
PHYSICAL REVIEW A 107, 033309 (2023)

Topological superfluid of s-wave-interacting fermions by engineered orbital
hybridization in an optical lattice

Maksims Arzamasovs,1 Shuai Li ,1 Shuqi Han,1 W. Vincent Liu ,2,3,* and Bo Liu 1,†

1Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory
of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China

2Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
3Department of Physics and Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology,

Shenzhen, 518055, China

(Received 17 January 2021; revised 8 September 2022; accepted 23 February 2023; published 10 March 2023)

Recent advanced experimental implementations of optical lattices with highly tunable geometry open up new
regimes for exploring quantum many-body states of matter that had not been accessible previously. Here we
report that a topological fermionic superfluid with higher Chern number emerges spontaneously from s-wave
spin-singlet pairing in an orbital optical lattice when its geometry is tuned to explicitly break reflection symmetry.
Qualitatively distinct from the conventional scheme that relies on higher partial-wave pairing, the crucial ingre-
dient of our model is topology originating from mixing higher Wannier orbitals. It leads to unexpected changes
in the topological band structure at the single-particle level, i.e., the bands are transformed from possessing two
flux-π Dirac points into a single quadratic touching point with flux 2π . Based on such engineered single-particle
bands, spin-singlet pairing of ultracold fermions arising from standard s-wave attractive interaction is found to
induce higher Chern number (Chern number of 2) and topologically protected chiral edge modes, all occurring
at a higher critical temperatures in relative scales, potentially circumventing one of the major obstacle for its
realization in ultracold gases.
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I. INTRODUCTION

Pursuit of topological phases of matter has been one of the
central thrusts in condensed-matter physics since the discov-
ery of the chiral-A phase of superfluid 3He [1] and quantum
Hall effect [2–5]. The concept of topology not only plays
a key role in a variety of exotic quantum phenomena, such
as topological insulators, chiral superconductors, and Weyl
semimetals, but also is closely related to fundamental physics,
e.g., it allows to distinguish new phases of matter that cannot
be described by Landau’s theory of symmetry breaking [6,7].
It has, thus, explosively triggered a tremendous amount of
effort in both theoretical and experimental studies in solids.
Besides that, there has been a great interest in simulating
topological matter with ultracold gases. Such highly control-
lable platforms not only provide versatile tools for simulating
electronic systems, but also present possibilities for study-
ing new phenomena with no counterparts in solids. Recent
experimental advances in ultracold gases, such as creating
tunable spin-orbit coupling [8–16] and simulating Aharonov-
Bohm and quantum anomalous Hall effects [17–20], provide
unprecedented opportunities for finding topological states of
matter. Moreover, hybridization of higher orbital bands has
opened a completely different avenue for emulating spin-orbit
coupling, or artificial gauge fields, in general, in ultracold
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atoms [21–27], yielding various interesting quantum states of
matter [28–34].

In this paper, we report a mechanism of constructing
higher Chern number superfluidity by engineered single-
particle band structure through spin-singlet pairing by the
standard s-wave attraction. The key idea here is to uti-
lize a symmetry-based method to systematically control the
non-trivial hybridization between higher orbitals of ultracold
atoms in optical lattices. Surprisingly, we find that such an
orbital mixing leads to unexpected changes in the topologi-
cal band structure at the single-particle level. When further
considering s-wave attraction between fermionic atoms, a
spin-singlet pairing induced higher Chern number superfluid
emerges in the presence of on-site rotation. This idea is mo-
tivated by recent experimental progresses in manipulating
higher orbital bands in optical lattices, such as the break-
through observation of long-lived p-band ultracold atoms
[24–27,35,36]. It opens up a new thrust towards investigating
exotic many-body phases with orbital degrees of freedom
[29,30,32–34,37–44]. As we will show below, symmetry-
based manipulations of nontrivial orbital hybridization can
lead to other undiscovered results.

II. ORBITAL-HYBRIDIZED TOPOLOGICAL BANDS

Let us consider a gas of ultracold fermions, loaded into a
two-dimensional (2D) optical lattice realized from a strongly
anisotropic three-dimensional lattice. Specifically, the lat-
tice potential is expressed as VOL(r) = −Vx cos2(kLxx) −
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Vy cos2(kLyy) − Vz cos2(kLzz) with kLx, kLy, and kLz being the
wave vectors of respective laser fields. The corresponding
lattice constants are ax = π/kLx, ay = π/kLy, and az = π/kLz.
We focus on the case with Vz � Vx,Vy and the system behaves
dynamically as a 2D system. In the deep lattice limit, lattice
potentials at each site can be approximated as harmonic oscil-
lators. Under this approximation, the requirement of Vxk2

Lx =
Vyk2

Ly = Vzk2
Lz preserves the local SO(3) rotation symmetry,

which guarantees threefold degeneracy of the p orbitals lo-
cally. When further adjusting lattice depth or lattice spacing,
parameters of the potential can be tuned as αVxk2

Lx = Vyk2
Ly =

Vzk2
Lz. When α �= 1, a finite orbital Zeeman splitting between

px and py (pz) orbitals can be introduced [37]. The key ingre-
dient here is the breaking of z-directional inversion symmetry,
which can induce nontrivial hybridization between px (py)
and pz orbitals, respectively, which could be achieved through
designing optical lattices with nonstandard geometry. For in-
stance, we can consider including a magnetic-field gradient
[19,20], or an additional standing wave pattern along the z
direction. The corresponding single-particle Hamiltonian can,
thus, be expressed as either H0 = − h̄2

2m ∇2 + VOL(r) − F · r
with the force F = −J ∇zB applied to the atom with spin mag-
netic moment J , or H0 = − h̄2

2m ∇2 + VOL(r) + Vz̄ cos2(3kLzz +
θ/2), with the lattice depth Vz̄ and θ �= π [θ ∈ (0, 2π )], re-
spectively. The p-orbital fermions can, thus, be described by
the following multiorbital model in the tight-binding regime,

H0 = t‖
∑

ri

C†
px

(ri)Cpx (ri + �ex ) − t⊥
∑

ri

C†
px

(ri)Cpx (ri + �ey)

+ t ′
‖
∑

ri

C†
py

(ri)Cpy (ri + �ey)

− t ′
⊥
∑

ri

C†
py

(ri)Cpy (ri + �ex )−tz
∑

ri

C†
pz

(ri)Cpz (ri + �ex )

− t ′
z

∑
ri

C†
pz

(ri)Cpz (ri + �ey)

+ tm
∑

ri

[
C†

px
(ri + �ex )Cpz (ri) − C†

px
(ri)Cpz (ri + �ex )

]

+ t ′
m

∑
ri

[
C†

py
(ri + �ey)Cpz (ri) − C†

py
(ri)Cpz (ri + �ey)

]

+ H.c. − δμx

∑
ri

C†
px

(ri)Cpx (ri), (1)

where C†
ν (ri) and Cν (ri) with ν = px, py, pz are fermionic

creation and annihilation operators for particles occupying
orbitals ν at lattice sites ri. t‖(t ′

‖) and t⊥(t ′
⊥) are longitudi-

nal and transverse hopping amplitudes, respectively. Relative
signs of the amplitudes are fixed by parities of px and py

orbitals. tz(t ′
z ) describes hopping of pz fermions on the xy

plane. The key ingredient here is hybridization among px and
pz, py, and pz orbitals, characterized by tm and t ′

m in Eq. (1).
Such hybridization arises from the asymmetric shape of pz

orbital wave functions induced by inversion symmetry break-
ing in the z direction, which is highly tunable through varying
magnetic-field gradient ∇zB or lattice depth Vz̄, as shown in
Fig. 5 of the Appendix. δμx

∑
ri

C†
px

(ri)Cpx (ri) is the orbital
Zeeman splitting term. In the momentum space, Eq. (1) can
be rewritten as

H0(k) = [C†
px

(k)C†
py

(k)C†
pz

(k)]H (k)

⎛
⎜⎝

Cpx (k)

Cpy (k)

Cpz (k)

⎞
⎟⎠,

where

H (k) =

⎛
⎜⎜⎝

2t‖ cos(kxax ) − 2t⊥ cos(kyay) − δμx 0 2itm sin(kxax )

0 2t ′
‖ cos(kyay) − 2t ′

⊥ cos(kxax ) 2it ′
m sin(kyay)

−2itm sin(kxax ) −2it ′
m sin(kyay) −2tz cos(kxax ) − 2t ′

z cos(kyay)

⎞
⎟⎟⎠, (2)

with lattice momentum k = (kx, ky) taking values in the
first Brillouin zone, and C†

ν (k) and Cν (k) representing
ν-orbital fermionic creation and annihilation operators in
momentum space. Eigenvalues of Eq. (2) result in the
single-particle band structure. Qualitatively distinct from
previous studies where the D4 point-group symmetry was
a necessary requirement [28,45], our model generalizes to
the case where such a point-group symmetry can be turned
on or off. In the presence of finite orbital Zeeman splitting,
the D4 symmetry is explicitly broken. Consequently, two
Dirac band touching points appear between the second
and the third bands [Fig. 1(a)], which are protected
by a reflection symmetry associated with the following
transformations of the fermionic operators: R‖ ≡ {Cpx (ri) →
−Cpx (−rix, riy),Cpy(z) (ri) → Cpy(z) (−rix, riy)} and R⊥ ≡
{Cpx(z) (ri) → Cpx(z) (rix,−riy), Cpy (ri) → −Cpy (rix, −riy)}.
When the orbital Zeeman term vanishes, δμx = 0, and the
D4 symmetry is restored, the two Dirac touching points

are found to merge together and form a quadratic band
touching at �(kx = 0, ky = 0) [Fig. 1(c)]. Therefore, from the
symmetry point of view, our model is substantially different
from previous works [28,45], which can be considered
special, higher-symmetry cases of our model. Single-particle
topology further shows new features associated with the
above variation of the band structure. When δμx �= 0, the
effective Hamiltonian near one of the Dirac touching points
(kDirac, 0) can be expressed as

HDirac
eff = c′

0k′
xI2×2 + c′

1kyσx + c′
3k′

xσz, (3)

where k′
x = kx − kDirac, expressions for c′

0, c′
1, and c′

3 are
quoted in Appendix A, and (I2×2, σx, σz) are the unit and
Pauli matrices. As shown in Fig. 1(b), a 2D vector field
hDirac(k) = (c′

3k′
x, c′

1ky) surrounding the Dirac touching point
forms a vortex structure with winding number 1, characteriz-
ing its topological nontriviality. When δμx = 0, it turns out
that the quadratic touching point forms a topological defect
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FIG. 1. (a) and (c): Single-particle energy spectra of the tight-
binding model in Eq. (1) for δμx = 0.5t ′

‖ and δμx = 0, respectively.
(b) and (d): The topological defects formed around Dirac and
quadratic band touching points, respectively. In (a), other parame-
ters are chosen as t‖/t ′

‖ = 1.2, t⊥ = t ′
z = 0.3t ′

‖, t ′
⊥/t⊥ = 1.2, t ′

m/tm =
0.8, tz/t ′

z = 1.2, and tm = 0.6t ′
‖. In (c), we choose t‖/t ′

‖ = t⊥/t ′
⊥ =

tm/t ′
m = tz/t ′

z = 1, tm = 0.6t‖ and tz = t⊥ = 0.3t‖.

with winding number 2 (see details in Appendix A), such as
shown in Fig. 1(d). Therefore, in our model the topological
defect in the single-particle spectrum can be transferred from
two Dirac points to the single quadratic touching point. Topo-
logical properties of the two cases are closely linked since the
winding number for the quadratic touching is exactly the sum
of those for the two Dirac points. This effect found here makes
our proposal topologically distinguishable from the previous
studies [28,45].

III. s-WAVE INTERACTION INDUCED HIGHER CHERN
NUMBER SUPERFLUID

The next intriguing question is whether interactions can
destabilize topological bands discussed above and lead to
novel many-body phases. For instance, past studies have
shown that quadratic touching is unstable under repulsion,
resulting in topological insulators and nematic phases [28,46–
49]. However, when considering contact attraction, spin-
singlet superconducting pairing is absent since it is marginally
irrelevant in the renormalization-group analysis [49]. In the
following, we are going to show that, unexpectedly, in the
presence of on-site rotation a higher Chern number superfluid
can be created by the s-wave attraction-induced spin-singlet
pairing. To that end, consider loading attractive spin-1/2

fermionic atoms into the lattice system described above. With
the addition of on-site rotation, the interacting model can be
expressed as

H = H0,σ + Hint + HL. (4)

The interaction part Hint is

Hint =
∑

ri

{
U
∑

ν

n(ri)ν,↑n(ri)ν,↓ + W
∑
ν �=ρ

[n(ri)ν,↑n(ri)ρ,↓

+ C†
ν,↑(ri)C

†
ρ,↓(ri)Cν,↓(ri)Cρ,↑(ri)

+ C†
ν,↑(ri)C

†
ν,↓(ri)Cρ,↓(ri)Cρ,↑(ri)]

}
, (5)

where nν,σ (ri) ≡ C†
ν,σ (ri)Cν,σ (ri) is the density operator.

The intraorbital and interorbital interaction strengths are
captured by U and W , respectively. Since here we con-
sider employing an additional standing wave to break
the z-directional inversion symmetry, fermions of both
spins are experiencing the same lattice potentials. There-
fore, noninteracting Hamiltonian H0,σ does not depend on
spin. HL = i
z

∑
ri,σ

[C†
px,σ

(ri)Cpy,σ (ri) − C†
py,σ

(ri)Cpx,σ (ri)]
describes the on-site rotation, which has been achieved in a tri-
angular lattice [50,51]. Through utilizing electro-optic phase
modulation of the laser beams, we propose a method to realize
the on-site rotation in our setup (see Appendix B for details).
Attractive fermions tend to pair with each other and form
a superfluid at low temperatures. To study it, we construct
a path-integral formalism. Details are given in Appendix C.
Under the saddle-point approximation, surprisingly, we find
that by simply tuning the average filling n of fermions, su-
perfluids with distinct topological properties can be achieved.
The Bogoliubov–de Gennes (BdG) Hamiltonian (given in
Appendix C) describing this superfluid preserves the particle-
hole symmetry, i.e., �HBdG(k)�−1 = −H∗

BdG(−k) with � ≡
( 0 I3×3
I3×3 0 ) ⊗ σy, whereas the time-reversal and chiral sym-

metries are broken. Therefore, it belongs to D symmetry class
of the tenfold classification [52], and topology of the super-
fluid can, thus, be evaluated by the Chern number,

C = 1

2π

∑
n

∫

n(kx, ky)dkxdky, (6)

where summation of n runs over all the occupied bands of
HBdG.


n(kx, ky)

= i
∑
n′ �=n

[ 〈n|∂kx HBdG|n′〉〈n′|∂ky HBdG|n〉
(En − En′ )2

− (kx ↔ ky)

]
(7)

is the Berry curvature and |n(n′)〉 stand for the eigenstate with
energies En(n′ ). Figure 2 shows the topological phase diagram.
Interestingly, it is shown that both for case δμx �= 0 (Dirac
touching) as well as δμx = 0 (quadratic touching) topolog-
ical phase diagrams are qualitatively similar. There are two
different topological regimes characterized by distinct Chern
numbers. Intriguingly, a new topological orbital-hybridized
superfluid with higher Chern number (C = 2) is unveiled. For
fixed interaction strength, the system undergoes a topological
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FIG. 2. (a) and (b) Topological phase diagram as a function of
orbital mixing strength and the average filling for δμx = 0.5t ′

‖ and
δμx = 0, respectively. The topologically nontrivial (yellow area) and
trivial (purple area) superfluids are separated, and the phase boundary
corresponds to the closing of the bulk gap. In (a) we choose |W | =
0.5t ′

‖, U = 3W , 
z = 0.5t ′
‖ and other parameters are the same as in

Fig. 1(a). In (b) we choose |W | = 0.5t‖, U = 3W , 
z = 0.5t‖ and
other parameters are the same as in Fig. 1(c).

phase transition between C = 0 superfluid (SF) and C = 2
topological superfluid (tSF) when varying the filling. When
further considering the energy spectrum of the tSF under
cylinder geometry [shown in Fig. 3(a)], all the bulk modes
are gapped, and two pairs of chiral edge states emerge at the
two outer edges of the system [Fig. 3(b)]. It confirms that the
tSF state satisfies the bulk-edge correspondence.

We now discuss the sharp distinction between our scheme
for realizing higher Chern number superfluids and that pro-
posed in previous studies [53–59]. The conventional approach
relies on higher partial-wave pairing to achieve higher Chern
number superfluidity. Instead, the present mechanism con-
structs it by engineering single-particle band structure through
spin-singlet pairing by the standard s-wave attraction. The key
ingredient supporting this new mechanism is that topology
originates from mixing higher Wannier orbitals, rather than
manipulating spins, such as in the spin-orbit coupling scheme.
Typically, degenerate Wannier orbitals could emerge in the
presence of point-group symmetries where the symmetry for
orbitals is much lower than that for spins. Therefore, our
proposal could provide an easier way of achieving higher
Chern number superfluids via constructing nontrivial topol-

FIG. 3. (a) Energy spectrum of the tSF state under the open (peri-
odic) boundary condition in the x(y) direction. The in-gap modes are
two pairs of chiral edge states. (b) The amplitudes of wave functions
for the two chiral edge modes with kyay = 2π/3 in (a). Here we
choose tm = 0.8t‖ and n = 1.6. Other parameters are the same as in
Fig. 2(b).

ogy through orbital mixing. It frees up the usually challenging
requirements of previous works, such as multilayer structures
[53,56], spin-orbit coupling, or other artificial gauge fields
[54,55,57]. This mechanism would shed light on new pos-
sibilities for edge-mode engineering through fabrication of
orbital-hybridized higher Chern number phases in both elec-
tronic solids and atomic gases.

Furthermore, our scheme can significantly improve the
transition temperature, making it as high as that of usual
s-wave superfluidity, potentially circumventing one of the
major obstacles for its realizations. It is confirmed by our
study of the finite temperature phase transition. As temper-
ature increases, the superfluid ground state undergoes the
Berezinskii-Kosterlitz-Thouless (BKT) transition to the nor-
mal state [60,61]. The finite temperature phase diagram is
obtained in Fig. 4 (see details in Appendix D). Since here
we consider the weakly interacting regime, i.e., the interaction
strength is smaller than the bandwidth, only the fermionic ex-
citations contribute to the total normal fluid density and, thus,
affect the superfluid density, whereas the contribution from
collective excitations can be ignored. Therefore, the superfluid
density can be calculated by using Landau’s formula and to
use KT-Nelson formula with mean-field results for obtaining
the BKT transition temperature is available [62,63]. In current
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FIG. 4. Transition temperature Ttr as a function of interaction
strength. Mean-field (TMF ) and BKT (TBKT) transition temperature
are plotted. Other parameters are the same as in Fig. 3.

experiments, such as with 40K [64–66], taking advantage of
the Feshbach resonance technique, the atomic interactions are
highly tunable. The BKT transition temperature can reach
around 19 nK, being within the experimental temperature
scope. We would also like to stress that, although on-site
rotation is considered in our scheme, heating from it can be
suppressed in a controlled way. To evaluate the heating rate
that arises from the interaction of atoms with the light, we
calculate the photon-scattering rate [67,68] by employing the
method in Ref. [67], which is directly related to the heating
power. After somewhat tedious calculation (see details in
Appendix B), the maximal heating rate can be determined by
the scattering rate �̄SC through the following relation:

Ṫheat = ER�̄SC

3kB
, (8)

with ER being the recoil energy. For instance, when consid-
ering Vx = Vy ≡ V , V/ER = 5, Vz/V = 5 and ax(y) = 850 nm,
the maximum heating rate for 40K system is evaluated to be
around 10 nK/s. Therefore, our proposed higher Chern num-
ber superfluids should have the order of a second in lifetime
even in the presence of on-site rotation, making it suitable
for the experimental measurement. It should potentially cir-
cumvent one of the major challenges of the heating problem,
such as in the Raman-induced spin-orbit coupling scheme in
ultracold gases [8].

IV. CONCLUSIONS

We have demonstrated a symmetry-based method of en-
gineering nontrivial orbital hybridization in optical lattices.
Various orbital-hybridized topological phenomena, includ-
ing transformation of orbital-hybridized topological defects
in single-particle bands as well as orbital-hybridized higher
Chern number superfluid, have been predicted. Moreover, the
mechanism can be easily achieved in current experiments by
utilizing our protocol of manipulating inversion symmetry
in optical lattices, potentially circumventing the challenges
of the Raman-induced spin-orbit coupling scheme. The
present approach, thus, complements with a new window to

investigate orbital-hybridized topological phases in ultracold
gases.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D
Program of China (Grant No. 2021YFA1401700), NSFC
(Grants No. 12074305, No. 12147137, and No. 11774282),
the National Key Research and Development Program of
China (Grant No. 2018YFA0307600) and Xiaomi Young
Scholar Program (M.A., S.L., S.H., and B.L.), and by the
AFOSR Grant No. FA9550-16-1-0006, the MURI-ARO Grant
No. W911NF17-1-0323 through UC Santa Barbara, and the
Shanghai Municipal Science and Technology Major Project
through the Shanghai Research Center for Quantum Sciences
(Grant No. 2019SHZDZX01) (W.V.L.). We also thank the
HPC platform of Xi’An Jiaotong University where our nu-
merical calculations were performed.

APPENDIX A: LOW-ENERGY EFFECTIVE
HAMILTONIAN AROUND TOPOLOGICAL BAND

TOUCHING POINTS

In this Appendix, we provide a detailed derivation of the
effective Hamiltonian in the vicinity of band touching points.
The method of Feshbach projectors [69] is used to reduce
the model in Eq. (2) to an effective low-energy Hamiltonian,
valid around band touching points. Projection operators P
and Q = 1 − P are introduced, which project into the sub-
spaces spanned by the two touching bands and the remaining
band, respectively. The eigenvalue problem associated with
the model Hamiltonian H0 can be written as H0|〉 = E |〉,
where |〉 is the eigenstate with energy E . The effective
Hamiltonian Heff which describes low-energy physics near the

10-2 10 -1 100 101 102

J Ba/ER

0

1

2

3

4

t m
 /t

(units of 3Vz kLz a/ER)−

||

FIG. 5. The orbital hybridization tm/t‖ as a function of either the
magnetic field gradient, or the depth Vz̄ of the additional z-directional
standing wave pattern. Here, we consider the case with δμx = 0 and
choose V ≡ Vx = Vy, θ = π/2 in the potential Vz̄ cos2(3kLzz + θ/2),

where ER is the recoil energy defined as ER = h̄2k2
L

2m with a ≡ ax = ay

and kL = π/a.
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band touching can be obtained from(
PH0P + PH0Q

1

E − QH0Q
QH0P

)
P|〉 ≡ HeffP|〉 = EP|〉. (A1)

By computing relevant matrix elements in Eq. (A1), the effective Hamiltonian Heff can be further expressed as

Heff =
(

2t‖ cos(kxax ) − 2t⊥ cos(kyay) − δμx 0

0 2t ′
‖ cos(kyay) − 2t ′

⊥ cos(kxax )

)
+ 2

t̄‖ − t̄⊥ + tz cos(kxax ) + t ′
z cos(kyay)

×
(

t2
m sin2(kxax ) tmt ′

m sin(kxax ) sin(kyay)

tmt ′
m sin(kxax ) sin(kyay) t ′2

m sin2(kyay)

)
, (A2)

where t̄‖ = (t‖ + t ′
‖)/2, t̄⊥ = (t⊥ + t ′

⊥)/2. When δμx �= 0, the effective Hamiltonian near one of the Dirac touching points, for
instance (kDirac, 0), can be obtained through expanding Eq. (A2) to the leading order in momentum near that Dirac point.
Therefore, HDirac

eff can be further approximated as

HDirac
eff ≈ c′

0k′
xI2×2 + c′

1kyσx + c′
3k′

xσz, (A3)

where k′
x = kx − kDirac, c′

0 = −ax(t‖ − t ′
⊥) sin(kDiracax ) + 2axt2

m sin(kDiracax ) cos(kDiracax )
t̄‖−t̄⊥+t ′

z+tz cos(kDiracax ) + 2axtzt2
m sin3(kDiracax )

[t̄‖−t̄⊥+t ′
z+tz cos(kDiracax )]2 , c′

1 =
2aytmt ′

m sin(kDiracax )
t̄‖−t̄⊥+t ′

z+tz cos(kDiracax ) , and c′
3 = −ax(t‖ + t ′

⊥) sin(kDiracax ) + 2axt2
m sin(kDiracax ) cos(kDiracax )

t̄‖−t̄⊥+t ′
z+tz cos(kDiracax ) + 2axtzt2

m sin3(kDiracax )
[t̄‖−t̄⊥+t ′

z+tz cos(kDiracax )]2 . σx and σz are the
Pauli matrices and I2×2 is the unit matrix. Eq. (A3) can also be parametrized by a vector on the (kx, ky) plane as

hDirac(k) = (c′
3k′

x, c′
1ky). (A4)

As shown in Fig. 1(b), the vector hDirac defined here has a vortex structure around the Dirac points, with the winding numbers
W = ∮C dk

2π
[ hx
|h|∇( hy

|h| ) − hy

|h|∇( hx
|h| )] being 1. Similar analysis can be performed for the case with δμ = 0. Through expanding

Eq. (A2) around the � point in momentum space, the effective low-energy Hamiltonian around the quadratic band touching can
be approximated as

Hquadratic
eff ≈ c0

(
k2

x + k2
y

)
I2×2 + c1kxkyσx + c3

(
k2

x − k2
y

)
σz, (A5)

where c0 = a2

2 (−t‖ + t⊥ + 2t2
m

t‖−t⊥+2tz
), c1 = 2t2

ma2

t‖−t⊥+2tz
, and c3 = a2

2 (−t‖ − t⊥ + 2t2
m

t‖−t⊥+2tz
) with a ≡ ax = ay and t‖/t ′

‖ = t⊥/t ′
⊥ =

tm/t ′
m = tz/t ′

z = 1. We further parametrize Eq. (A5) by a vector on the (kx, ky) plane as

hquadratic(k) = [c3
(
k2

x − k2
y

)
, c1kxky

]
. (A6)

The vector hquadratic also forms a vortex structure [shown in Fig. 1(d) of the main text] but with winding number W being equal
to 2.

APPENDIX B: HEATING EFFECT FROM ON-SITE ROTATION

In this Appendix we make a detailed study of heating effects due to the on-site rotation term, achieved by passing laser beams
forming the lattice through electro-optic phase modulators [50,51]. Let us take the case of δμx = 0 as example. Then, the lattice
potential with electro-optic modulators can be expressed as

V (x, y, z) = − V

2
{cos2[kLx + φx(t )] + cos2[kLy + φy(t )]}

− V

4
{cos2[kLx + kLy + φ+(t )] + cos2[kLx − kLy + φ−(t )]} − Vz cos2(kLz z), (B1)

where V ≡ Vx = Vy, kL ≡ kLx = kLy and the electro-optic phase modulations φx(t ) = �φ cos(
zt ) cos(ωRFt ), φy(t ) =
�φ cos(
zt + π/2) cos(ωRFt ), φ+(t ) = �φ cos(
zt + π/4) cos(ωRFt ), φ−(t ) = �φ cos(
zt − π/4) cos(ωRFt ) with the am-
plitude of oscillations �φ, slow precession frequency 
z, and the fast rotation frequency ωRF at radio frequency. It results
in a periodical overall translation of the lattice at a radio-frequency ωRF. The atoms do not follow fast oscillations with radio
frequency ωRF and only feel a time-averaged potential. Local potential near each site minimum in the frame rotating with angular
frequency 
z can be approximately (and dropping a constant) expressed as

V (x′, y′, z) ≈ −3V

2

(
1 − �φ2

4

)
+ mω′2r′2

2
[1 + 2ε cos(2φ′)] + Vzk

2
Lz

z2, (B2)
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where mω′2
2 = V k2

L(1 − �φ2

2 ), ε = − �φ2

8(1−�φ2/2) , r′2 = x′2 + y′2 and φ′ is the polar angle of r′. The reference frame with rotation
axis along the z direction and angular velocity 
z with respect to the original frame can be captured by the following
transformation: (x′

y′) = (cos(
zt ) − sin(
zt )
sin(
zt ) cos(
zt ) )(x

y). The slight deformation of the optical potential, i.e., the fourth term on the right-hand
side of Eq. (B2), precesses around each site center and can be regarded as stirring the on-site rotation [50,51].

In the following, we analyze in detail the rate of heating which arises from interactions of the atom with the light. Heating
power is directly related to the photon scattering rate �SC [67,68]. To obtain that, we employ the method of Ref. [67]. The laser
beams which form the lattice potential in Eq. (B1) can be expressed as

E(x, y, z, t ) = 2Ex cos[kLx + φx(t )] cos(ωt ) + 2Ey cos[kLy + φy(t )] cos(ωt ) + 2Ez cos(kLz z) cos(ωzt )

+ 2E+ cos[kL(x + y) + φ+(t )] cos
(
ωt + π

2

)
+ 2E− cos[kL(x − y) + φ−(t )] cos

(
ωt + π

2

)
, (B3)

where Ex = Eez, Ey = Eex, Ez = Ezey, E+ = E (ey − ex)/2, and E− = E (ey + ex)/2, with ex, ey, and ez being the unit vectors
along the x, y, and z directions, respectively. The dipole potential that results from the above laser fields [67] can, thus, be
expressed as Udip = − 1

2 〈p(x, y, z, t ) · E(x, y, z, t )〉, where 〈· · · 〉 denotes time averaging over rapid oscillations. p(x, y, z, t ) is the

dipole moment, which can be defined as p(r, t ) = α(ω)E(r, t ) with the polarizability α(ω) = e2

me

1
ω2

0−ω2−iω�ω
. Here, e and me are

the charge and mass of electron, respectively, ω0 is the frequency of the atomic transition, and �ω = ω2�0/ω
2
0 with �0 being the

decay rate of the electronic excited state, such as |2P1/2〉 of 40K. Such a dipole potential Udip exactly produces the lattice potential
in Eq. (B1).

The rate of heating can then be evaluated by considering the atom as a classical oscillator subject to the above dipole potential.
Energy absorbed by the oscillator from the driving field [67] is given by Pabs = 〈ṗ(x, y, z, t ) · E(x, y, z, t )〉. Such an absorption
results from the imaginary part of the polarizability, which describes the out-of-phase component of the dipole oscillation.
It can be interpreted in terms of photon scattering in cycles of absorption and subsequent spontaneous reemisson processes.
Such a photon scattering rate is directly related to the heating rate. Therefore, we can use Pabs to estimate the heating rate
caused by the phase modulations in Eq. (B1). We next expand the electric field in Pabs in powers of small �φ as E(x, y, z, t ) =
E(0)(x, y, z, t ) + E(1)(x, y, z, t )�φ + E(2)(x, y, z, t )�φ2 + · · · and Pabs can, thus, be approximated as

Pabs ≈ P(0) + �φ2P · · · . (B4)

To estimate the maximum heating rate resulting from the small phase modulations, we take the quadratic expansion term of �φ

in Pabs and evaluate the maximum of Pabs as P̄abs = max(P(0) + P(2)�φ2). Therefore, the maximum scattering rate �̄SC can be
obtained from the following relation �̄SC = P̄abs/h̄ω with h̄ω = √

4V ER and the recoil energy ER = h̄2k2
L/2m. The maximum

heating rate can, thus, be determined from the scattering rate through

Ṫheat = ER�̄SC

3kB
. (B5)

To compare with realistic experimental system, for instance, we can consider the atomic transition between the 2P1/2 and
2S1/2 levels of 40K. It is known that for this atomic transition in 40K �0 = 2π × 6 MHz [70]. When V/ER = 5, Vz/V = 5,
a = 2π/kL = 850 nm, and �φ = 0.1, the maximum heating rate is evaluated as Ṫheat ≈ 10 nK/s. Since the estimated BKT
transition temperature of our proposed higher Chern number superfluids is around 19 nk, comparing it to the heating rate obtained
above, the proposed higher Chern number superfluids should have a lifetime of the order order of a second, making it suitable for
experimental measurements. Therefore, our scheme should potentially circumvent the challenges of the heating problem, such
as in the Raman-induced spin-orbit coupling scheme in ultracold gases.

APPENDIX C: PATH-INTEGRAL FORMALISM

By introducing Grassmann fields C̄μ(ν),σ (ri, τ ), Cμ(ν),σ (ri, τ ) with μ(ν) = px, py, pz and σ =↑,↓, which represent fermionic
fields, the partition function of the system can be expressed as (the units are chosen as h̄ = kB = 1)

Z =
∫

DC̄ DC exp(−S[C̄,C]), (C1)

with the action S,

S = S0[C̄,C] + Sint[C̄,C], (C2)

where

S0[C̄,C] =
∫ β

0
dτ
∑

μνrir′
iσ

C̄μ,σ (ri, τ )(δμνδri,r′
i
∂τ + Hμν )Cν,σ (r′

i, τ ),
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ARZAMASOVS, LI, HAN, LIU, AND LIU PHYSICAL REVIEW A 107, 033309 (2023)

Sint[C̄,C] =W
∫ β

0
dτ
∑

ri

⎧⎨
⎩3
∑

μ

C̄μ,↑(ri, τ )C̄μ,↓(ri, τ )Cμ,↓(ri, τ )Cμ,↑(ri, τ ) +
∑
μ �=ν

C̄μ,↑(ri, τ )C̄μ,↓(ri, τ )Cν,↓(ri, τ )Cν,↑(ri, τ )

+
∑
μ �=ν

C̄μ,↑(ri, τ )C̄ν,↓(ri, τ )Cμ,↓(ri, τ )Cν,↑(ri, τ ) +
∑
μ �=ν

C̄μ,↑(ri, τ )C̄ν,↓(ri, τ )Cν,↓(ri, τ )Cμ,↑(ri, τ )

⎫⎬
⎭, (C3)

where U = 3W is assumed. The quartic fermionic interaction term in the action S can be decoupled by introducing Hubbard-
Stratonovich fields

�̄( j)
μν (ri, τ ) and �( j)

μν (ri, τ ), where j =
{

1, μ = ν,

1, 2, μ �= ν,
and μ, ν = px, py, pz. (C4)

Then, the interaction part of the partition function can be rewritten as follows:

∫
DC̄ DC exp

⎛
⎝−W

∫ β

0
dτ
∑

ri

⎧⎨
⎩3
∑

μ

C̄μ,↑(ri, τ )C̄μ,↓(ri, τ )Cμ,↓(ri, τ )Cμ,↑(ri, τ )

+
∑
μ �=ν

C̄μ,↑(ri, τ )C̄μ,↓(ri, τ )Cν,↓(ri, τ )Cν,↑(ri, τ )

⎫⎬
⎭
⎞
⎠

=
∫

DC̄ DC
∏
μ

D�̄(1)
μμD�(1)

μμ

∫
exp

⎛
⎝∫ β

0
dτ
∑

ri

∑
μ �=ν

{
3�̄(1)

μμ(ri, τ )�(1)
μμ(ri, τ )

W
+ �̄(1)

μμ(ri, τ )�(1)
νν (ri, τ )

W

}

+
∫ β

0
dτ
∑

ri

∑
μ �=ν

{[
3�̄(1)

μμ(ri, τ ) + �̄(1)
νν (ri, τ )

]
Cμ,↓(ri, τ )Cμ,↑(ri, τ )

+ [3�(1)
μμ(ri, τ ) + �(1)

νν (ri, τ )
]
C̄μ,↑(ri, τ )C̄μ,↓(ri, τ )

})
, (C5)

In the cases of μ, ν = py, pz and μ, ν = px, pz, the corresponding expressions can be derived in the same way. We next introduce
the following Fourier transformations,

Cμ,k,n,σ = 1√
βN

∫ β

0

∑
r

Cμ,σ (r, τ )eiωnτ−ik·r dτ, C̄μ,k,n,σ = 1√
βN

∫ β

0

∑
r

C̄μ,σ (r, τ )e−iωnτ+ik·r dτ,

Δ( j)
μν,q,m = 1√

βN

∫ β

0

∑
r

�( j)
μν (r, τ )ei�mτ−iq·r dτ, �̄( j)

μν,q,m = 1√
βN

∫ β

0

∑
r

�̄( j)
μν (r, τ )e−i�mτ+iq·r dτ, (C6)

where N is the total number of lattice sites and ωn = (2n + 1)n/β, �m = 2mπ/β with β = 1/T are the fermionic and bosonic
Matsubara frequencies, respectively. Since the superfluid state investigated here is the BCS-type, we can further approximately
rewrite the Hubbard-Stratonovich fields representing the fermionic pairing as

�( j)
μν,q,m =

√
βNδq,0δm,0�

( j)
μν,

�̄( j)
μν,q,m =

√
βNδq,0δm,0�̄

( j)
μν. (C7)
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Then the partition function becomes

Z =
∫

D{C̄,C, �̄( j),�( j)} exp(−Ssp[C̄,C, �̄( j),�( j)]),

Ssp[C̄,C, �̄,�] = − Nβ

W

∑
μ �=ν

(
3�̄(1)

μμ�(1)
μμ + �̄(1)

μμ�(1)
νν

)− Nβ

W

∑
μν={px py,

py pz,pz px}

(
�̄(1)

μν�
(2)
μν + �̄(2)

νμ�(1)
νμ + �̄(1)

νμ�(1)
μν + �̄(2)

μν�
(2)
νμ

)

+
∑

k,n,μ,ν,σ

C̄μ,k,n,σ (−iωnδμν + [H (k)]μν )Cν,k,n,σ −
∑
k,n
μ �=ν

([
3�̄(1)

μμ + �̄(1)
νν

]
Cμ,−k,−n,↓Cμ,k,n,↑

+ [3�(1)
μμ + �(1)

νν

]
C̄μ,k,n,↑C̄μ,−k,−n,↓

)
−
∑
k,n

μν={px py,
py pz,pz px}

([
�̄(1)

μν + �̄(1)
νμ

]
Cμ,−k,−n,↓Cν,k,n,↑

+ [�(1)
μν + �(1)

νμ

]
C̄μ,k,n,↑C̄ν,−k,−n,↓

)
−
∑
k,n

μν={py px,
pz py,px pz}

([
�̄(2)

μν + �̄(2)
νμ

]
Cμ,−k,−n,↓Cν,k,n,↑

+ [�(2)
μν + �(2)

νμ

]
C̄μ,k,n,↑C̄ν,−k,−n,↓

)
.

We, then, further rewrite the action in the Nambu representation,

Ssp[C̄,C, �̄,�] = − Nβ

W

∑
μ �=ν

(
3�̄(1)

μμ�(1)
μμ + �̄(1)

μμ�(1)
νν

)− Nβ

W

∑
μν={px py,
py pz,pz px}

(
�̄(1)

μν�
(2)
μν + �̄(2)

νμ�(1)
νμ + �̄(1)

νμ�(1)
μν + �̄(2)

μν�
(2)
νμ

)

+
∑
k,n

η̄k,n[−iωnI6 + HBdG(k)]ηk,n,

where ηk,n = (Cpx,k,n,↑ Cpy,k,n,↑ Cpz,k,n,↑ C̄px,−k,−n,↓ C̄py,−k,−n,↓ C̄pz,−k,−n,↓)T is the Nambu spinor. I6 is the 6 × 6
unit matrix and HBdG(k) is the 6 × 6 Bogoliubov–de Gennes matrix,

HBdG(k) =
(

H (k) −M

−M −H T (−k)

)
,

with

M =

⎛
⎜⎝

3�(1)
px px

+ �(1)
py py

+ �(1)
pz pz

�(1)
px py

+ �(1)
py px

�(2)
px pz

+ �(2)
pz px

�(2)
px py

+ �(2)
py px

3�(1)
py py

+ �(1)
px px

+ �(1)
pz pz

�(1)
py pz

+ �(1)
pz py

�(1)
px pz

+ �(1)
pz px

�(2)
py pz

+ �(2)
pz py

3�(1)
pz pz

+ �(1)
px px

+ �(1)
py py

⎞
⎟⎠,

M =

⎛
⎜⎜⎝

3�̄(1)
px px

+ �̄(1)
py py

+ �̄(1)
pz pz

�̄(1)
px py

+ �̄(1)
py px

�̄(2)
px pz

+ �̄(2)
pz px

�̄(2)
px py

+ �̄(2)
py px

3�̄(1)
py py

+ �̄(1)
px px

+ �̄(1)
pz pz

�̄(1)
py pz

+ �̄(1)
pz py

�̄(1)
px pz

+ �̄(1)
pz px

�̄(2)
py pz

+ �̄(2)
pz py

3�̄(1)
pz pz

+ �̄(1)
px px

+ �̄(1)
pz pz

⎞
⎟⎟⎠. (C8)

Integrating out the fermionic fields, the partition function can be expressed as

Z = exp[−βNFsp(�̄,�, T, μ)], (C9)

Fsp(�̄,�, T, μ) = − 1

W

∑
μ �=ν

(
3�̄(1)

μμ�(1)
μμ + �̄(1)

μμ�(1)
νν

)− 1

W

∑
μν={px py,
py pz,pz px}

(
�̄(1)

μν�
(2)
μν + �̄(2)

νμ�(1)
νμ + �̄(1)

νμ�(1)
μν + �̄(2)

μν�
(2)
νμ

)

− 1

Nβ

∑
k,n

ln{− det[−iωnI6 + HBdG(k)]}.
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Then, the average filling of the system and the saddle-point values of the Hubbard-Stratonovich fields representing fermionic
pairing can be determined from

n = −∂Fsp(�̄,�, T, μ)

∂μ
,

∂Fsp(�̄,�, T, μ)

∂�̄
( j)
μν

= 0,
∂Fsp(�̄,�, T, μ)

∂�
( j)
μν

= 0. (C10)

From Eq. (C10), we can define the pairing order parameters as �μν ≡ �(1)
μν, �∗

μν ≡ �̄(1)
μν when μ = ν, and for μ �= ν, �μν ≡

�(1)
μν = �(2)

μν, �∗
μν ≡ �̄(1)

μν = �̄(2)
μν . Therefore, we can rewrite the HBdG(k) as

HBdG(k) =
(

H (k) −M
−(MT

)∗ −H T (−k)

)
,

M =

⎛
⎜⎝

3�px px + �py py + �pz pz �px py + �py px �px pz + �pz px

�px py + �py px 3�py py + �px px + �pz pz �py pz + �pz py

�px pz + �pz px �py pz + �pz py 3�pz pz + �px px + �py py

⎞
⎟⎠. (C11)

APPENDIX D: BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION

It is well known that at finite temperature superfluidity of 2D atomic Fermi gases is characterized by the vortex-antivortex
binding. The relevant mechanism is the Berezinskii-Kosterlitz-Thouless (BKT) phase transition occurring at a characteristic
temperature TBKT [60,61]. The BKT transition in 2D is associated with spontaneous formation of vortices. A unique feature
of such a transition is a universal jump in the superfluid density, also known as the Nelson-Kosterlitz jump [71]. To further
determine the superfluid density, we impose a phase twist (e.g., see Refs. [72–74]) (i.e., supercurrent) on the order parameter as

�μν → �μν exp (i · 2� · ri) = �μν exp

(
i
2�xnx

Nx
+ i

2�yny

Ny

)
, (D1)

where ri = nxax�ex + nyay�ey label the lattice sites. � captures linear phase variation on the order parameter and Nx and Ny

represent the numbers of sites along the x and y directions, respectively. The imposed phase gradient introduces extra kinetic
energy into the system, which corresponds to the difference of free energies �F ≡ F� − F0, where F� and F0 are the free
energies within and without the phase variation, respectively. We then approximate �F up to the second order in � as �F �∑

α,β=x,y F (2)
αβ �α�β . Due to the reflection symmetry of the system, when α �= β, F (2)

αβ vanishes, and we further have

F (2)
αα = T

2N

∑
k,n,μ,ν

[
∂2H (k)

∂2kα

]
μν

(−[Gk,n,↑]νμ − [G−k,−n,↓]μν ) + T

2

∑
k,n,μ,ν,μ′,ν ′

[
∂H (k)

∂kα

]
μν

[
∂H (k)

∂kα

]
μ′ν ′

× ([Gk,n,↑]νμ′[Gk,n,↑]ν ′μ + [Gk,n,↓]νμ′[Gk,n,↓]ν ′μ + [Fk,n]νμ′[F †
k,n]ν ′μ + [Fk,n]ν ′μ[F †

k,n]νμ′ ),

where [Gk,n,σ ]μν = 〈Cμ,k,n,σC̄ν,k,n,σ 〉 and [Fk,n]μν = 〈Cμ,k,n,↑Cν,−k,−n,↓〉 are the matrix elements of the normal and anomalous
Greens’s functions. Then the BKT transition temperature can be determined from the Nelson-Kosterlitz jump condition kBTBKT =
π
4 F (2) with F (2) ≡ (F (2)

xx + F (2)
yy )/2.
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Phys. 83, 1523 (2011).
[10] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms

in Optical Lattices (Oxford University Press, Oxford, 2013).

[11] Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[12] Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji,
Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, Science 354, 83
(2016).

[13] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S.
Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302
(2012).

[14] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,
and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).

[15] C. V. Parker, L.-C. Ha, and C. Chin, Nat. Phys. 9, 769 (2013).
[16] H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012).
[17] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,

D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).
[18] L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, and U.

Schneider, Science 347, 288 (2015).

033309-10

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.89.025005
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1038/nature11841
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1038/nature09887
https://doi.org/10.1126/science.aaf6689
https://doi.org/10.1103/PhysRevLett.109.095302
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1038/nphys2789
https://doi.org/10.1142/S0217979212300010
https://doi.org/10.1038/nature13915
https://doi.org/10.1126/science.1259052


TOPOLOGICAL SUPERFLUID OF s-WAVE- … PHYSICAL REVIEW A 107, 033309 (2023)

[19] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[20] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and
W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[21] S.-L. Zhang and Q. Zhou, Phys. Rev. A 90, 051601(R) (2014).
[22] W. Zheng and H. Zhai, Phys. Rev. A 89, 061603(R) (2014).
[23] S. K. Baur, M. H. Schleier-Smith, and N. R. Cooper, Phys. Rev.

A 89, 051605(R) (2014).
[24] T. Müller, S. Fölling, A. Widera, and I. Bloch, Phys. Rev. Lett.

99, 200405 (2007).
[25] G. Wirth, M. Ölschläger, and A. Hemmerich, Nat. Phys. 7, 147

(2011).
[26] P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Windpassinger,

and K. Sengstock, Nat. Phys. 8, 71 (2012).
[27] T. Kock, M. Ölschläger, A. Ewerbeck, W.-M. Huang, L.

Mathey, and A. Hemmerich, Phys. Rev. Lett. 114, 115301
(2015).

[28] K. Sun, W. V. Liu, A. Hemmerich, and S. Das Sarma, Nat. Phys.
8, 67 (2012).

[29] X. Li, E. Zhao, and W. V. Liu, Nat. Commun. 4, 1523 (2013).
[30] B. Liu, X. Li, B. Wu, and W. V. Liu, Nat. Commun. 5, 5064

(2014).
[31] B. Liu, P. Zhang, H. Gao, and F. Li, Phys. Rev. Lett. 121,

015303 (2018).
[32] E. Zhao and W. V. Liu, Phys. Rev. Lett. 100, 160403 (2008).
[33] C. Wu, Phys. Rev. Lett. 100, 200406 (2008).
[34] C. Wu, Phys. Rev. Lett. 101, 186807 (2008).
[35] M. Hachmann, Y. Kiefer, J. Riebesehl, R. Eichberger, and

A. Hemmerich, Phys. Rev. Lett. 127, 033201 (2021).
[36] X.-Q. Wang, G.-Q. Luo, J.-Y. Liu, W. V. Liu, A. Hemmerich,

and Z.-F. Xu, Nature (London) 596, 227 (2021).
[37] B. Liu, X. Li, and W. V. Liu, Phys. Rev. A 93, 033643 (2016).
[38] B. Liu, X. Li, R. G. Hulet, and W. V. Liu, Phys. Rev. A 94,

031602(R) (2016).
[39] Z. Zhang, H.-H. Hung, C. M. Ho, E. Zhao, and W. V. Liu, Phys.

Rev. A 82, 033610 (2010).
[40] Z. Cai, Y. Wang, and C. Wu, Phys. Rev. A 83, 063621 (2011).
[41] Z. Cai, Y. Wang, and C. Wu, Phys. Rev. B 86, 060517(R)

(2012).
[42] Z. Zhou, E. Zhao, and W. V. Liu, Phys. Rev. Lett. 114, 100406

(2015).
[43] F. Pinheiro, G. M. Bruun, J.-P. Martikainen, and J. Larson, Phys.

Rev. Lett. 111, 205302 (2013).
[44] X. Li, Z. Zhang, and W. V. Liu, Phys. Rev. Lett. 108, 175302

(2012).
[45] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett.

106, 236803 (2011).
[46] K. Sun and E. Fradkin, Phys. Rev. B 78, 245122 (2008).
[47] V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64,

195109 (2001).

[48] S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M.
Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys. 75,
1201 (2003).

[49] K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett.
103, 046811 (2009).

[50] N. Gemelke, Ph.D. thesis, Stanford University, 2007.
[51] N. Gemelke, E. Sarajlic, and S. Chu, arXiv:1007.2677.
[52] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[53] T. Scaffidi and S. H. Simon, Phys. Rev. Lett. 115, 087003

(2015).
[54] J. Röntynen and T. Ojanen, Phys. Rev. Lett. 114, 236803

(2015).
[55] J. Li, T. Neupert, Z. Wang, A. H. MacDonald, A. Yazdani, and

B. A. Bernevig, Nat. Commun. 7, 12297 (2016).
[56] B. Huang, C. F. Chan, and M. Gong, Phys. Rev. B 91, 134512

(2015).
[57] Y. Yi-Xiang, F. Sun, and J. Ye, Phys. Rev. B 98, 174506 (2018).
[58] T. Senthil, J. B. Marston, and M. P. A. Fisher, Phys. Rev. B 60,

4245 (1999).
[59] O. A. Awoga, A. Bouhon, and A. M. Black-Schaffer, Phys. Rev.

B 96, 014521 (2017).
[60] V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1972) [Sov.

Phys. JETP 34, 610 (1972)].
[61] J. Kosterlitz and D. Thouless, J. Phys. C: Solid State Phys. 6,

1181 (1973).
[62] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. B 72, 224513

(2005).
[63] J. R. Engelbrecht, M. Randeria, and C. A. R. Sá de Melo, Phys.

Rev. B 55, 15153 (1997).
[64] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.

80, 1215 (2008).
[65] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,

040403 (2004).
[66] J. T. Stewart, J. P. Gaebler, C. A. Regal, and D. S. Jin, Phys.

Rev. Lett. 97, 220406 (2006).
[67] R. Grimm, M. Weidemuller, and Y. Ovchinnikov, Adv. At.,

Mol., Opt. Phys. 42, 95 (2000).
[68] D. C. McKay and B. DeMarco, Rep. Prog. Phys. 74, 054401

(2011).
[69] H. Feshbach, Ann. Phys. (NY) 19, 287 (1962).
[70] S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche,

Phys. Rev. A 74, 032503 (2006).
[71] D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201

(1977).
[72] T. Paananen, J. Phys. B: At., Mol. Opt. Phys. 42, 165304

(2009).
[73] J. P. A. Devreese, J. Tempere, and C. A. R. Sá de Melo, Phys.

Rev. A 92, 043618 (2015).
[74] Y. Yanay and E. J. Mueller, arXiv:1209.2446.

033309-11

https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevA.90.051601
https://doi.org/10.1103/PhysRevA.89.061603
https://doi.org/10.1103/PhysRevA.89.051605
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/nphys2128
https://doi.org/10.1103/PhysRevLett.114.115301
https://doi.org/10.1038/nphys2134
https://doi.org/10.1038/ncomms2523
https://doi.org/10.1038/ncomms6064
https://doi.org/10.1103/PhysRevLett.121.015303
https://doi.org/10.1103/PhysRevLett.100.160403
https://doi.org/10.1103/PhysRevLett.100.200406
https://doi.org/10.1103/PhysRevLett.101.186807
https://doi.org/10.1103/PhysRevLett.127.033201
https://doi.org/10.1038/s41586-021-03702-0
https://doi.org/10.1103/PhysRevA.93.033643
https://doi.org/10.1103/PhysRevA.94.031602
https://doi.org/10.1103/PhysRevA.82.033610
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevB.86.060517
https://doi.org/10.1103/PhysRevLett.114.100406
https://doi.org/10.1103/PhysRevLett.111.205302
https://doi.org/10.1103/PhysRevLett.108.175302
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevB.78.245122
https://doi.org/10.1103/PhysRevB.64.195109
https://doi.org/10.1103/RevModPhys.75.1201
https://doi.org/10.1103/PhysRevLett.103.046811
http://arxiv.org/abs/arXiv:1007.2677
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevLett.115.087003
https://doi.org/10.1103/PhysRevLett.114.236803
https://doi.org/10.1038/ncomms12297
https://doi.org/10.1103/PhysRevB.91.134512
https://doi.org/10.1103/PhysRevB.98.174506
https://doi.org/10.1103/PhysRevB.60.4245
https://doi.org/10.1103/PhysRevB.96.014521
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevB.72.224513
https://doi.org/10.1103/PhysRevB.55.15153
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.97.220406
https://doi.org/10.1016/S1049-250X(08)60186-X
https://doi.org/10.1088/0034-4885/74/5/054401
https://doi.org/10.1016/0003-4916(62)90221-X
https://doi.org/10.1103/PhysRevA.74.032503
https://doi.org/10.1103/PhysRevLett.39.1201
https://doi.org/10.1088/0953-4075/42/16/165304
https://doi.org/10.1103/PhysRevA.92.043618
http://arxiv.org/abs/arXiv:1209.2446

