plotted quantities are dimensionless.

[panels (a;)] and without it [panels (b;)] by using the pre-
scription (19). By considering the laser stirring potential (5),
with Qg = 1.25 and € = 0.025, the corresponding stable re-
sults presented in panels (a;) and (a;) are the ones previously
shown in panels (d;) and (d) of Fig. 1, respectively, for t =
27 000. Without the stirring potential, using (6), we obtain the
complete ground-state solutions of the coupled densities by
considering the frequency €2 as given by the time averaging
frequency (19), which will give us approximately 29 = 0.63
in the present case. The results verified in panels (b;) and (b,)
of Fig. 5, computed directly for the ground-state solutions,
as obtained for the ground-state solutions are not affected by
sound-wave propagations. The correspondence between the
density panels (a;) with (b;) was also confirmed by examining
the lattice orders obtained from Eq. (14), with the structure
factors providing good agreement on the associated peak po-
sitions.

B. Binary 3Rb - ¥ Rb mixture

For the case of two isotopes of the same species, we assume
the binary mixture 8°Rb-8Rb. The main purpose of repeat-
ing the same kind of calculations previously done for the
85Rb - 133Cs is to verify clear mass-imbalance effects in our
results. Particularly, we will try to point out the system which
is more favorable in the production of vortex patterns by using
a stirring potential. For that, we follow the previous same
parametrizations for the trap and particle interactions, consid-
ering a complete miscible configuration, with § = aj»/a;; =
0.5 (Where ay =ayj = 60&0).

The time evolution of the densities can be verified by the
four sets of panels shown in Fig. 6, for the two species,
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FIG. 6. Set of panels indicating the time evolution of the densities for the mixture Rb - ¥’ Rb. The upper panels are for the ¥ Rb (component
1), with the lower panels for ¥Rb (component 2). As in the case of Fig. 1, by starting with a ground-state solution, the system is evolved in
real time with Q¢ = 1.25 and € = 0.025. The density levels are indicated at the top of the panels. Within given units, the plotted quantities are

dimensionless.

with the upper row being for the 5Rb and the lower row
for the ¥Rb. As expected, due to the small mass difference
between the components, the dynamical behavior observed
for both species is similar along the time evolution, until the
vortex patterns become stable. In comparison with Fig. 1,
we should observe that the time to reach the condition in
which the surface nucleated vortices move from the surface
to the inner part of the condensates is shorter. This behavior
can better be verified by considering the results obtained for
the other observables, in correspondence with the previous
stronger mass-imbalanced case. For that, we are presenting
the time-evolution results for the kinetic energies in Fig. 7,
currents and torques in Fig. 8, with the corresponding classical
rotational velocities shown in Fig. 9.

In this case, with both species having about the same mass,
the final number of vortices verified for both components are
the same, as shown in Fig. 6. Also as expected, the respective
results are very close for the kinetic energies of both species,
such that we are representing the total kinetic energies in
Fig. 7(a), with the compressible and incompressible parts
of the kinetic energies in Fig. 7(b). As in the case of the
85Rb - 13Cs considered in Fig. 2, initially the kinetic energies
are a very small fraction of the total energy (not shown in
the figure), becoming a large fraction (about 13%) of the total
energy in the longer time propagation. These results, together
with the results shown for the current and torques, are also
quite in contrast with the corresponding ones verified for the
stronger mass-imbalanced case, where the process of vortex
nucleations and the movement to the inner part of the conden-
sate becomes much faster. The time to stabilize the final vortex
patterns is much longer in the case of close mass-imbalanced
coupled systems, as one can verify in particular from the

10°t

FIG. 7. For both components, ¥Rb (i = 1) and ¥’Rb (i = 2),
(a) shows the almost complete overlap of the total kinetic energies
(solid blue for EX, with dashed red for EX). The compressible (bul-
lets) and incompressible (triangles) parts of EX are shown in (b).
Within given units, all quantities are dimensionless.
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FIG. 8. The current densities (a) with the torques (b), respec-
tively given by Eqgs. (8) and (12) for both components, are shown
for the 3°Rb - ’Rb mixture, during the dynamical process that occurs
until the vortex generation. Within given units, all quantities are
dimensionless.

results obtained for the classical rotational frequencies. By
comparing Fig. 9 with Fig. 4, we noticed that the averaged
frequencies are already reaching convergence at ¢ ~ 30000
for 3Rb - 133Cs. However, for Rb - ’Rb, a much longer time
is needed for a final convergence.

In Fig. 10, we follow the same procedure done in Fig. 5
for 8Rb - '3Cs, now considering the almost identical mass
system, 3Rb-3Rb, by providing a comparison between the
results for the coupled densities obtained with the stirring po-
tential (using the same parameters Qg =1.25 and € = 0.025)
[panels (a;)] and without it [panels (b;)]. The correspond-
ing stable results, presented in panels (a;) and (a,), are the
ones previously shown in panels (d;) and (dy) of Fig. 6,
respectively, for + = 35000. By using (6), i.e., removing the
time-dependent perturbation, we obtain the complete ground-
state solutions of the coupled densities with 2o = 0.6 in the
lower panels. In this case, the prescription (19) gives a value
for the frequency close to the asymptotic limit verified in

0.6

1 I

FIG. 9. Time evolution of 2;(¢) [Eq. (13)] of both components,
85Rb (solid red curve) and 8’Rb (dot-dashed green curve), with the
corresponding averaged result, Q.(t) = [Q2,(t) + 2,(¢)]/2 (dashed
blue curve). Vertical lines are indicating three time intervals in the
evolution: (I) shape deformations; (II) transition period with nucle-
ation of vortices at the surface; and (III) with vortex lattices being
formed. Within given units, all quantities are dimensionless.

FIG. 10. Vortex-pattern results, at + = 35000 with the stirring
potential [(a;) = (d;) of Fig. 6], are compared with ground-state
solutions of Eq. (3), using (6) with Q¢ = 0.6 [panels (b;)], for the
coupled system 3 Rb (species 1) and 8’Rb (species 2) in miscible con-
figuration a,,/a;; = 0.5. The density levels are indicated at the top
of each panel. Within given units, all quantities are dimensionless.

Fig 9, ., ~ 0.52, pointing out a lower value for € to im-
prove the agreement between the density panels (a;) and (b;).

IV. INCOMPRESSIBLE KINETIC ENERGY SPECTRA

In this section, we consider the velocity power spectral
densities in the k space, as given by Eqs. (17) and (18), for
the analysis of the incompressible kinetic energy spectra of
the two components, which is the more appropriate part of the
kinetic energy concerned with the fluidity characteristics in
the vortex production. The kinetic energy spectral methods for
analyzing turbulent flows in symmetry-breaking quantum flu-
ids within the Gross-Pitaevskii limit can be found in Ref. [61].
The incompressible E®¢ spectrum is expected to behave
as k=3 when vortex configurations become well established
inside the condensate. In the time evolution regime, before
reaching the vortex-pattern configuration, the spectrum is
expected to approach the k—>/3 Kolmogorov behavior, charac-
terizing the turbulent regime of a fluid. In order to enhance the
effect of mass differences in this power-law dynamical behav-
ior study, in the next, both behaviors of the mass-imbalanced
coupled systems, 35Rb-!¥3Cs and **Rb-¥Rb, will be ana-
lyzed comparatively along the time evolution of the mixtures.
Therefore, in the next, both mass-imbalanced coupled sys-
tems, S5Rb- 133Cs and ¥ Rb - #'Rb, have their incompressible
kinetic energy spectra, E(k, t), presented in Figs. 11 and
12. The results are displayed as functions of the wave number
k multiplied by the corresponding healing lengths &. For both
cases, in the selected set of coupled panels, we are considering
time instants, with the corresponding classical rotational fre-
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FIG. 11. Incompressible kinetic energy spectra, E" = E"(k, t),
for the 35Rb-133Cs mixture, obtained by averaging over 50 sam-
ples in the turbulent time interval (II) indicated in Fig. 4, which
approximately agrees with the classical Kolmogorov k=/3 power-
law behavior in the shown interval 0.1 < k& < 1 (red dashed lines),
being modified to the k3 in the ultraviolet region. Within given units,
all quantities are dimensionless.

quencies, which are representative of the time intervals before
and after the nucleation of the vortices.

A. 5Rb - 13Cs kinetic energy spectra

We first examine the kinetic energy spectra for the case in
which a stronger mass imbalance exists between the species.
By considering the three regions defined in Fig. 4, we can
select representative time intervals of the evolution. The first
interval (I), also corresponding to panels (a;) of Fig. 1, refers
to the shape deformation interval, when we noticed that the
rotation frequency is much slower for the heavier component.
Since there is no vortex formation at this stage, analyzing
the spectrum in this regime does not provide any useful in-
formation about power-law behavior. Also, in the last part
of interval III, one should not expect any turbulent behavior,
considering that the system is already close to equilibrium. As
the system approaches this time interval, with a pattern of vor-
tices already established, one should notice the characteristic
power-law k3 behavior, which is lost when sound waves start
hassling the vortex cores.

Therefore, time interval II is the more relevant one in order
to characterize the turbulent regime at which vortices start
to be formed at the surface (near + ~ 3500-4000), entering
the inner part of the condensates in the last part of the in-
terval (when ¢ is close to 4500). We consider this interval
to examine in more detail the possible expected power-law

l?nc

l;nc

-4 .
10 0T

FIG. 12. Incompressible kinetic energy spectra, E" = E"(k, t),
for the %*Rb-%Rb mixture, by averaging over 50 samples in the
turbulent interval (II) indicated in Fig. 9. With behavior similar to
the one observed for the stronger mass-imbalanced case in Fig. 11,
the change in the power-law behavior is verified for larger values of
k&. Within given units, all quantities are dimensionless.

behavior. To better characterize this regime, going from tur-
bulent to vortex pattern formation, in Fig. 11 we display the
incompressible kinetic energy spectra for the two components
of the ¥Rb-33Cs mixture, in terms of k& (where & refers
to the specific healing length of each condensate species).
The results, obtained by averaging over 50 samples in the
turbulent time interval II defined in Fig. 4, clearly confirm the
Kolmogorov k~>/3 power-law behavior in the turbulent regime
II for k& < 1, which changes to k3 for larger momenta.
Significantly, a quantum fluid is more turbulent at this stage
due to a large number of vortex generations at the surface.
The quantum fluid looks more turbulent until the torque, ex-
perienced by the condensates due to laser stirring, approaches
the more stable region (as observed in Fig. 3). Along the
process, the coupled condensates have a continuous energy
injection due to the laser stirring potential. The velocity power
spectrum is dominated by the rigid-body rotation spectrum in
the infrared regime. In this work, we remove the large infrared
contribution by calculating the spectrum in the rotating frame,
as the amplitude of the infrared signal is greatly reduced
in such a frame. The incompressible kinetic energy spectra,
corresponding to the vortex configurations presented in panels
(d;) of Fig. 1, are shown over k£ in log scale. Similarly as in
Ref. [19], also by considering our present results of coupled
systems, the spectra are analyzed for the infrared (k§ < 27)
and ultraviolet (k& > 2m) regimes. The incompressible spec-
trum becomes more important when vortices enter the system.
In the ultraviolet regime, the incompressible kinetic energy

033314-11



DA SILVA, KUMAR, BRADLEY, AND TOMIO

PHYSICAL REVIEW A 107, 033314 (2023)

spectrum has a universal k=3 scaling behavior that arises from
the vortex core structure. In the infrared regime, the incom-
pressible spectrum is in agreement with the Kolmogorov k—/3
power law. This power-law feature is kept until k& ~ 27,
changing to k=3 at higher momenta. These behaviors vanish
after the vortices have entered the inner part of the densities,
with the coupled system relaxing to the crystallization of
lattice patterns.

B. 3Rb - ¥Rb kinetic energy spectra

By following a similar analysis as done in the previous
section for ¥Rb-133Cs, in Fig. 12 we have our results for
the spectra when considering the 8Rb - Rb mixture. For this
mixture, the corresponding density distributions are given in
Fig. 6. In this case, following the same order as before, we
have the initial shape deformation interval being represented
in (a;), at t = 200. The other time instants are for the time
interval when the nucleation of vortices starts [(b;), at t =
2600], entering the inner part [(c;), at + = 4000], and when
the vortex patterns become stable [(d;), at £ = 35 000].

As we have considered before, for this system we are
also focusing in particular on region II, indicated in Fig. 9,
where the turbulent regime occurs, until patterns of vortices
are formed for each component. The corresponding results are
shown in Fig. 12, with the upper panel showing the spectra for
the component *Rb and the lower panel for the component
87Rb. Again, our results were obtained by averaging over 50
samples in region II, considering the fixed time intervals. In
comparing the two kinds of mixtures, we observe that the
Kolmogorov k~3/3 power-law behavior in the turbulent regime
II (verified for k& < 1) is shifted to larger values of k& when
considering close mass differences between the species. We
also observe the same kind of change happening for the k—3
behavior, which starts for larger values of k§.

V. CONCLUSIONS

We have studied the vortex nucleation dynamics and as-
sociated turbulent flows produced by elliptical laser stirring
of two kinds of mass-imbalanced coupled Bose-Einstein con-
densates confined to an effective two-dimensional pancake
geometry. We modeled two easily accessible and controllable
systems in cold-atom experiments: mixtures of °Rb-'33Cs
and 3Rb - 8"Rb, both in the miscible regime.

During stirring, we observed the stages of instability
known in the single-component system [18]: shape defor-
mation, symmetry breaking involving vortex nucleation, and
finally the approach to rotating frame equilibrium. To char-
acterize vortex nucleation in the coupled BEC system, we
computed the time evolution of relevant dynamical observ-
ables for each of the two components of the mixture, including
the total and kinetic energies, the current densities, and
torques.

During the shape deformation regime, the kinetic energy
injected is primarily compressible, switching to incompress-
ible energy when vortex nucleation begins. For low mass
imbalance, the final vortex lattices are similar, while for the
high mass imbalance system the heavier species support more
vortices at the same rotation frequency. This is consistent with

the Feynman rule for the vortex density in a rigidly rotating
lattice [13], while in the vortex density is proportional to the
atomic mass.

The initial torque experienced by the coupled condensates
soon after switching on the laser stirring is stronger for the
less-massive atomic species. When vortices approach stabi-
lized lattice configurations, for both elements the torques
saturate, being stronger for the more massive one. To calcu-
late the effective time-dependent rotational frequency of each
component, we used the classical rotational relation obtained
from the expected values of the angular momenta and moment
of inertia operators. The larger mass-imbalanced mixture has
a larger rotational frequency than the lower mass-imbalanced
mixture. This is also reflected in the visible number of vortices
shown in the final vortex lattice.

As a measure of vortex energy, we compute the in-
compressible kinetic energy, taking care to subtract the
uninteresting rigid body velocity field associated with the
rotation. In the turbulent regime, the incompressible kinetic
energy shows some evidence of a Kolmogorov k~>/3 scaling,
for values of the k momenta (as a function of the inverse of
healing lengths £~') smaller than 1, which is modified to a
k=3 power-law behavior in the ultraviolet regime determined
by the vortex core structure [19]. While the Kolmogorov scale
range is somewhat limited, the spectrum is consistent with
energy transport to large scales as disordered vortices enter
the system and begin to organize. The vortices in this stage are
close to the boundary of the condensate, and the Kolmogorov
power-law scaling vanishes once stable vortex configurations
develop.

Comparing the large and small mass-imbalance systems
reveals two notable features. First, we noticed that a large
mass-imbalance system shows the approximate k—>/3 power-
law behavior for a longer time window. In this regard, see
Figs. 11 and 12, in which one can also notice that the change
in the scaling behavior, from k=3 to k=3, occurs at lower
incompressible kinetic energies for larger mass differences
between the species. Second, the dynamical production of
stable patterns of vortices is verified to be a much faster
process for larger mass-imbalanced systems than for smaller
mass-imbalanced ones.

In addition to the above outcomes, we should also point
out that, in the case where a single condensate is confined
under the same stirring interaction conditions (implying no
interparticle interactions, or g, = 0), the process of produc-
tion of a stable pattern of vortices will be much faster. These
results may impact experimental investigations in which equal
or nearly equal two-particle masses are considered in misci-
ble (with g1, # 0) configurations, such as when two spinor
components of the same atom are being studied in condensed
cold-atom experiments. The other extreme, with much larger
mass-imbalanced miscible mixtures being considered, is also
of interest, considering that faster production of stable pat-
terns can be achieved. Finally, from another perspective, the
present study for coupled condensates, under stirring po-
tential, can be extended by using damped Gross-Pitaevskii
analysis, with a treatment of the condensates with their
corresponding thermal components. It can be useful to cal-
culate precisely the effective rotational velocity of the thermal
clouds.
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