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Dragging a defect in a droplet Bose-Einstein condensate
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In the present work we consider models of quantum droplets within a weakly interacting mass-balanced binary
Bose-Bose mixture in the presence of a defect in the form of a laser beam moving through the respective
condensates including the Lee-Huang-Yang correction. Our analysis features separately an exploration of the
existence, stability, bifurcations, and dynamics in one-, two-, and three-dimensional settings. In the absence of
an explicit solution of the problem, we provide an analysis of the speed of sound and observe how the states
traveling with the defect may feature a saddle-center bifurcation as the speed or the strength of the defect is
modified. Relevant bifurcation diagrams are constructed systematically and the unstable states, as well as the
dynamics past the existence of stable states, are monitored. The connection of the resulting states with dark
solitonic patterns in one dimension, vortical states in two dimensions, and vortex rings in three dimensions is
accordingly elucidated.

DOI: 10.1103/PhysRevA.107.033310

I. INTRODUCTION

The study of atomic condensates has been a focal point
at the interface of atomic, nonlinear optical, and wave
physics during the past three decades since the experimen-
tal realization of Bose-Einstein condensates (BECs) of dilute
alkali-metal gases [1,2]. From the nonlinear perspective, a
wide array of studies has taken place in this context, rang-
ing from the exploration of one-dimensional (1D) nonlinear
waves in the form of dark solitons to 2D vortices and their
lattices and finally in the 3D setting and the examination of
vortex lines and rings [3].

A particular topic that has attracted considerable attention
over the years, including in a wide range of experiments, has
been the dragging of a defect (in the form of a light beam)
through the condensate and the observation of the ensuing
dynamics, especially so if the defect moves with a speed
higher than the local speed of sound (violating the well-known
Landau criterion) [4–6] and accordingly producing nonlinear
excitations. Indeed, the relevant subject of both the associated
instability and the resulting pattern formation has been of
intense interest since early on [7–9] and continues to lead
to variations on the relevant theme [10,11], e.g., involving
trapping [12,13], for oscillating obstacles [14], in different
dimensions [15], in periodic rings [16], for a larger number
of components [17,18], or in the setting of polariton con-
densates involving dissipation and pumping processes [19]
among many others, including recently beyond-mean-field
effects [20].

On the other hand, a direction that has gained consid-
erable traction lately has to do with the emergence of an
effective new type of matter wave in the form of quan-
tum droplets [21,22]. The relevant physical setting involves
two-component (binary) BECs in which the effectively non-
linear interaction interplay involves intracomponent repulsion

and intercomponent attraction (which slightly exceeds the
former). It is in this system that the well-established Lee-
Huang-Yang (LHY) quantum correction [23] can be used
to incorporate the averaged beyond-mean-field effect of
quantum fluctuations in the dynamical description while com-
peting with the mean-field effects. A key role of the relevant
correction is that of preventing the potential BEC collapse
of the mean-field realm in higher dimensions. Such beyond-
mean-field fluctuations have been found to be attractive in
1D settings, while they give a repulsive contribution to the
interactions in dimensions greater than one.

A key appeal of these predictions and the associated study
of quantum droplets is that they have led to a number of exper-
imental implementations of this system [24–28], while such
droplets were originally realized in dipolar settings [29,30].
Indeed, not only have individual droplets been observed but
also their interactions in the form of collisions (both resulting
in slow-collision mergers and in faster quasielastic events)
have been reported for 39K in Ref. [27]. Beyond homonuclear
settings, heteronuclear droplets of 87Rb and 41K have also
been shown to be long lived [28]. These substantial exper-
imental findings have in turn motivated various theoretical
studies such as the ones involving vortex clusters [31] and
vortical droplets [32], the one of semidiscrete ones with or
without vorticity [33], their dynamics in optical lattices [34],
their modulational stability [35], or the case of 3D such struc-
tures in Ref. [36]. A relatively recent recap of theoretical and
experimental activity in this field can be found in Ref. [37].

Our aim in the present work is to combine the above two
central directions, namely, the study of the potential dragging
in the form of a defect and the exploration of models of
quantum droplets. An interesting feature of the latter models
is their distinct yet well-established form in each of the three
dimensions (one, two, and three) [37]. Here we explore, in
the case of symmetric components, each one of these settings

2469-9926/2023/107(3)/033310(14) 033310-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7766-9445
https://orcid.org/0000-0002-7995-7491
https://orcid.org/0000-0002-7714-3689
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.033310&domain=pdf&date_stamp=2023-03-10
https://doi.org/10.1103/PhysRevA.107.033310


S. SAQLAIN et al. PHYSICAL REVIEW A 107, 033310 (2023)

separately, developing an analysis of the corresponding equi-
librium states and obtaining the respective sound speeds as a
function of the chemical potential. Subsequently, in the spirit
of the work of Ref. [9], we consider a Gaussian defect (as
a finite-width emulation of a δ-function one). We then use
a systematic bifurcation analysis to explore the stable and
unstable configurations pertaining to the moving defect, when
such configurations exist (below the local speed of sound) as a
function of the dragging speed and the defect strength. While
in the case of the cubic nonlinear Schrödinger (NLS) model
the existence of an explicit dark-soliton solution enables an
analytical calculation of the relevant bifurcation curve, here
the absence of such an analytical coherent structure expres-
sion leads us to identify the relevant curves numerically. We
construct the corresponding two-parameter diagram and con-
nect it with the speed of sound (to which the critical speed
tends, as the height of the defect goes to 0). We perform
such calculations for both one and higher (two and three)
dimensions. In the latter, the systematic bifurcation curves
present interesting features including an unstable branch bear-
ing vortical states moving along with the defect. Interestingly,
such states exist even for cubic nonlinearities. Finally, in three
dimensions the vortex pairs are replaced by vortex ring struc-
tures which are moving with the defect, a pattern of interest in
its own right.

Our presentation is structured as follows. In Sec. II we
present the models at hand based on symmetric populations
between the two components of the binary mixture. We also
derive the speed of sound corresponding to the different di-
mensionalities. In Sec. III we present, for the 1D, 2D, and
3D settings, the corresponding equilibria and subsequently
explore the bifurcation structure of stable and unstable states,
the saddle-center bifurcation that they feature, and the corre-
sponding dynamics for parameters both before and after the
bifurcation. Section IV contains a summary of our findings
and corresponding possible directions for future work. In the
Appendices we revisit similar features for the cubic nonlin-
earity (higher-dimensional) case for completeness.

II. MODEL EQUATIONS THEORETICAL ANALYSIS

In the analysis that follows we focus our attention on the
simpler, so-called symmetric, case where there is no popu-
lation imbalance between the two components of the BEC
binary mixture. Different aspects of asymmetric population
mixtures in one, two, and three dimensions have been consid-
ered in Refs. [32,35,36], respectively. In three dimensions and
under the assumption of symmetric populations and parame-
ters, both BEC components are identical and can be described
by a single wave function ψ (�r, t ) satisfying the dimensionless
Gross-Pitaevskii (GP) equation

i∂tψ = − 1
2∇2ψ + N (ψ ) − μψ + V (�r, t )ψ, (1)

where μ is the chemical potential, V (�r, t ) is the external
potential, and N (ψ ) is the effective nonlinearity. Note that in
the symmetric case under consideration, μ, V (�r, t ), and N (ψ )
are equal for both binary components. The crucial aspect
when considering the LHY correction is that the effective
nonlinearity deviates from the usual cubic one given by |ψ |2ψ
and that it takes different forms depending on the effective

dimensionality of the system [37]. In particular, for the dif-
ferent effective spatial dimensions the nonlinearity takes the
form

N (ψ ) =

⎧⎪⎨
⎪⎩

|ψ |2ψ − |ψ |ψ in one dimension

ln (|ψ |2)|ψ |2ψ in two dimensions

g1|ψ |2ψ + |ψ |3ψ in three dimensions,

(2)

where g1 can be positive or negative. These three cases will be
considered herein.

We consider an impurity of fixed shape V moving across
the BEC at velocity c in, without loss of generality, the x di-
rection such that V (�r, t ) = V (x − ct, y, z). Thus, to be able to
track steady states arising from the inclusion of the impurity,
we cast the evolution equations in a comoving reference frame
ξ = x − ct where the impurity is stationary, yielding

i∂t A − ic∂xA = − 1
2∇2A + N (A) − μA + V (�r )A, (3)

where we relabeled ξ → x and consider A(x, y, z, t ) = ψ (x −
ct, y, z, t ). We now study the different cases corresponding to
one, two, and three dimensions.

A. One-dimensional setting

In practice, the BEC needs to be formed in the presence of
a confining potential (in addition to the potential describing
the running impurity). Provided this confining potential has
very strong confinements in two directions, let us say along
y and z, the dynamics of the BEC can be well approximated
by the 1D version of the GP equation (3) [37]. In this quasi-
1D case, where the transverse y and z directions have been
factored (or better said, averaged) out, the BEC wave function
A(x), in the comoving reference frame, satisfies the (effective)
1D equation

i∂t A − ic∂xA = − 1
2∂xxA + |A|2A − |A|A − μA + V (x)A,

(4)

where V (x) now represents the 1D stationary profile of the
running impurity in the comoving reference frame. The model
(4) represents a binary condensate exhibiting an attractive
intercomponent interaction g12 with an equal number of par-
ticles and equal repulsive intracomponent interaction strength
(g1 = g2). This model could be implemented in an experiment
by considering a mixture of 39K atomic condensates in two
different Zeeman states [25,38]. The units of length, time,
wave function, and chemical potential are expressed in terms
of the healing length ξ , mξ 2/h̄, (2

√
g)3/2/

√
πξ (2|δg|)3/4, and

h̄2/mξ 2, respectively, with ξ = π h̄2

m

√
2|δg|
g3/2 , δg = g12 + g, and

g = √
g1g2 [39,40]. Accordingly, all the quantities depicted

in the figures are dimensionless.
It is important to appreciate that the setting considered

herein is reminiscent of the one in Ref. [33], aside from the
presence of a longitudinal optical lattice in the latter. Hence,
we can envision, in line with that work, a longitudinal size of
the order of 10 μm, a gas of 39K atoms, with atom numbers
around 104 and a transverse trap of about ω⊥ = 2π × 200 Hz,
while, when a longitudinal trap exists, the ratio of longitudi-
nal to transverse trapping strengths is about 0.01 (see, e.g.,
Fig. 1 in Ref. [33]). This setting would be in line with the
dynamical equations that appear, e.g., in Ref. [22], as well as
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in Refs. [39,41], and the assumptions of g11 ≈ g22, in paral-
lel with weak δg > 0 therein. Nevertheless, it is relevant to
highlight here that Fig. S1 in Ref. [25] suggests the nontrivial
challenge of leveraging a magnetic field in the vicinity of
B > 56.8 G in order to achieve this goal. While this important
question is outside the scope of the present study following
the above setup, we want to highlight its relevance for further
quantitative consideration in future studies.

In the homogeneous case, when the defect is absent, i.e.,
V (x) = 0, Eq. (1) admits a homogeneous, space-independent,
stationary steady state |A(�r, t )| = |α| such that

|α|2 − |α| − μ = 0 ⇒ |α| = 1 ± √
1 + 4μ

2
, (5)

where the solution with the minus sign exists for − 1
4 < μ <

0, while the one with the plus sign exists for all μ > − 1
4 . It

is important to highlight here that the solution associated with
the minus sign in Eq. (5) is modulationally unstable and is
driven by the effectively attractive nature of the interactions
within the LHY term. In what follows, we focus on the lin-
earization around the modulationally stable state associated
with the plus sign in Eq. (5). For the latter, the cubic repulsive
interaction term dominates and the phenomenology resembles
that of the standard NLS model [9], although with notable
quantitative differences, as we now show. The most crucial
ones among them are the concrete form of the relevant speed
of sound that we will henceforth compute, as well as the fact
that such a state (as well as the associated sound speed) is
present even for μ < 0, a feature absent in the purely cubic
case of Ref. [9]. Looking now for comoving steady states for
nonzero defects of Eq. (4) of the general form

A(x) = R(x)eiφ(x), (6)

where R and φ are real functions, yields

cRx = 1
2 (2Rxφx + Rφxx ), (7a)

cRφx = − 1
2

(
Rxx − Rφ2

x

) + R3 − R2 − μR + V R. (7b)

Integrating Eq. (7a) yields

φx = c

(
1 − |α|2

R2

)
,

which, after substituting in Eq. (7b) yields

Rxx = c2

(
−R + |α|2

R3

)
+ 2R3 − 2R2 − 2μR + 2V R. (8)

Since we assume that the defect is localized V (x →
±∞) → 0, we must require that R(x) → |α| as x → ±∞.
Then, linearizing R(x) as R(x) = |α| + r(x) for x away from
the center yields

rxx = 2r(|α| + 2μ − 2c2), (9)

implying that the speed of sound cs for the 1D setting is given
by

cs =
√

|α| + 2μ

2
, (10)

in analogy with the cubic nonlinearity calculation of [9]. It
should be noted that this relation (10) can also be obtained

from the pressure p = n2∂n(E0v/n), where the ground energy
per volume is E0v = 1

2 n2 − 2
3 n3/2 and n = |α|2 is the density

[1]. Additionally, as per the Landau criterion [1,2], this repre-
sents the critical velocity required to create an excitation by a
moving obstacle with velocity c through a uniform system.

It is important to highlight here that in Appendix D we
provide a general derivation of the speed of sound. This
derivation, based on the energy of elementary excitations pre-
sented in Refs. [1,2], is obtained for arbitrary nonlinearities
in the NLS model and subsequently adapted to our model of
interest herein. It is shown that the positive equilibrium state
of Eq. (5) is associated with the positive speed of sound of
Eq. (10). In contrast, the equilibrium with the minus sign,
which is modulationally unstable and driven by the attrac-
tive interactions within the LHY term, has an imaginary
speed of sound (as is the case, e.g., for cubic self-attractive
NLS settings). The above statements are shown to be true
for the positive state for arbitrary μ > − 1

4 , while for the
negative equilibrium state throughout its range of existence
− 1

4 < μ < 0.

B. Two-dimensional setting

Let us now consider the 2D setting. In this case, assuming
a strong confinement in, let us say, the z direction and by
appropriately averaging across this transverse direction, the
2D wave function in the comoving reference frame evolves
according to [37]

i∂t A − ic∂xA = − 1
2 (∂xx + ∂yy)A

+ ln (|A|2)|A|2A − μA + V (x, y)A. (11)

Note, importantly, that the nonlinearity, modified by the LHY
correction term, assumes a somewhat unusual logarithmic
form in the 2D setting. In this case, the homogeneous steady
state |A(�r, t )| = |α| solves the transcendental equation

|α|2 ln |α|2 − μ = 0. (12)

An analysis similar to the one done in one dimension (see
Appendix A) yields the speed of sound for the 2D setting as

cs =
√

|α|2 + μ. (13)

C. Three-dimensional setting

Finally, let us now consider the 3D setting. In this case, we
use directly Eq. (1) in the comoving reference frame

i∂t A − ic∂xA = − 1
2∇2A + g1|A|2A + |A|3A − μA + VA,

(14)

where we have allowed the intrinsic cubic nonlinear term
to be tuned from attractive g1 < 0 to repulsive g1 > 0. The
homogeneous steady state |A(�r, t )| = |α| now yields a cubic
equation for the amplitude:

|α|3 + g1|α|2 − μ = 0. (15)

An analysis similar to the one done in one dimension (see
Appendix B) yields the expression for the speed of sound in
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the 3D setting

cs =
√

|α|3 + 2μ

2
. (16)

It is interesting to note that the expression for the speed of
sound in Eq. (16) seems not to depend on the sign of g1.
Nonetheless, it is important to note that, although indeed
Eq. (16) does not explicitly depend on g1, it does so through
the (dependence on g1 of the) background level |α| as per
Eq. (15).

We would like to point out that this 3D setting is pos-
sible in current cold-atom experiments [24,25]. In order to
create a 3D droplet, one could consider around 105 atoms of
39K in an external magnetic field of strength B ∼ 55–56 G.
The interaction parameters g11, g22, and g12 are functions of
this external field B with values g11 ∼ 35a0, g22 ∼ 50a0, and
g12 ∼ −50a0. These parameters keep the effective interaction
parameter δg = g12 + √

g11g22 < 0. A Gaussian laser beam
can be used to create the defect potential.

III. NUMERICAL RESULTS

In this section we corroborate the predictions for the speed
of sound of Sec. II and follow the different steady states
and their dynamics for the different dimensionalities. For
the numerical results, we use a standard finite-difference dis-
cretization of second order in space and fourth-order Runge-
Kutta stepping in time. One-, two-, and three-dimensional
results are typically obtained for domains x ∈ [−200, 200],
(x, y) ∈ [−30, 30]2, and (x, y, z) ∈ [−30, 30]3, respectively,
with corresponding spatial discretizations such that lower dx
was checked not to provide notable differences and a time
step dt below the stability threshold given in Ref. [42]. The
steady states are obtained by standard fixed-point iteration
methods and the solution branches as parameters are var-
ied were obtained using pseudoarclength continuation [43].
This methodology allows us to continue the solutions not
only parametrically (e.g., over the speed) but also when they
go around fold points, a feature typical of the results pre-
sented below. Rather than using a system parameter for the
continuation, this approach uses the arclength (as the ideal
parametrization and natural variable) of the bifurcation curve,
enabling the continuation to bypass turning points, past which
parametric continuation would fail. The bifurcation analy-
sis presented has leveraged the use of the JULIA bifurcation
package BIFURCATIONKIT [44], especially so for our 1D and
2D results. All the steady states and dynamics shown here
are depicted in the comoving reference where the defect is
stationary.

A. One-dimensional setting

For the 1D setting governed by Eq. (4), we consider a
narrow Gaussian laser beam defect that runs through the con-
densate at velocity c. In the comoving reference frame, this
1D defect takes the form

V1D(x) = λ√
2πε2

x

exp

(−x2

2ε2
x

)
,

FIG. 1. Dynamics ensuing from a 1D defect running through the
BEC for μ = 1 (|α| ≈ 1.62) and λ = 0.75 (ccrit ≈ 0.65). (a) Sub-
critical case corresponding to a velocity c = 0.647 below the speed
of sound. The resulting steady state is stable. (b) Supercritical case
corresponding to a velocity c = 0.7 above the speed of sound. The
resulting dynamics cannot feature a stationary state and consequently
gives rise to a periodic emission of dark solitons in its wake. All
quantities depicted in this figure and all subsequent figures are
dimensionless.

where λ is the strength (intensity) of the defect and εx charac-
terizes its waist (width). For our numerics, corresponding to
the adimensionalized model of Eq. (4), we choose a chemical
potential of μ = 1 and a defect with waist εx = 0.2.

For large enough c, namely, past the speed-of-sound
threshold ccrit , as it is the case for the pure cubic NLS non-
linearity without the LHY correction [9,15], the comoving
steady state can no longer be supported (it has terminated
in a saddle-center bifurcation, as we show below) and con-
sequently emits a periodic train of dark solitons in its wake.
Essentially, the emission of the solitary waves renders the
dynamics temporarily and locally subcritical. However, once
the solitary wave has moved enough upstream, the defect
region becomes supercritical anew and yields an additional
dark solitary structure, eventually resulting in the production
of a train thereof. An example of this behavior is depicted in
Fig. 1. Figure 1(a) shows how a defect running at low enough
velocities gives rise to a stable comoving steady state. How-
ever, past a critical value of the speed, as shown in Fig. 1(b),
this steady state disappears through a bifurcation as illustrated
below, resulting in the production of a periodic train of dark
solitons. As the speed of the defect is increased further the
spacing between the dark soliton emissions decreases.

In order to numerically determine the critical speed for
dark-soliton emission, we study the steady states that exist
as the defect velocity is varied. In particular, as it is the case
for the pure NLS case without the LHY correction (see, for
instance, Ref. [9]), for values of c below the speed-of-sound
threshold, there exist two steady-state solutions: A relatively
shallow stable state and a relatively deep unstable steady state.
For example, Fig. 2 depicts the evolution of the unstable
solution for c below the speed of sound. This deeper solu-
tion decays, after the emission of a single dark soliton, to a
shallower solution that precisely corresponds to the stable so-
lution. We can now trace the families of unstable (deeper) and
stable (shallower) solutions as the parameters of the system
are varied. In particular, in Fig. 3 we follow, using pseudoar-
clength continuation in c, these solution branches for several
values of the defect strength λ. To monitor the solutions, we
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FIG. 2. Evolution of the 1D unstable solution for a defect ve-
locity c = 0.7 below the speed of sound for μ = 1 (|α| ≈ 1.62)
and λ = 0.4 (ccrit ≈ 0.85). (a) Evolution where the deeper unstable
steady-state solution sheds a single dark soliton and settles to an
apparently stable shallower solution. (b) Plot confirming that the
initial unstable steady state (blue curve) decays (after the emission
of the single dark soliton) to a shallower solution (red curve) that
precisely corresponds to the stable steady-state solution for this speed
(circles).

use the effective mass of the solution

Meff =
∫ +∞

−∞

(|α|2 − |ψ |2)dx, (17)

where |α| is the background level as defined in Eq. (5). Ac-
cording to this definition, the deeper the solution, the higher
the effective mass.

As can be seen in Fig. 3, the deep and shallow solutions,
corresponding to the upper and lower solution branches, re-
spectively, coalesce (see the turning point H) as the defect
velocity c is increased. At a critical value of c, a saddle-center
bifurcation ensues where the two solutions collide. Past this
critical value of c, the system bears no stable solution and
hence, as explained above, periodic emission of dark solitons
takes place at the wake of the impurity as seen in Fig. 1(b).
In Fig. 3 we also depict the theoretical prediction for the
speed of sound of Eq. (10) (see the vertical black line). As
seen in Fig. 3, the defects always have a critical speed that
is below the speed of sound. This suggests that defects will
emit dark-soliton trains for values slightly below the speed of
sound. Nonetheless, the figure also suggests that the critical
speed value tends to approach the speed of sound as the
defect strength λ decreases. In fact, as the computation of
the speed of sound in Sec. II relies on small perturbations,
the results will be valid in the limit of λ → 0. To elucidate
this connection, we depict in Fig. 4 the values of the defect
strength λ where the saddle-center collision between the deep
and shallow steady states occurs. As it can be corroborated
(see the inset), the critical velocity tends to coincide with
the theoretical speed of sound cs of Eq. (5) when the defect
strength λ tends to zero. We have also produced the bifurca-
tion diagram for negative values of μ, yielding qualitatively
similar behavior (result not shown here) but with the localized
structures attached to the impurity being wider.

Finally, within the one-dimensional setting, we also con-
sider the case of a parabolically confining trap [45]. In
particular, we are interested in the dynamics ensuing from
moving a defect through a condensate confined by an external

(a)

(b)

(c)

FIG. 3. (a) Bifurcation diagram for the stable (lower part of the
corresponding branches) and unstable (upper part of the branches)
branches in one dimension as the velocity of the impurity c is varied
for μ = 1 (|α| ≈ 1.62) and for three values of the impurity strength
λ as indicated in the legend. The effective mass of the solution
(see the text) is plotted vs c. As c reaches a threshold value, the
upper and lower branches coalesce in a saddle-center bifurcation (see
point H). For values of c larger than this threshold, there no longer
exists a stable stationary state and hence the time evolution dynamics
periodically sheds dark solitons in its wake [see Fig. 1(b)]. The
vertical black line corresponds to the theoretical prediction of speed
of sound in Eq. (10). Also shown are the corresponding (b) density
and (c) phase profiles at the different values of c indicated by the
black dots in (a). Each panel depicts the corresponding unstable
(deep; see blue curve) and stable (shallow; see red curve) solutions.

FIG. 4. Critical values of defect strength λ vs defect speed c for
the 1D case. For each value of c we extract the value of λ where
the saddle-center bifurcation occurs (collision between the deep and
shallow steady-state solutions). The vertical dashed line corresponds
to the theoretical prediction of the speed of sound in Eq. (5). The
inset shows a zoomed-in version for small defect strengths.
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FIG. 5. Dynamics ensuing from a 1D defect running through the
BEC confined in a parabolic trap for μ = 1.0 (|α| ≈ 1.62), λ = 0.5
(ccrit ≈ 0.78), c = 0.75, and � = 0.05. As the defect approaches the
boundary of the condensate it gives rise to the emission of solitonic
excitations.

(stationary) parabolic trap of the form

Vext (x) = 1
2�2x2,

where � is the trap strength. Since there are no genuine trav-
eling waves in the trapped setting, it is not possible to follow
solutions in the cotraveling frame with the impurity. There-
fore, we revert to the regime of Eq. (1) on a stationary frame.
Importantly, in the trapped case, the density tends to zero at
the edges of the condensate and thus the critical speed will
be space dependent and crucially tend to zero as the impurity
reaches the condensate edges. This means that, in principle,
for any fixed impurity speed, as the impurity gets closer to the
condensate edges, the local density will become sufficiently
low to render the motion supercritical. Therefore, an impurity
nearing the edges of the condensate will generally result in
the ejection of solitary-wave excitations. This is precisely
what we observed in our numerical experiments. Figure 5
presents the dynamics of a typical such case in this setting.
Specifically, we start with a running impurity at the center of
the condensate with a corresponding speed that is below the
local (at the center) critical speed. As the impurity gets closer
to the condensate edge, its (constant) speed becomes larger
than the local (variable) critical speed and thus emits a few
dark solitons. Eventually, the impurity leaves the condensate,
while the emitted dark solitons oscillate and interact within
the bulk of the trapped condensates (results not shown here).

B. Two-dimensional setting

We now proceed in a way similar to that for the 1D case of
the preceding section but now for the 2D model of Eq. (11).
Here we choose a 2D defect in the form of a bar that is thin in
the direction of the defect movement (namely, the x direction)
and relatively wide in the transverse direction. Specifically,
the 2D defect is taken to be

V2D(x, y) = V1D(x) exp

(
−y2

2ε2
y

)
.

Note that we do not use the typical normalization constant for
a 2D Gaussian as we are considering the thin defect x direction
the one that drives the nucleation of dark solitons and thus, to
best compare with the 1D results, we use the same normal-
ization prefactor as for the 1D case. For our numerical results

FIG. 6. Evolution corresponding to a supercritical 2D defect run-
ning at velocity c = 0.8 for μ = 0.5 (|α| ≈ 1.19), λ = 0.92 (ccrit ≈
0.78), and (a) t = 0, (b) t = 20, (c) t = 35, and (d) t = 55. The
defect impurity periodically emits a vortex-antivortex pair in its wake
(only two pairs shown here for t � 55).

below, we choose a thin defect bar with εx = 1/
√

2 ≈ 0.707
and a relatively wide lateral extent with εy = 5.

As in one dimension, for sufficiently large supercritical
velocities, the 2D defect will not support a stable station-
ary state and will accordingly emit a periodic train in its
wake. In the 2D case, the defect produces a train of vortex-
antivortex pairs. A typical example depicting multiple vortex
shedding instances is shown in Fig. 6 [larger times produce
more vortex-antivortex shedding (results not shown here)].
Also, as in the 1D case, the 2D model also features two
steady-state solutions for subcritical defect speeds: An unsta-
ble relatively deep one and a stable relatively shallow one.
Figure 7 confirms, similar to what we saw for the 1D case,
that for subcritical velocities, the deeper solution is unstable
and, as it destabilizes, it sheds a single vortex-antivortex pair
and eventually settles to the shallower stable steady state.

By monitoring the effective mass as in Eq. (17), but re-
placing the single x integral by an integral over the whole
2D domain and adjusting the background as per Eq. (12), we
follow, using pseudoarclength continuation, the bifurcation
diagram of subcritical 2D solutions. The resulting bifurcation
diagram for μ = 0.5 and for three different values of λ is de-
picted in Fig. 8. Interestingly, in this 2D case, the upper branch
of steady-state solutions contains, for small enough values
of the defect speed (namely, c < 0.52), a vortex-antivortex
pair (see panels A–E). This is precisely the vortical structure
pair that detaches from this unstable solution as it is evolved
in time and finally settles to the corresponding stable lower
branch solution, which in turn lacks any vortices (see, for
instance, the dynamical evolution depicted in Fig. 7). It is also
noteworthy that for small values of the running speed c, the
steady-state vortex pair contains vortices that are relatively far
away from the defect impurity (see, for instance, the profile
in panel A which corresponds to a velocity c = 0.025). As c
increases, the vortices of the upper branch solution get closer
to the defect impurity. Further increasing c induces the vor-
tices to get closer to each other within the impurity until they
merge and disappear (in the present case of λ = 0.92 at an
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FIG. 7. Evolution of the 2D unstable solution for a defect ve-
locity c = 0.2 below the speed of sound for μ = 0.5 (|α| ≈ 1.19),
λ = 0.92 ccrit ≈ 0.78, and (a) t = 0, (b) t = 55, (c) t = 60, and
(d) t = 75. (a)–(d) show the evolution where the deeper unstable
steady-state solution sheds a vortex-antivortex pair and settles to
the stable shallower solution. Also shown are the (e) x = 0 and (f)
y = 0 cuts of the density confirming that the initial unstable steady
state (blue curves) decays (after the emission of the vortex pair) to
a shallower solution (red curves) that precisely corresponds to the
stable steady-state solution (shown by circles).

approximate value of c = 0.52). Continuing past this vortex-
merging point along the branch, the upper and lower solutions
bifurcate from each other (or, equivalently, terminate) in a
saddle-center bifurcation (case G in Fig. 8).

The astute reader may have noticed the oscillatory behavior
of the effective mass for the upper branch solutions for small
values of c in Fig. 8. This oscillatory behavior is missing in
the 1D case (see the bifurcation curves in Fig. 3). We attribute
these oscillations to the existence of the vortex pairs attached
to the corresponding steady states. As the vortices move closer
to the impurity and run through it when c is varied, they affect
the effective mass and thus produce these small oscillations.
In Fig. 9 we show the effects of varying the chemical po-
tential μ on the upper branch steady state containing a pair
of vortices attached at the end of the defect impurity. The
existence of vortices for a wide range of μ values suggests that
the above-mentioned oscillations of the effective mass will be
visible for other values of the chemical potential. Additionally,
the phenomenology discussed herein is present for different
values of μ. However, the main feature that chiefly appears to
change is the size of the vortices which shrinks, as the healing
length shrinks for increasing μ. Moreover, for μ < 0, we can
observe an implication of the droplet nature of the configura-
tion and the effective surface tension in such a setting, namely,

(a)

(b)

(c)

FIG. 8. (a) Similar to Fig. 3 but for the 2D case for μ = 0.5
(|α| ≈ 0.78). The vertical black line corresponds to the theoretical
prediction of speed of sound in Eq. (13). Also shown are the corre-
sponding (b) density and (c) phase profiles at the different values of
c indicated by the black dots in (a). The dashed curve represents the
isocontour level of the potential V2D at 2

3 of its maximum height.

a density modulation of the structure between the vortices, a
feature far less noticeable in the cases of larger μ.

Finally, let us now compare the theoretical estimation of
the speed of sound as per Eq. (13) and the critical value of
the velocity in two dimensions. For this purpose, we depict
in Fig. 10 the values of the defect strength λ where the
saddle-center collision between the deep and shallow steady
states occurs. As the inset corroborates, the critical velocity
coincides reasonably well with the theoretical speed of sounds

FIG. 9. Density profile of unstable solutions in the 2D case for
λ = 0.71, c = 0.1, and (a) μ = −0.2, (b) μ = 0.2, (c) μ = 0.5, and
(d) μ = 1. The dashed curve represents the isocontour level of the
potential V2D at 2

3 of its maximum height.
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FIG. 10. Critical values of defect strength λ vs defect speed c for
the 2D case. The layout is the same as in Fig. 4. The vertical dashed
line corresponds to the theoretical prediction of the speed of sound in
Eq. (12), which is tantamount to the limit of λ → 0. The inset shows
a zoomed-in version for small defect strengths.

cs when the defect strength λ tends to zero, with the difference
being attributable to the approximations within the numerical
computations.

C. Three-dimensional setting

Let us now study the 3D model of Eq. (14). In this case we
choose a defect impurity with the shape of a rectangular plate
that is thin in the direction of the defect movement (namely,
the x direction) and relatively wide in the other two transverse
directions. Specifically, we use the 3D defect

V3D(x, y, z) = V1D(x)Hwz (z)Hwy (y),

with εx = 1
4 , wy = 8, and wz = 4 and where Hw is a smoothed

1D top-hat function given by

Hw(r) = 1

4

[
tanh

(w

2
+ r

)
+ 1

][
tanh

(w

2
− r

)
+ 1

]
.

As it was the case for the 1D and 2D settings above, we take
a relatively thin Gaussian profile in the direction of motion.
In the transverse directions we take a relatively large (when
compared to the thin longitudinal direction) rectangular plate.
One of the motivations to use a rectangular plate is to observe
the effects of this anisotropy in the transverse directions.
Naturally, an isotropic, namely, circular, defect plate would
give rise to a perfectly isotropic steady-state solution, which
in turn, when supersonic, would nucleate a symmetric vortex
ring (results not shown here).

Similarly to what we observe in the 1D and 2D cases,
the 3D model also gives rise to two branches of subcritical
steady-state solutions. These two solution branches corre-
spond to unstable, relatively large (when compared to the size
of the defect), vortex rings and stable density depletions. We
monitor the effective mass as in Eq. (17), but replace the
single x integral by an integral over the whole 3D domain
and adjust the background as per Eq. (15). As before, we
use pseudoarclength continuation to follow these branches of
subcritical 3D steady-state solutions. The results for g1 = 1
and μ = 0.5 are depicted in Fig. 11 for three different values

(a)

(b)

FIG. 11. (a) Bifurcation diagram for the stable and unstable
branches in three dimensions for g1 = 1, μ = 0.5 (|α| ≈ 0.56), and
the values of λ indicated in the legend. The layout and meaning
are similar to those in Fig. 3. The vertical black line corresponds
to the theoretical prediction of the 3D speed of sound in Eq. (16).
(b) Corresponding profiles at the different values of c indicated by
the black dots in (a). Each instance depicts an isocontour of the cor-
responding vorticity (solid green) together with an isocontour of the
3D defect potential V3D at 1

2 of its maximum amplitude (transparent
red). The points corresponding to G–J do not carry a sizable amount
of vorticity and thus isocontours of the density are shown instead
(transparent blue).

of the defect strength λ. It is interesting to notice that in the
limit of small defect speed c, the upper branch of unstable
solutions corresponds to large vortex rings that are larger than,
and seemingly detached from, the impurity. On the other hand,
the stable steady states, corresponding to density depletions
that do not carry vorticity, are tightly attached to the defect.
This provides a physical explanation for their corresponding
stability as the larger ring, being farther away from the defect,
detaches through the instability. On the other hand, the smaller
density depletion is tightly attached to the impurity and is
found to be dynamically stable. Another interesting feature
is that for intermediate values of the velocity, the vortex ring
has an aspect ratio opposite to that of the defect plate. See,
for instance, the vortex ring corresponding to the points B and
C which are taller than wider, while the defect is, oppositely,
wider than taller. Therefore, the effect of the anisotropy of
the defect plate is to typically create vortex rings that lack
circular symmetry and that are slightly “squeezed” in the
horizontal or vertical direction. This is to be contrasted with
the case of a circular plate that would nucleate a perfectly
symmetric circular steady state and in turn shed a symmetric
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FIG. 12. Examples of vortex ring emission from the unstable
steady-state solution. Each panel depicts overlaid snapshots of the
vorticity (green surfaces) at different times during the emission
of a single vortex ring from the defect (shown in red) on a co-
moving reference frame. The ensuing dynamics are from cases
(a) B and (b) F in Fig. 11, namely, for λ = 1.3 (ccrit ≈ 0.52),
μ = 0.5 (|α| ≈ 0.56), g1 = 1, and (a) c = 0.3224 (case B) and
(b) c = 0.5124 (case F). The times for the snapshots for cases
B and F are, respectively, t = {0, 160, 220, 280, 340, 400} and t =
{0, 90, 100, 120, 140, 160, 180, 200}, from the closest vortex ring to
the defect to the one farthest away.

vortex ring (results not shown here). The asymmetry present
in the unstable steady state is inherited by the vortex rings
that are nucleated from the unstable subcritical steady state as
well as the train of vortex rings that are nucleated from the
defect impurity running at supercritical speeds. This asymme-
try means that the vortex rings nucleated by the defect will
contain Kelvin (vibrational) modes [46,47] that will induce
internal oscillations (see Fig. 12).

Let us now follow in more detail on the nucleation of vortex
rings from the unstable branch of solutions. In particular, we
depict in Fig. 12 the evolution of the unstable steady states
corresponding to cases B [Fig. 11(a)] and F [Fig. 11(b)]. The
simulations depict how the vortex ring, which is pinned by the
defect, detaches (by virtue of the solution’s instability) and
then travels downstream. It is worth recalling that, as per our
setup in Sec. II, mounting is always in a comoving reference
frame on top of the running defect. As mentioned above,
the pinned vortex rings are asymmetric as per our choice of
defect that has a rectangular transverse (i.e., perpendicular
to its motion) cross section. Therefore, the detaching vortex
rings are not circular and thus are prone to Kelvin, internal,
oscillatory modes. It is also interesting to note that the larger
vortex rings, corresponding to relatively small values of the
running defect speed c, detach and keep their relatively large
radius [cf. case B in Fig. 12(a)]. On the other hand, for larger
defect speeds, the pinned vortex ring has a small radius and
thus expands as it detaches [cf. case F in Fig. 12(b)]. It is also
worth mentioning that the detached vortex rings do not travel
downstream at velocity c with the background fluid velocity.
This is because the detached vortices (and also the nucleated
vortices for supercritical speeds) have an intrinsic velocity
vi that goes against the background flow (see Ref. [48] and
references therein). Thus, vortex rings do travel downstream
but with a slower velocity than the background flow corre-
sponding to c − vi.

Finally, since it may be physically relevant to consider
negative values of g1 in the 3D model (14), we depict in
Fig. 13 the bifurcation diagram for the steady-state solutions

(a)

(b)

FIG. 13. Same as in Fig. 11 but for constant λ = 1.3 and
g1 = −1 for the values of μ indicated in the legend. In this case,
the points corresponding to C–H do not carry a sizable amount of
vorticity and thus density isocontours are shown instead.

for g1 = −1 and a defect strength of λ = 1.3 for three differ-
ent values of the chemical potential μ. The results are similar
as the ones presented for g1 = 1 in Fig. 11 with no significant
qualitative differences.

IV. CONCLUSIONS AND FUTURE CHALLENGES

We have studied the effects of running an impurity defect
through a Bose-Einstein condensate in a regime that takes
into account the incorporation of the Lee-Huang-Yang cor-
rection that gives rise to quantum droplets. We systematically
explored the 1D, 2D, and 3D cases that feature different non-
linear LHY corrections. For all dimensionalities, we followed,
using pseudoarclength continuation, the two subcritical solu-
tion branches that exist for defect velocities below the critical
speed and which feature a localized waveform cotraveling
with the defect. These solutions correspond to dark solitons,
vortex-antivortex pairs, and vortex rings for the 1D, 2D, and
3D cases, respectively. In all cases we find that there exist an
upper and a lower branch of solutions connected through a
saddle-center bifurcation. The upper branch is found to always
be unstable and corresponds to a solution that has a relatively
larger effective mass and a nonlinear state further detached
from the defect. In contrast, the lower solution branch of
relatively smaller effective mass is dynamically stable for sub-
critical velocities and features a state more closely bound to
the defect. When dynamically evolved, the solution on the up-
per branch always destabilizes by shedding a single coherent
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structure and then settling to its lower branch, stable, sibling
solution. By using a perturbation approach, we were able to
theoretically predict the corresponding speed of sound of the
medium, which in turn takes a different functional form for
the different model dimensionalities. We corroborated that the
theoretically computed speed of sounds does match the bifur-
cation point (where the upper and lower branches collide) as
the strength of the defect tends to zero and we identified how
this critical speed (as well as the corresponding saddle-center
bifurcation point) deviates, i.e., decreases from this threshold,
as we move into the finite defect strength case. In the 3D
case we showcased the effect of using an anisotropic defect in
the transverse direction. This anisotropy is responsible for the
formation of squeezed vortex rings again featuring a similar
bifurcation diagram. We explored the relevant phenomenolo-
gies not only as a function of the dragging speed and the
defect strength, but also in terms of the chemical potential
variations, observing the variation of the states as the droplet
(negative chemical potential) limit is approached. Finally, we
also performed dynamics in the supercritical case, observing
how the disappearance of the states cotraveling with the defect
results in the emission of a train of dark solitons, or a street
of vortices or an array of vortex rings in one, two, and three
dimensions, respectively.

The present work naturally suggests numerous additional
considerations in the context of nonlinear wave patterns em-
bedded in the types of droplet models that were considered
herein. While some studies along this vein have recently taken
place both in one dimension [49,50] and in higher dimensions
[37], it appears that a detailed understanding of dark solitons,
vortices, or vortex pairs and vortex rings embedded within
droplet configurations is largely still missing, as is a charac-
terization of their stability and dynamics. We believe that such
a systematic study and also comparison with beyond-mean-
field models (for a recent review see Ref. [51]) would be of
particular interest in future work.
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APPENDIX A: SPEED OF SOUND IN TWO DIMENSIONS

Looking for solutions to Eq. (11) of the form of Eq. (6) but
in two dimensions yields

cRx = 1
2 (2Rxφx + Rφxx + 2Ryφy + Rφyy), (A1)

cRφx = − 1
2

(
Rxx + Ryy−Rφ2

x − Rφ2
y

) + R3 ln R2 − μR + V R.

(A2)

Further linearizing and expanding the phase and density terms
by using transverse modes of wave number k in the y direction
as φ(x, y, t ) = εθ (x, t )eiky and R(x, y, t ) = |α| + εr(x, t )eiky,
Eqs. (A1) and (A2) become

2crx = |α|(θxx − k2θ ), (A3)

rxx = −2c|α|θx + r(k2 + 4|α|2 + 4μ). (A4)

Finally, by making the substitutions r = ae�x and θ = be�x,
Eqs. (A1) and (A2) read

M

[
a

b

]
=

[
0

0

]
,

where

M =
[

2c�/|α| k2 − �2

k2 + 4|α|2 + 4μ − �2 −2|α|�

]
.

Then, setting det(M ) = 0 with k = 0 and � = 0 yields the
speed of sound for the 2D setting as

cs =
√

|α|2 + μ. (A5)

We test this prediction numerically under different settings in
Sec. III B.

APPENDIX B: SPEED OF SOUND IN THREE DIMENSIONS

Looking for solutions to Eq. (11) of the form of Eq. (6) but
now in three dimensions yields

2cRx = 2Rxφx + Rφxx + 2Ryφy + Rφyy + 2Rzφz + Rφzz,

(B1)

cRφx = − 1
2

(
Rxx − Rφ2

x + Ryy − Rφ2
y + Rzz − Rφ2

z

)
+ R4 + g1R3 − μR + V R. (B2)

As in the 2D calculations, we now allow the density and
phase terms to contain transverse modes. In this case, we
include modes in the y and z directions as φ(x, y, z, t ) =
εθ (x, t )eikyyeikzz and R(x, y, t ) = |α| + εr(x, t )eikyyeikzz. Then,
after linearization, Eqs. (B1) and (B2) become

2crx = |α|[θxx − (
k2

y + k2
z

)
θ
]
, (B3)

rxx = r
[
2|α|3 + 4μ + (

k2
y + k2

z

)] − 2c|α|θx. (B4)

Using the substitutions r = ae�x and θ = be�x yields the lin-
ear system

M

[
a

b

]
=

[
0

0

]
,

where

M =
[

2c�/|α| (
k2

y + k2
z

) − �2(
k2

y + k2
z

) + 2|α|3 + 4μ − �2 −2c|α|�

]
.

Finally, setting det(M ) = 0, ky = kz = 0, and � = 0 yields
the expression for the speed of sound in the 3D setting

cs =
√

|α|3 + 2μ

2
. (B5)

APPENDIX C: SPEED OF SOUND FOR THE NLS CASE

For comparison with the LHY case and for completeness,
the next two sections show the results of the pure NLS model
case

i∂t A − ic∂xA = − 1
2∇2A + |A|2A − μA + VA, (C1)
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(a)

(b)

(c)

FIG. 14. Same as in Fig. 3 but for the standard (cubic) NLS
model (C1) in one dimension without the LHY correction. The value
of μ = |α|2 was chosen here so as to match the background density
supporting the dark solitons for the LHY case. In this case, the
theoretical prediction for the speed of sound is given by Eq. (C4).
Note the similarity to the results of the LHY case in Fig. 3, albeit
with a different scale on the c axis.

with ∇2 the Laplacian and V the corresponding defect po-
tential. In contrast to the case with the LHY correction, the
pure NLS model admits a single homogeneous steady state of
density |α|2 = μ.

1. The NLS case in one dimension

Analyzing this case in a way similar to that in Sec. II A,
indeed following the work of Ref. [9], after replacing A(x) =
R(x)eiφ(x), the system

φxR2 = cR2 + CI , (C2)

cRφx = − 1
2

(
Rxx − Rφ2

x

) + R3 − μR + V R, (C3)

with the constant of integration CI = −cμ. Solving for φx in
Eq. (C2) and replacing in it in Eq. (C3) yields

Rxx = c2

(
−R + μ2

R3

)
+ 2R3 − 2μR + 2V R.

Linearizing as before, using R(x) = |α| + r(x), yields the ex-
pression for the evolution of the perturbation

rxx = r(μ − c2)

and therefore the speed of sound in one dimension for the pure
NLS case is given by

cs = √
μ. (C4)

The relevant calculation both in this section and in the next
one is provided for reasons of completeness.

Figure 14 depicts the numerical results corresponding to
the standard 1D NLS model (C1). These results are to be

compared with the corresponding ones in Fig. 3 that include
the LHY correction as per Eq. (4). When comparing the two
cases at first glance, little difference is observed. However,
note the quite different scales of defect speeds c such that
the velocities for the standard NLS case are about twice those
with the LHY correction.

2. The NLS case in two dimensions

Following an analysis very similar to the one in Sec. II B
and Appendix A yields, after (i) separating the density
and phase by A(x, y, t ) = R(x, y, t )eiφ(x,y,t ), (ii) expanding
in transversal modes by using φ(x, y, t ) = εθ (x, t )eikya, (iii)
linearizing the perturbed solution using R(x, y, t ) = r0 +
εr(x, t )eiky, and (iv) some algebra, yields, to first order, the
system

2crx

r0
= θxx − k2θ, (C5)

rxx = −2cr0θx + r(k2 + 4μ). (C6)

Then, making the substitutions r = aeλx and θ = beλx yields
a new set of equations, which can be written as the matrix
system [

2cλ
r0

k2 − λ2

k2 + 4μ − λ2 −2cr0λ

][
a

b

]
=

[
0

0

]
.

Setting the determinant equal to zero then yields the charac-
teristic polynomial

−λ4 + λ2(−4c2 + 2k2 + 4μ) − k2(k2 + 4μ) = 0,

which implies that, for the most unstable mode k = 0, the
speed of sound for the standard NLS model in two dimensions
is given by

cs = √
μ. (C7)

Figure 15 depicts the numerical results corresponding to
the standard 2D NLS model (C1). These results are very sim-
ilar to the corresponding ones in Fig. 8 that include the LHY
correction as per Eq. (11). As it was the case for the droplet
model, the NLS also displays a nonmonotonic behavior of the
effective mass as c decreases for the upper branch. We again
attribute this behavior to the appearance of the vortices that
start, for small c, far away from the impurity and then get
closer to it as c increases [see Fig. 15(b)].

APPENDIX D: SPEED OF SOUND
FOR ARBITRARY NONLINEARITY

Let us consider the Landau criterion [1,2], indeed, for a
general nonlinear Schrödinger (i.e., GP) equation of the form

iut = − 1
2 uxx + f (u) − μu, (D1)

where μ plays the role of the chemical potential, while f (u)
plays the role of the nonlinearity here, with f (u) = |u|2u
for the standard GP equation, while f (u) = |u|2u − |u|u for
our droplet setting. Given that we are examining excitations
around the positive homogeneous states of the system, we
(for this calculation) set f (u) = u3 in the former case, while
f (u) = u3 − u2 in the latter.
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(a)

(b)

(c)

FIG. 15. Similar to Fig. 8 but for the standard NLS 2D model
without the LHY correction. The vertical line in (a) is the pre-
dicted speed of sound for the pure NLS in two dimensions given
by Eq. (C7).

Performing the standard Bogoliubov–de Gennes analysis
[1,2] (but for this general nonlinearity), we find that the ener-
gies (frequencies) of excitation around such a homogeneous
state will satisfy the dispersion relation

ω2 = k2

2

(
k2

2
+ ( f ′(u) − μ)

)
.

Then, forming the relevant ratio of ω/k, we find

ω

k
= 1

2

√
k2 + 2[ f ′(u) − μ], (D2)

and hence the minimization dictated by the Landau criterion
[1,2], to obtain the associated speed of sound, occurs at k = 0
and yields the general formula

cs = 1
2

√
2[ f ′(u) − μ]. (D3)

It is relevant to first verify that for f (u) = u3 in the stan-
dard cubic GP equation for which f ′(u) = 3u2 = 3μ for the
homogeneous state, we obtain from the above calculation
the well-known result that cs = √

μ, discussed also in Ap-
pendix C.

Now, turning to our droplet model case, it is relevant to
understand the relevant criterion both for the positive and for
the negative states and to ensure that it is relevant to consider
even in the regime of negative chemical potentials. There-
fore, we consider now f (u) = (u2 − u)u = μu, which leads
to our positive and negative states u = (1 ± √

1 + 4μ)/2
and find that f ′(u) = 3u2 − 2u = u2 + 2(u2 − u) = u2 + 2μ,
given that the positive and negative equilibria satisfy
u2 − u = μ. This in turn leads from Eq. (D2) directly to

cs =
√

u2 + μ

2
=

√
u + 2μ

2
. (D4)

The first observation is that this is in perfect alignment, as it
should be, with the expression previously derived in Eq. (10),
i.e., the Landau criterion is still valid and consonant with our
earlier calculation.

More importantly, let us explore the specifics of the rele-
vant expression and its suitability for the regime of negative
chemical potentials (μ > − 1

4 ) and for the positive and neg-
ative states. From the exact solution for the positive and
negative states, we have that

u + 2μ = 1
2 (1 + 4μ ±

√
1 + 4μ) ≡ 1

2 (y ± √
y), (D5)

where we have set y = 1 + 4μ, which naturally is greater
than 0 for μ > − 1

4 , i.e., in the regime of chemical potentials
of interest. This expression is especially informative because
in the regime of negative chemical potentials μ < 0, 0 <

1 + 4μ = y < 1. Accordingly, in this regime it is true that
y <

√
y. Hence, for the positive branch, the quantity under

the radical of Eq. (D4), i.e., the expression in Eq. (D5), is
positive and hence the speed of sound is real. In contrast,
for the negative state, the modulationally unstable (attractive-
interaction-dominated) state, the quantity inside the radical
y − √

y, turns out to be negative and hence the speed of
sound is imaginary, exactly as is the case, e.g., for attractive
condensates with the attractive cubic nonlinearity.

Naturally, the considerations presented here are provided
for the 1D case, but it is a straightforward algebraic exercise
to confirm that they extend naturally (as they should) for the
2D and 3D cases presented in our work. The role of the
trap has been argued in many publications, including, e.g.,
Refs. [14–18], to be a modulation of the density, hence a local
modification of the speed of sound. This results in the feature
that even if dragging the relevant defect is subcritical near the
trap center, there will always be a density such that for fixed
dragging speed, the system will become supercritical when
crossing the region of such a density and thus lead to emission
of excitations.
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