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Mode softening in time-crystalline transitions of open quantum systems
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In this work, we generalize the concept of the roton-softening mechanism of the spatial crystalline transition
to time crystals in open quantum systems. We study a dissipative Dicke model as a prototypical example, which
exhibits both continuous time crystal and discrete time crystal phases. We find that, on approaching the time
crystalline transition, the response function diverges at a finite frequency, which determines the period of the
upcoming time crystal. This divergence can be understood as softening of the relaxation rate of the corresponding
collective excitation, which can be clearly seen by the poles of the response function on the complex plane. Using
this mode-softening analysis, we predict a time quasicrystal phase in our model, in which the self-organized
period and the driving period are incommensurate.
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I. INTRODUCTION

Order-to-disorder phase transitions are usually associated
with mode softening. For example, near the transition to
a crystal, which breaks the spatial translation symmetry,
the excitation spectrum of a quantum liquid will exhibit a
local minimum at a finite momentum krot called a roton, see
Fig. 1(a). As the roton softens, i.e., the roton gap vanishes,
�rot → 0, the quantum liquid becomes unstable and tends
to form a crystal with a period given by 2π/|krot|. As
a consequence, when crossing the crystalline transition,
the density response function will diverge at the roton
momentum and zero frequency χ (k = krot, ω = 0) → ∞.
Roton structure was first found in the spectrum of superfluid
4He [1,2]. Recently, roton mode softening has also been
predicted and observed in various artificial quantum systems,
such as spin-orbit-coupled Bose-Einstein condensates [3–6],
superfluids in shaking optical lattices [7], quantum gases
with dipole-dipole interactions [8–11], and ultracold atoms
coupled with optical cavity [12].

Analogues to common crystals, time crystals, which
spontaneously break time translation symmetry, were first
proposed by Wilczek in 2012 [13,14]. When the system
Hamiltonian is time-independent, it has continuous time
translation symmetry. The continuous time crystal (CTC)
spontaneously breaks this continuous time translation sym-
metry and exhibits permanent periodic oscillation, which is
robust against perturbations and the choice of initial condi-
tions. When the system is periodically driven, it has a discrete
time translation symmetry. The discrete time crystal (DTC)
spontaneously breaks discrete time translation symmetry and
manifests itself as a subharmonic response, which means the

*zw8796@ustc.edu.cn

system oscillates with n multiple of the driving period for
some integer n > 1. Soon CTCs were ruled out by the no-go
theorem in the ground states of closed systems [15,16]. Later,
more efforts were put in two directions. One was to search
for the DTC in periodically driven closed systems [17–36].
Another way to avoid the no-go theorem is to consider the
time crystalline order in open quantum systems, where dissi-
pation can drive systems into stable oscillating states [37–55]
. Recently, both the DTC and CTC orders were observed in
dissipative atom-cavity systems [56–60] . Compared to spatial
crystalline transitions that were driven by roton softening,
a natural question arises, is there a similar mode-softening
mechanism in time crystals?

In this paper, we generalize the concept of the roton mode-
softening mechanism to time crystalline transitions in open
quantum systems. We use a modified dissipative Dicke model
as a prototypical example. This model exhibits a CTC order
when the atom-photon coupling is time independent; while
it can enter a DTC phase as the atom-photon coupling is
driven periodically. Using the Keldysh formalism, we study
Gaussian fluctuations in the normal phase near the transitions
to the CTC and DTC phase. We find that the photon response
function, χph(ω) diverges at a finite frequency ω = εrot on ap-
proaching the time crystalline transitions. This divergence is
controlled by the softening of the relaxation rate of a collective
excitation γrot → 0, while keeping the excitation frequency to
be finite, εrot > 0, during the transition. This frequency εrot

plays the role of the roton momentum krot in spatial crys-
tals, which determines the corresponding period of the time
crystalline orders; while γrot plays the role of the roton gap
�rot, which vanishes at the transition and leads the normal
phase to be unstable. The comparison of the mode-softening
mechanisms in spatial crystals and time crystals is given in
Table I and Fig. 1. This softening mechanism can be clearly
seen by the poles of the response function on the complex
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FIG. 1. Soft modes before the transition to (a) spatial crystals and
(b) time crystals. (a) The excitation spectrum with a roton structure in
a quantum liquid near the transition to a spatial crystal. (b) The poles
of the response function in an open quantum system on the complex
plane near the transition to a time crystal.

plane, where the poles will cross the real axis at εrot during the
transition, see Fig. 1. Using this “roton-softening” analysis,
we predict a time quasicrystal phase in our model, in which
the self-organized period and the driving period are incom-
mensurate [61,62].

This paper is organized as follows. We first introduce the
modified Dicke model in Sec. II. Then, we study the phase
diagram in the case of a constant atom-cavity coupling and
discuss the mode softening in the continuous time crystal by
Gaussian fluctuation and exact diagonalization in Sec. III. In
Sec. IV, we consider the atom-cavity coupling to be peri-
odically driven and demonstrate the mode softening in the
discrete time crystal and the time quasicrystal. We summarize
with a discussion in Sec. V.

II. MODEL

We consider a modified dissipative Dicke model, which
describes the interaction between N two-level atoms and a sin-
gle cavity mode [63,64]. The Hamiltonian takes the following
form (h̄ = 1):

Ĥ = ω0â†â +
N∑

i=1

ωz

2
σ̂ z

i +
N∑

i=1

g(t )√
N

(â + â†)σ̂ x
i

+
N∑

i=1

U

2N
â†âσ̂ z

i , (1)

where â, â† are the annihilation and creation operators of
cavity photons and σ̂ α

i with α = x, y, z are Pauli matrices
describing two-level atoms. The cavity frequency is ω0, level
splitting of the atom is ωz, g(t ) is the atom-photon coupling,
and N is the total atom number. The interaction U can be
regarded as a Stark shift of atomic levels in the cavity field.
In the work, we only consider the situation of U > 0. Be-
sides the coherent process governed by the Hamiltonian (1),

TABLE I. Comparison of the mode-softening mechanisms in
spatial crystals and time crystals.

Spatial crystals Time crystals

Inverse period finite krot finite εrot

Mode softening �rot → 0 γrot → 0
Divergence of
response

χ (k = krot, ω = 0) → ∞ χ (ω = εrot ) → ∞

leaking of cavity photons leads to dissipative dynamics. Thus
the system can be described by a Lindblad equation ∂t ρ̂ =
−i[H, ρ̂] + κ (2âρ̂â† − {ρ̂, â†â}), where κ is the photon loss
rate.

We introduce a collective spin of atoms as Ŝ = 1
2

∑N
i=1 σ̂i.

the Hamiltonian can be written into

Ĥ = ω0â†â + ωzŜz + U

N
â†âŜz + 2g(t )√

N
(â + â†)Ŝx. (2)

A Holstein-Primakoff transformation is performed, such that
the collective spin can be expressed by bosons, Ŝz = b̂†b̂ −
N/2 and Ŝ+ = Ŝx + iŜy = b̂†

√
N − b̂†b̂. Then we expand the

Hamiltonian (1) to the order of O(1/N ) as

Ĥ ≈ δâ†â + ωzb̂
†b̂ + g(t )(â + â†)(b̂ + b̂†)

− g(t )

2N
(â + â†)b̂†(b̂ + b̂†)b̂ + U

N
â†âb̂†b̂, (3)

where δ = ω0 − U/2.
To investigate the nonequilibrium dynamics, we employ

the Keldysh path-integral approach of open quantum
systems [65,66]. The Keldysh path integral is equivalent
to the Lindblad master equation of the density matrix. As
we know the density matrix can be acted on from both sides,
thus there are a time-forward (+) and a time-backward (−)
components of the fields in the Keldysh formalism [66]. By
doing the path integral in the basis of coherent states on
the two time branches, bosonic operators are replaced by
time-dependent complex-valued fields. The Keldysh partition
function is given by

Z =
∫

D[a∗
+, a+, a∗

−, a−, b∗
+, b+, b∗

−, b−]eiS, (4)

and the Keldysh action is

S =
∫

t
{a∗

+i∂t a+ + b∗
+i∂t b+ − H+ − a∗

−i∂t a− − b∗
−i∂t b−

+ H− − iκ (2a+a∗
− − a∗

+a+ − a∗
−a−)}, (5)

in which H± is given by

H± = δa∗
±a± + ωzb

∗
±b± + g(t )(a± + a∗

±)(b± + b∗
±)

− g(t )

2N
(a± + a∗

±)b∗
±(b± + b∗

±)b± + U

N
a∗

±a±b∗
±b±.

(6)

Then we apply the Keldysh rotation, ψcl = (ψ+ +
ψ−)/

√
2, ψq = (ψ+ − ψ−)/

√
2, where ψ = a, b. The index

cl(q) stands for the “classical” (“quantum”) part of fields.
These fields are named “classical” and “quantum”, only be-
cause the former can acquire an finite expectation value while
the latter cannot. It does not indicate the “classical” field
cannot fluctuate.

In this new basis, we write the total action into S = S2 +
S4/N . Here S2 is the quadratic action given by

S2 =
∫

t
(a∗

cl, a∗
q )

(
0 i∂t − δ − iκ

i∂t − δ + iκ 2iκ

)(
acl

aq

)

+
∫

t
(b∗

cl, b∗
q )

(
0 i∂t − ωz

i∂t − ωz 0

)(
bcl

bq

)

− 4g(t )
∫

t
[Re(acl )Re(bq ) + Re(aq )Re(bcl )], (7)
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FIG. 2. (a) Phase diagram obtained by solving saddle point equations (11) and (12) with parameters κ/ωz = 1 and U/(Nωz ) = 0.01.
(b) Long-time dynamics of three different phases. (b1) The normal phase (NP), in which the photon number vanishes after a sufficiently long
time. (b2) The superradiant phase (SR), in which the system reaches a steady state with finite photon occupation. (b3) The continuous time
crystal phase (CTC). The cavity field oscillates periodically over time and has no steady state. (c,d) Poles of the response function on the
complex plane. The corresponding parameters are given by the points (c1)–(c3) and (d1)–(d3) in the phase diagram Fig. 2(a).

and the quartic term S4 is

S4 = g

2

∫
t

[
Re(acl + aq )Re(bcl + bq )|bcl + bq|2

− Re(acl − aq )Re(bcl − bq )|bcl − bq|2
]

− U

4

∫
t

[|acl + aq|2|bcl + bq|2

− |acl − aq|2|bcl − bq|2
]
. (8)

Apply the saddle-point approximation [66]

0 = δS

δa∗
q

∣∣∣∣∣
aq=bq=0

, (9)

0 = δS

δb∗
q

∣∣∣∣∣
aq=bq=0

, (10)

we obtain

i
∂acl

∂t
=

(
δ − iκ + U |bcl|2

2N

)
acl + 2g(t )

(
1 − |bcl|2

4N

)
Re(bcl ),

(11)

i
∂bcl

∂t
=

(
ωz + U |acl|2

2N

)
bcl

+2g(t )

(
1 − bcl(bcl + 2b∗

cl )

4N

)
Re(acl ). (12)

Setting acl(t ) = √
2〈â(t )〉 and bcl(t ) = √

2〈b̂(t )〉, one could
reproduce the usual mean-field equations of motion, which
can describe the colletive dynamics of this open Dicke
model [63,64].

III. MODE SOFTENING IN THE CONTINUOUS
TIME CRYSTAL

We first investigate the long-time dynamics for a time-
independent atom-cavity coupling strength g(t ) = g0. In this
situation, the Lindblad master equation has a continuous time

translation symmetry. We obtain the phase diagram by solving
the saddle-point equations (11) and (12), see Fig. 2(a). There
are three different nonequilibrium phases. When δ > 0, there

is a well-known superradiant transition at g∗ =
√

δ2+κ2

4δ
ωz. If

g0 < g∗, the system will reach a steady normal phase (NP)
after a sufficiently long time with an empty cavity, 〈â(t )〉 = 0
[Fig. 2(b1)]. As g0 exceeds g∗, the system will enter a steady
superradiant phase (SR). In this phase the cavity photons con-
dense so that 〈â(t )〉 	= 0, see Fig. 2(b2). In the region of δ < 0,
no steady states are found. Instead, the system will develop
a CTC order. Both the cavity 〈â(t )〉 and atoms 〈b̂(t )〉 show
permanent periodical oscillations in this phase [Fig. 2(b3)].
These oscillations are robust against external perturba-
tions [64] (and see the Appendix). It breaks the continuous-
time translation symmetry of the Lindblad equation. In
the limit of |δ|/U 
 1, the oscillations are approximately
harmonic

〈â(t )〉 ≈ 2ig0√
ω2

z + κ2

√
N |δ|
U

cos(εt ), (13)

〈b̂(t )〉 ≈ −
√

N |δ|
U

e−i(εt+φ), (14)

where ε = ωz + 2|δ|g2
0/(ω2

z + κ2), and cos φ = κ/
√

ε2 + κ2.
To investigate mode softening during phase transitions, we

consider quantum fluctuations beyond saddle-point approxi-
mation. First, we keep the action to quadratic terms above
the saddle point of the normal phase [65]. It gives S ≈ S2.
Note that in the thermodynamic limit N → ∞, 1/N terms
can be ignored and this expansion is exact. Here we define a
Nambu spinor as �λ(ω) = [aλ(ω), a∗

λ(−ω), bλ(ω), b∗
λ(−ω)]T

in frequency domain. λ = cl, q, for classical and quantum
components. The quadratic action then can be expressed into
a compact form

S2 = 1

2

∫
ω

(�†
cl(ω), �†

q (ω))M0(ω)

(
�cl(ω)

�q(ω)

)
, (15)
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where

M0(ω) =
⎛
⎝ 0

[
GA

0

]−1
(ω)[

GR
0

]−1
(ω) DK

0 (ω)

⎞
⎠, (16)

and

[
GR

0

]−1
(ω) =

⎛
⎜⎜⎝

ω − δ + iκ 0 −g0 −g0

0 −ω − δ − iκ −g0 −g0

−g0 −g0 ω − ωz 0
−g0 −g0 0 −ω − ωz

⎞
⎟⎟⎠, (17)

[
GA

0

]−1
(ω) = ([

GR
0

]−1
(ω)

)†
, (18)

DK
0 (ω) = 2iκdiag(1, 1, 0, 0). (19)

The retarded, advanced, or Keldysh Green’s functions can be
obtained by

(
GK

0 (ω) GR
0 (ω)

GA
0 (ω) 0

)
= M0(ω)−1. (20)

One seeks the poles of the retarded Green’s function by solv-
ing det[GR

0 (ω)]−1 = 0. Due to the particle-hole symmetry of
Nambu space (σx ⊗ I )[GR

0 (−ω∗)]−1(σx ⊗ I ) = [GR
0 (ω)]−1∗,

the poles must come in symmetric pairs about the imaginary
axis, see Figs. 2(c) and 2(d). The real parts of the poles are the
energies of collective modes. The imaginary parts represent
the relaxation rates of these modes and must be negative.
That is to say, the poles should be always in the lower half
complex plane. When a pole happens to appear in the upper
half complex plane, it implies that an excitation mode will
be exponentially amplified in evolution. That will make the
system unstable and a corresponding phase transition is about
to take place.

We analyze trajectories of the poles of response function
on the complex plane near the phase transitions. We find
that the superradiant phase transition and the time crystalline
transition occur in fundamentally different ways. Near the
superradiant transition, as g0 → g∗ [see trajectory c1-c2-c3
in Fig. 2(a)], a pair of poles will first move to the imaginary
axis, which indicates the vanishing of excitation energy. After
meeting each other on the imaginary axis, this pair of poles
will split in the imaginary direction. Near the transition, one
pole is near the axis origin

ω ≈ 2i

√
δ(κ2 + δ2)

ωzκ2
(g0 − g∗). (21)

When g0 = g∗, the upper one of the poles will cross the real
axis at ω = 0, such that the imaginary part changes its sign
to positive [65], see Fig. 2(c). That leads to a transition to
a steady superradiant phase. Of course, after the transition,
quantum fluctuations above the saddle point of the normal
phase become unstable and one should analyze the fluctu-
ations around a correct saddle point, i.e., the superradiant
saddle point.

In the other case, in the vicinity of the time crystalline
transition (δ → 0+), there are a pair of poles near the real axis,
see Fig. 2(d), ω = ±εrot − iγrot, where

εrot ≈ ωz + 2g2
0

(
ω2

z − κ2
)

(
ω2

z + κ2
)2 δ, (22)

γrot ≈ 4g2
0ωzκ(

ω2
z + κ2

)2 δ. (23)

These two poles dominate the photon’s response function in
the long time limit χph(ω) = −i

∫
dt eiωtθ (t )〈[â(t ), â†(0)]〉. It

can be calculated by the first diagonal element of the retarded
Green’s function matrix GR

0 (ω) as

χph(ω) ∼ 2(ω + iγrot )

(ω + iγrot )2 − ε2
rot

. (24)

Note that as δ → 0+, these two poles approach the real axis,
γrot → 0, but their real parts remain finite εrot → ωz. At the
transition, the poles cross the real axis at ω = ±ωz instead
of ω = 0 in the superradiant transition. Thus the response
function will diverge at finite frequencies [67] |χph(±ωz )| ∼
1/γrot ∼ 1/|δ|. As a consequence, a time crystalline phase
emerges and the system will oscillate at ±ωz, right after the
transition. That is consistent with the previous saddle-point
solution (13) and (14). We further calculate the photon corre-
lation function, corresponding to the first diagonal element of
the Keldysh Green’s function matrix GK

0 (ω), obtaining

Cph(t ) = 〈{â(t ), â†(0)}〉 ≈ g2
0

ωzδ
cos(εrott )e−γrot |t | (25)

near the transition. Note that both the photon number 〈â†â〉 =
[Cph(0) − 1]/2 = g2

0−ωzδ

2ωzδ
and the relaxation time 1/γrot di-

verge with exponent ν = 1.
To go beyond the Gaussian fluctuation, we numerically

diagonalize the Lindblad equation for a finite atomic number
N at the transition point δ = 0, and make a finite-size scaling
analysis. We obtain the photon spectral function, Aph(ω) =
−2Imχph(ω). The spectral functions of different numbers of
atoms N are plotted in Fig. 3(a). This spectral function ex-
hibits two peaks around ω = ±ωz. We abstract the damping
rate γrot and excitation energy εrot from the width and the
position of the peaks, respectively. Then we make a finite-size
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FIG. 3. (a) Photon spectral functions at δ = 0 for finite N , in
which κ/ωz = 3, g0/ωz = 0.3, and U/ωz = 0.1. (b,c) Finite-size
scaling of the damping rate γrot and frequency εrot , respectively. The
damping rate is obtained by the full width at half maximum of the
peaks and the frequency is obtained by the position of the peaks.
The blue dots are the numerical data and the solid red line is a linear
fitting.

scaling. The results are plotted in Fig. 3(b). Note that for a
finite atom number N , damping rate γrot is finite at δ = 0. As
N increases, γrot will approach zero. At the same time, εrot will
remain ωz as N → ∞. That is consistent with our analysis of
Gaussian fluctuation.

IV. MODE SOFTENING IN THE DISCRETE
TIME CRYSTAL

AND THE TIME QUASICRYSTAL

In the following, we will demonstrate our mode-softening
analysis can also be applied to discrete time crystalline

transitions. We modulate the atom-photon coupling strength
periodically g(t ) = g0 + g1 cos(�t ). In this situation, the
Lindblad equation is invariant only under a discrete time trans-
lation with period T = 2π/�. By solving the corresponding
saddle-point equations (11) and (12), we find three different
phases at δ > 0, see Fig. 4(a). When g0 is small, the cavity
reaches a steady NP after a sufficiently long time 〈â(t )〉 = 0.
When g0 is sufficiently large, the system approaches a Floquet
superradiant phase (FSR), in which the cavity field is nonzero
and oscillates with the driving period, see Fig. 4(b1). Between
the NP and the FSR, a DTC phase is found, in which the
oscillation period is doubled [Fig. 4(b2)], thereby breaking the
discrete time translation symmetry.

As before, we consider Gaussian fluctuations in the NP.
In contrast to the undriven case, we obtain infinite poles on
the complex plane [68,69], see Figs. 4(c), 4(d) and 4(e). For a
periodic potential, different momentum components separated
by the reciprocal vector are coupled due to lattice scattering.
Quasimomentum defined in the first Brillouin zone is a good
quantum number. Similarly, different frequency components
of the same quasienergy are coupled in our monochromat-
ically driven system, the action expressed in the frequency
domain is tridiagonal

S2 =1

2

∫ �
2

− �
2

dω (· · · �(ω)†, �(ω + �)† · · · )

×

⎛
⎜⎜⎜⎜⎝

. . .
. . .

. . . M0(ω) M1

M1 M0(ω + �) . . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

...

�(ω)
�(ω + �)

...

⎞
⎟⎟⎟⎠.

(26)

where

M1 =
(

0
[
GA

1

]−1[
GR

1

]−1
0

)
, (27)

z

z

(a) (b1)

(b2)

(b3)

(c1) (c2) (c3)

NP

TQC

FSR

c1/e1

d2 d3d1

e2

e3

c2 c3

a
a

a

DTC

(d1) (d2) (d3)

(e1) (e2) (e3)

FIG. 4. (a) Phase diagram of the periodically driven case, obtained by solving saddle point equations (11) and (12) with parameters
κ/ωz = 1, g1/ωz = 0.05, U/(Nωz ) = 0.01, and �/ωz =

√
2

4 ≈ 0.353. (b) Long-time dynamics of three different phases. (b1) The Floquet
superradiant phase (FSR), in which the system oscillates with driving period T . (b2) The discrete time crystal phase (DTC), where the period
is doubled, 2T . (b3) The time quasicrystal phase (TQC). (c)–(e) Poles of the response function on the complex plane. The dashed lines represent
the boundary of Floquet-Brillouin zone. The corresponding parameters are given by the points (c1)–(c3), (d1)–(d3), and (e1)–(e3), in the phase
diagram Fig. 4(a).
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and

[
GR

1

]−1 = [
GA

1

]−1 = 1

2

⎛
⎜⎜⎝

0 0 −g1 −g1

0 0 −g1 −g1

−g1 −g1 0 0
−g1 −g1 0 0

⎞
⎟⎟⎠. (28)

Such that the dimension of the retarded Green’s function GR(ω) is infinite rather than 4 × 4 in the undriven case

[GR(ω)]−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
[
GR

0 (ω − �)
]−1 [

GR
1

]−1

[
GR

1

]−1 [
GR

0 (ω)
]−1 [

GR
1

]−1

[
GR

1

]−1 [
GR

0 (ω + �)
]−1 . . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

To calculate the poles of the retarded Green’s function nu-
merically, we have to make a dimensional cutoff. In practice,
we take 19 Floquet-Brillouin zones into account, i.e., the ma-
trix size is 76 × 76. Poles manifest perfect periodicity in the
five Brillouin Zones nearest to zero and are convergent with
growing cutoff size, which means our cutoff is sufficiently
large.

The real parts of the poles are equally spaced by �. At
the transition to the FSR phase, a chain of poles will cross
the real axis at the center of the Floquet-Brillouin zones ω =
n�, see Fig. 4(c). That means the oscillation period of the
upcoming FSR is just the driving period T . When approach-
ing the DTC transition, see Fig. 4(c), the chains’ poles will
cross the real axis at the boundary of Floquet-Brillouin zones,
ω = (n + 1/2)�. The photon’s response function will diverge
at these frequencies ω = (n + 1/2)�. As a consequence of
this mode softening, the oscillation period is doubled after the
transition.

When δ → 0, we find that the poles will cross the real axis
at ±ωz + n�. According to our mode-softening analysis, a
time crystalline order may emerge at frequency ±ωz + n�.
If the external driving frequency � and the intrinsic energy
ωz are incommensurate, the oscillation will become quasiperi-
odic. That is to say, a time quasicrystal (TQC) may emerge in
the δ < 0 regime. Thus we numerically solve the saddle-point
equations in this regime and plot the long-time evolution in
Fig. 4(b3). Note that the oscillation is quasiperiodic and will
not repeat itself in a finite time. This numerical result is
consistent with our mode-softening analysis. The robustness
of the DTC and the TQC against perturbations is checked in
the Appendix.

V. SUMMARY AND OUTLOOKS

We generalize the “roton” mode-softening mechanism of
spatial crystals to time crystals in open quantum systems. In
time crystalline transition, the softening mechanism is that the
damping rate of a collective mode will vanish, while the en-
ergy of this mode remains finite. That indicates the emergence
of an undamped mode with nonzero energy in open systems,
which will compete with the existing steady state, leading to
the possible order in the time domain.

In experiments, the Dicke model discussed in this work
can be regarded as a simplified mode of the current experi-
ments [57,59]. The two internal atomic levels are simulated
by the center-of-mass states of atoms and the coupling g can
be tuned via modulating the transversal pumping laser. The
response of atoms can be measured by a Bragg-like probe [12]
and the correlations of the cavity field can be obtained by mea-
suring the photons leaking out of the cavity [56]. We expect
that this mode softening in time crystals can be observed in
those experiments.

In this work, our discussion is limited in open quantum
systems. The damping of collective modes is dominated by
external dissipation. However, this mode-softening mecha-

a

z

a

(a)

(b)

a

(c)

FIG. 5. Photon dynamics under perturbation in the generalized
Dicke model. (a) The CTC phase, (b) the DTC phases, and (c) the
time quasicrystal phase. Here δg/g = 0.1 and the driving frequency
is tuned to be �′/ωz = √

2/5.
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nism can be also generalized to closed systems, where the
relaxation is induced by multimode couplings.
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APPENDIX: ROBUSTNESS OF THE DICKE
TIME CRYSTALS

Time crystals are robust against perturbations. In this
Appendix, We will show the time crystal phases, includ-
ing CTC, DTC, and time quasicrystal are robust against
adding perturbation and changing parameters. We add a

perturbation like 2δg
i
√

N
(â − â†)Ŝy into the Hamiltonian (2).

This perturbation appears as the rotating-wave term and
antirotating-wave term of the atom-light coupling are tuned
imbalanced. Then we consider the saddle-point solutions with
δg/g = 0.1 and investigate the sufficiently long time behavior.
We find that the CTC phase is robust against the perturbation,
see Fig. 5(a).

For the periodically driven case, we maintain the unbal-
anced perturbation δg/g = 0.1 and tune the driving period to
be �′/ωz = √

2/5. In the DTC phase, the system oscillates
with a doubled period of driving T ′ = 2π/�′, see Fig. 5(b).
In addition, the system will again enter the time quasicrystal
phase, when δ < 0 [Fig. 5(c)]. That indicates that both the
DTC and time quasicrystal are robust against such perturba-
tion.
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