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Dynamics of spin-nematic bright solitary waves in spin-tensor-momentum
coupled Bose-Einstein condensates
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We explore the dynamics of bright solitary waves in one-dimensional spin-tensor-momentum coupled spin-1
Bose-Einstein condensates. Our results show that the solitary waves have nonzero spin and nematicity simultane-
ously, hence we call them spin-nematic solitary waves. The ground-state solitary waves carry a finite momentum
and display the zero-energy modes arising from symmetry breaking. In the motion of the solitary wave, the
spin-tensor-momentum coupling induces the flip of the spin-nematic vector on a unit Bloch sphere, which in turn
produces a force to result in the oscillatory motion of the solitary wave. The effects of a harmonic trap are also
analyzed. These findings reveal the unique properties of solitary waves affected by the spin-tensor-momentum
coupling.
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I. INTRODUCTION

By using atom-light coupling, various artificial gauge po-
tentials can be realized in ultracold neutral atoms [1], allowing
one to explore a panoply of novel phenomena at the quantum
level. An important application is to couple the hyperfine
spins with orbital degrees of freedom and synthesize the
spin-orbit coupling (SOC), such as the spin-linear-momentum
coupling [2–8] and the spin-orbital-angular-momentum cou-
pling [9–11]. Since the SOC significantly modifies the
single-particle dispersion and leads to degeneracy at a finite
momentum or angular momentum, a variety of nontrivial few-
and many-body quantum phenomena have been successively
predicted theoretically and realized experimentally in Bose-
Einstein condensates (BEC) and degenerate Fermi gases, such
as a supersolid stripe phase [12–16], unconventional Fermi
superfluids [17–20], and diverse exotic vortex states with non-
trivial topological spin textures [21–26].

As it is known, the nonlinear atomic interaction gives rise
to the solitary wave in ultracold atoms [27–40], which has
important potential applications in coherent atom optics, atom
interferometry, and atom transport. In particular, if two col-
liding solitary waves pass through each other without losing
their identity, such solitary waves are often termed solitons to
suggest the particlelike property [41]. In the past decade, the
realization of SOC in ultracold atoms has drawn enormous
research interest to explore novel solitary wave structures
and interesting dynamical behaviors of solitary waves, and a
variety of solitary wave species have been predicted in Bose
and Fermi gases with SOC, such as the stripe soliton, the two-
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dimensional composite soliton, and the half-vortex gap soliton
in BEC [42–65], as well as the dark soliton with Majorana
zero modes in Fermi gases [66–69]. Therefore, the ultracold
atoms with SOC provide a new platform to study the novel
dynamics of solitary waves inside a gauge field.

Very recently, the spin-tensor-momentum coupling
(STMC) has also been realized experimentally in ultracold
three-component Fermi gases [70], and a theoretical scheme
for realizing the STMC in Bose gases has also been proposed
[71]. The STMC is a new type of SOC, where the momentum
couples with the rank-2 spin-quadrupole tensor, rather
than with the rank-1 spin vector in spin-linear-momentum
coupling, and thus it can generate different single-particle
band structures and nontrivial quantum phenomena in the
presence of atomic interaction. In a BEC, it has been
demonstrated that the STMC can generate a new type of
dynamical stripe state with a widely tunable period and
high visibility, paving the way for the direct experimental
observation of the supersolidlike state [71]. In an optical
lattice, the STMC induces different types of topological
triply degenerate points connected by intriguing Fermi arcs
at surfaces [72], which may give rise to novel quasiparticles
and nontrivial topological matter. In the aspects of solitary
waves, due to the different symmetries of the STMC from the
usual SOC, the stationary solitary waves would also display
different profiles [73].

In this paper, we reveal the interesting dynamical features
of spin-nematic bright solitary waves in BEC with STMC,
which have nonzero spin and nematicity simultaneously. By
performing the variational analysis, we first derive the equa-
tions of motion for the variational parameters of the solitary
waves, including the center-of-mass coordinate, momentum,
amplitude, and relative phase. Our analytical and numerical
results show that the ground-state solitary waves have a finite
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momentum, and Goldstone modes and oscillation modes have
been identified in its low-energy excitation spectrum. The
dynamical properties of solitary waves have also been studied,
which display that, under the action of the STMC and the
Raman coupling, the spin-nematic vector of the solitary wave
will flip on a unit Bloch sphere, which in turn couples to the
center-of-mass momentum and produces a force to affect the
orbital motion of the solitary wave, leading to unique dynam-
ical behaviors. In the presence of a harmonic trap, it competes
with the spin-dependent interaction in determining the center
of mass of the ground-state solitary wave, and it induces an
additional collective oscillation with frequency related to the
trapping frequency. These findings suggest a new scenario for
manipulating the dynamics of solitary waves in BEC.

The remainder of the present paper is organized as follows.
In Sec. II, we formulate the theoretical model describing the
dynamics of a spin-1 BEC with STMC. By using the hyper-
bolic secant function as an ansatz for the bright solitary wave,
we derive the equations of motion for the variational param-
eters in Sec. III. For the uniform system without trap, the
dynamics of solitary waves without and with spin-dependent
interaction are investigated analytically and numerically in
Secs. IV and V, respectively. The effects of a harmonic trap
on the dynamics of solitary waves are discussed in Sec. VI.
Finally, we summarize the main results of the present paper in
Sec. VII.

II. MODEL

We consider a BEC comprised of three hyperfine states of
spin-1 atoms with mass m, such as 87Rb and 23Na. The three
hyperfine states are denoted by |↑〉, |0〉, and |↓〉, respectively.
The STMC can be created by using three Raman laser beams
with a wave vector kr to couple these three states, where the
two laser beams propagate in the z direction, and the third
laser beam propagates in the −z direction [70,71]. These three
laser beams induce Raman transitions between the hyperfine
states |0〉 and |↑(↓)〉, in which the atoms can be flipped from
|0〉 to |↑(↓)〉 states and simultaneously imparted momentum
2h̄kr via the two-photon Raman process. Therefore, the effec-
tive single-particle Hamiltonian is given by [70,71]

Ĥ0 =

⎛
⎜⎝

p̂2

2m + δr −�r
2 e−i2kr z 0

−�r
2 ei2kr z p̂2

2m −�r
2 ei2kr z

0 −�r
2 e−i2kr z p̂2

2m + δr

⎞
⎟⎠, (1)

where p̂2 = p̂2
x + p̂2

y + p̂2
z , and p̂ν = −ih̄∂ν with ν = x, y, and

z is the momentum operator. δr and �r are the two-photon
Raman detuning and Raman coupling strength, respectively.
Within the mean-field theory at zero temperature, the energy
functional in the presence of atomic interactions is

E =
∫

d3r
[
�†Ĥ0� + Gn

2
(�†�)2 + Gs

2
(|�↑|2 − |�↓|2)2

+ Gs|�∗
↑�0 + �∗

0�↓|2
]
, (2)

where the wave function � = (�↑,�0,�↓)T , with T be-
ing the transpose, satisfies the normalization condition∫

�†�d3r = 1, and the superscripts ∗ and † represent the

conjugate and the conjugate transpose, respectively. The coef-
ficients Gn = 4π h̄2N (a0 + 2a2)/(3m) and Gs = 4π h̄2N (a2 −
a0)/(3m) in the the nonlinear terms are the strengths of
the spin-independent and spin-dependent interactions, respec-
tively, where N is the total particle number, and a0 and a2

are the s-wave scattering lengths of total spin-0 and spin-2
channels, respectively.

In the single-particle Hamiltonian (1), the off-diagonal
terms show clearly the spin-flipping process and the mo-
mentum transfer. To illustrate the connection with the STMC
effect, we make the unitary transformations �↑ = e−i2kr z�̃↑,
�0 = �̃0, and �↓ = e−i2kr z�̃↓, and then the single-particle
Hamiltonian (1) becomes

Ĥ ′
0 = p̂2

2m
+

(
δr + 4Er − 4Er

h̄kr
p̂z

)
F 2

z − �r√
2

Fx, (3)

where Er = h̄2k2
r /2m is the recoil energy, and Fν’s with ν = x,

y, and z are the spin-1 matrices

Fx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Fy = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠,

Fz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (4)

The term ∝ p̂zF 2
z in the Hamiltonian (3) is the so-called

STMC, which couples the atomic momentum p̂z with the
rank-2 symmetric spin-nematic tensor Nzz = F 2

z .
After the unitary transformation, the energy functional (2)

becomes

E =
∫

d3r
[
�̃†Ĥ ′

0�̃ + Gn

2
(�̃†�̃)2 + Gs

2
(|�̃↑|2−|�̃↓|2)2

+ Gs|ei2kr z�̃∗
↑�̃0 + e−i2kr z�̃∗

0�̃↓|2
]
, (5)

where �̃ = (�̃↑, �̃0, �̃↓)T . The energy functional (5) shows
that the unitary transformation introduces the additional ex-
ponential factors ei2kr z and e−i2kr z into the spin-dependent
interaction terms. If the spin-dependent interaction vanishes
(i.e., Gs = 0), the energy functional (5) does not contain the
spatial coordinate explicitly, and thus the system has trans-
lational symmetry. In the presence of the spin-dependent
interaction, the spatial-dependent exponential factors break
the translational symmetry. In this paper we perform the study
in the unitary transformed frame, which can make the STMC
effect more transparent.

By using ih̄∂�̃σ /∂t = δE/δ�̃∗
σ , we can obtain the time-

dependent Gross-Pitaevskii (GP) equation, which describes
the dynamics of the BEC. We assume that the BEC is con-
fined in a harmonic trap V (r) = 1

2 m[ω2
⊥(x2 + y2) + ω2

z z2]
with frequencies ω⊥ 
 ωz, and the motional degrees of free-
dom of atoms in the xy plane are frozen into the ground
state of the harmonic-oscillator potential. The dynamics of
such a cigar-shaped BEC can be considered to be effectively
one-dimensional along the z direction. By using ω−1

⊥ and
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FIG. 1. Single-particle energy-band structures in the momentum
space. (a) �R/k2

R = 4. (b) �R/k2
R = 0.1.

ξ⊥ = √
h̄/mω⊥ as the units of time and length, the dimen-

sionless GP equation in quasi-one dimension is given by

i
∂ψ↑
∂t

= −1

2

∂2ψ↑
∂z2

+ikR
∂ψ↑
∂z

+ 1

2
γ 2z2ψ↑ − �R

2
ψ0+gnρψ↑

+ gs(ρ↑+ρ0−ρ↓)ψ↑+gse
i2kRzψ2

0 ψ∗
↓, (6a)

i
∂ψ0

∂t
= −1

2

∂2ψ0

∂z2
+ 1

2
γ 2z2ψ0− �R

2
(ψ↑+ψ↓)+gnρψ0

+ gs(ρ↑+ρ↓)ψ0+2gse
−i2kRzψ↑ψ∗

0 ψ↓, (6b)

i
∂ψ↓
∂t

= −1

2

∂2ψ↓
∂z2

+ikR
∂ψ↓
∂z

+ 1

2
γ 2z2ψ↓− �R

2
ψ0+gnρψ↓

+ gs(ρ↓+ρ0−ρ↑)ψ↓+gse
i2kRzψ∗

↑ψ2
0 , (6c)

where we have taken δr = −4Er for the sake of simplic-
ity, which does not affect the essential physics qualitatively.
In the GP equation (6), the wave function ψσ (z, t ) satis-
fies the normalization condition

∑
σ

∫ +∞
−∞ |ψσ |2dz = 1, with

σ =↑, 0, and ↓. We define the total density ρ = ∑
σ ρσ

with ρσ = |ψσ |2, and kR = 2krξ⊥ and �R = �r/h̄ω⊥ are the
dimensionless strengths of the STMC and the Raman cou-
pling, respectively. The parameter γ = ωz/ω⊥ � 1 is the
aspect ratio of the trap, and gn = 2N (a0 + 2a2)/(3ξ⊥) and
gs = 2N (a2 − a0)/(3ξ⊥) are the dimensionless strengths of
the spin-independent and spin-dependent interactions. Since
we are interested in bright solitary waves in this paper, we
always assume gn < 0, which may be realized by the Fes-
hbach resonance technique. We also assume that gs can be
either positive or negative with |gs| � |gn|.

For the uniform system without trap, the single-particle
energy spectra for δr = −4Er in the momentum space are

E± = 1

2
k2 − 1

2
kRk ± 1

2

√
k2

Rk2 + 2�2
R, (7a)

E0 = 1
2 k2 − kRk, (7b)

where k denotes the dimensionless momentum. Figure 1
shows the single-particle energy band structures in the mo-
mentum space. The bottom energy band E− only has a single
global minimum at a finite momentum, which is related to
kR and �R. When �R/k2

R is small, as shown in Fig. 1(b), the
middle energy band E0 is close to the left and right sides of
E+ and E−, respectively. In particular, similarly to the spin-

linear-momentum coupled BEC [43], there is a semi-infinite
gap below the minimum of the bottom energy band E−, where
the plane wave or linear mode propagations are forbidden,
but the bright solitary waves induced by the attractive spin-
independent atomic interaction can exist in this semi-infinite
gap.

The spinor BEC with spin F � 1 can exhibit both mag-
netism and nematicity [74–77], which are described by the
spin vector Sν = ∫

�†Fν�dz and the nematic tensor Nνν ′ =∫
�†Nνν ′�dz, with � = (ψ↑, ψ0, ψ↓)T , respectively, where

Nνν ′ = 1
2 (FνFν ′ + Fν ′Fν ) − 2

3δνν ′ is the symmetrized SU(3)
nematic tensor. In general, the 3 × 3 nematic matrix N com-
posed of Nνν ′ have three eigenvalues denoted as λ1,2,3, which
characterize the alignment axis of nematicity and distinguish
different nematic states. For example, the BEC in the uniaxial
nematic state has λ1 = λ2 = λ3, and the biaxial nematic state
has λ1 = λ2 = λ3 [74–77]. We use the spin vector and the
nematic tensor to depict the features of solitary waves, which
are useful for clarifying the underlying physical mechanism
behind the dynamics of solitary waves.

We use the Bogoliubov approach to study the dynamical
stabilities and low-energy excitations of the stationary solitary
waves. We decompose the wave function ψσ (z, t ) into the
stationary state ψσ,0(z) and the fluctuation δψσ (z, t ), that is,
ψσ (z, t ) = e−iμt [ψσ,0(z) + δψσ ], with δψσ = uσ (z)e−iωt −
v∗

σ (z)eiω∗t , where ω is the excitation frequency taken as a
complex number, μ is the chemical potential, and uσ (z) and
vσ (z) are the wave functions of the Bogoliubov quasiparti-
cle excitations. These functions satisfy the Bogoliubov–de
Gennes (BdG) equation

(
A B

−B∗ −A∗

)(
U
V

)
= ω

(
U
V

)
, (8)

where U = (u↑, u0, u↓)T and V = (v↑, v0, v↓)T . The details
of A and B are given in the Appendix. The Bogoliubov
excitation frequency ω can be numerically obtained by di-
agonalizing the BdG equation [78]. The stationary solitary
wave is dynamically stable under a perturbation, if ω is real;
otherwise it is unstable.

III. VARIATIONAL ANALYSIS

For the uniform system without trap (γ = 0), the GP
equation (6) has two special exact uniaxial nematic solitary
wave solutions with λ1 = − 2

3 and λ2 = λ3 = 1
3 , which are

called the polar states with Sν = 0. One is ψ0 = 0 and ψ↑ =
−ψ↓ =

√
η

4 sech{η[z − (k −kR)t]}eikz with η = −gn/2 and

the momentum k, and the GP equation (6) reduces to the two-
component Manakov equations satisfied by ψ↑ and ψ↓. In this
state, the STMC only contributes to the velocity of the solitary
wave, which moves the solitary wave at a constant velocity
even for k = 0, but the Raman coupling does not affect the dy-
namics of solitary waves. The other solution is ψ↑ = ψ↓ = 0

and ψ0 =
√

η

2 sech[η(z − kt )]eikz, with η = −gn/2, where the

GP equation (6) reduces to the single nonlinear Schrödinger
equation satisfied by ψ0, and the solitary wave is independent
of the STMC and the Raman coupling. However, for the
general case with ψσ = 0, it is difficult to construct the exact
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solitary wave solutions of the GP equation (6) analytically
even without the trap. Therefore, we use the variational ap-
proach to perform the analytical study [79].

One can observe that the GP equation (6) has the exchange
symmetry with ψ↑ ↔ ψ↓, which means ψ↑ = ψ↓eiφ , with φ

being an arbitrary time-independent constant. On the other
hand, the STMC results in the atoms condensing around a
single nonzero momentum, and the solitary waves carry a
finite momentum k. Thus, we take the following variational
wave functions to describe the bright solitary waves:

⎛
⎝ψ↑

ψ0

ψ↓

⎞
⎠ =

√
η

2

⎛
⎜⎝

1√
2

sin (θ )eiφ↑

cos (θ )eiφ0

1√
2

sin (θ )eiφ↓

⎞
⎟⎠sech[η(z − zc)]eikz, (9)

where we assume that the solitary waves in three components
have the same width η−1 and center-of-mass coordinate zc for
the sake of simplicity. The parameters θ and φσ with σ =↑, 0,
and ↓ are related to the amplitude and the phase of the solitary
wave, respectively. All the variational parameters are time
dependent. As we see below, although the variational wave
functions are relatively simple and have quantitative differ-
ences from the numerical solutions of the GP equation in some
parameter regimes, they can still extract the essential physics
and provide the qualitative explanations of the dynamics of
solitary waves.

The Lagrangian of the system is

L=
∫ +∞

−∞

[
i

2

∑
σ

(
ψ∗

σ

∂ψσ

∂t
−ψσ

∂ψ∗
σ

∂t

)
+ 1

2
�†

(
∂2

∂z2
−γ 2z2

)
�

−�†

(
ikRF 2

z

∂

∂z
− �R√

2
Fx

)
� − gn

2
ρ2 − gs

2
(ρ↑ − ρ↓)2

−gs

∣∣eikRzψ∗
↑ψ0 + e−ikRzψ∗

0 ψ↓
∣∣2

]
dz. (10)

Inserting Eq. (9) into the Lagrangian, we can get

L=−zc
dk

dt
− 1

2
sin2 (θ )

d (φ↑ + φ↓)

dt
−cos2 (θ )

dφ0

dt
−E , (11)

with the mean-field energy

E = 1

2
k2 − kRk sin2 (θ ) + 1

6
η2 + 1

12
η[2gn + gs sin2 (2θ )]

−
√

2

2
�R sin (2θ ) cos

(
�

2

)
cos

(
φ↑ − φ↓

2

)
+ 1

2
γ 2z2

c

+ π2γ 2

24η2
+ 1

12
πgsη f (η) sin2 (2θ ) cos (�), (12)

where � = 2kRzc − �, with � = φ↑ + φ↓ − 2φ0, and the
function f (η) = kR(k2

R/η2 + 1)csch(kRπ/η)/η is positive re-
gardless of kR/η. Using the Euler-Lagrange equation ∂L

∂ζ
−

d
dt ( ∂L

∂ζ̇
) = 0, with ζ̇ = dζ/dt (ζ represents a variational pa-

rameter), we obtain the equations of motion for the variational
parameters:

dk

dt
= 1

6
πkRgsη f (η) sin2 (2θ ) sin (�)−γ 2zc, (13a)

1

3
η = π2γ 2

12η3
− 1

6
gn − 1

12
gs sin2 (2θ ) − 1

12
πgs sin2 (2θ ) cos (�)

[
f (η) + η

df

dη

]
, (13b)

dzc

dt
= k − kR sin2 (θ ), (13c)

1

2
sin (2θ )

d�

dt
= kRk sin (2θ ) +

√
2�R cos (2θ ) cos

(
�

2

)
cos

(
φ↑−φ↓

2

)
−1

3
gsη sin (2θ ) cos (2θ )[1 + π f (η) cos (�)], (13d)

1

2
sin (2θ )

dθ

dt
=

√
2

4
�R sin (2θ ) sin (φσ − φ0) + 1

12
πgsη f (η) sin2 (2θ ) sin (�). (13e)

For kR = 0, Eqs. (13a) and (13c) describe nothing but the trap-
driven center-of-mass oscillation of the solitary wave [32,33],
and Eqs. (13d) and (13e) describe the well-known popula-
tion oscillation of the solitary wave induced by the Raman
coupling and the spin-dependent interaction. For kR = 0, the
STMC couples the population oscillation with the center-of-
mass motion of the solitary wave.

From Eqs. (13d) and (13e), one can observe that if
sin(2θ ) = 0 and φ↑ − φ↓ = nπ with an integer n, the solu-
tions of Eq. (13) are nothing but the two special uniaxial
nematic solitary waves as we mentioned previously. On
the other hand, for sin(2θ ) = 0, all the wave functions are
nonzero, and Eq. (13e) is self-consistent only when φ↑ = φ↓.
In this case, the spin vector is polarized in the x direction as

Sx = sin (2θ ) cos (ϕ), Sy = Sz = 0, (14)

where ϕ = φ↑,↓ − φ0, and the nematic matrix N is

N=
⎛
⎝

1
3 0 0
0 1

2 cos (2θ ) − 1
6 − 1

2 sin (2θ ) sin (ϕ)
0 − 1

2 sin (2θ ) sin (ϕ) − 1
2 cos (2θ ) − 1

6

⎞
⎠. (15)

The eigenvalues of N are λ1 = 1
2

√
1 − S2

x − 1
6 , λ2 =

− 1
2

√
1 − S2

x − 1
6 , and λ3 = 1

3 , which indicate that the soli-
tary wave with sin(2θ ) = 0 is the biaxial nematic state with
nonzero spin if cos(ϕ) = 0, and hence we name it the spin-
nematic solitary wave. Furthermore, for the spin-nematic
solitary wave, we can immediately obtain the relation S2

x +
(Nyy − Nzz )2 + (2Nyz )2 = 1, which motivates us to construct
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the vector Q = (Qx, Qy, Qz ), where Qx, Qy, and Qz are

Qx = Sx, (16a)

Qy = Nyy − Nzz = cos(2θ ), (16b)

Qz = 2Nyz = − sin (2θ ) sin (ϕ). (16c)

The vector Q comprises the spin vector Sx and the nematic
tensor Nνν ′ , and hence we name it the spin-nematic vector,
which lies on a unit Bloch sphere [77].

IV. DYNAMICS OF SPIN-NEMATIC SOLITARY WAVES
FOR gs = 0 WITHOUT TRAP

To highlight the effects of the STMC, we first neglect the
harmonic trap and consider the simple case with gs = 0. In
this case, Eq. (13) reduces to

dk

dt
= 0, (17a)

η = −gn/2, (17b)

dzc

dt
= k − kR sin2 (θ ), (17c)

dϕ

dt
= kRk +

√
2�Rcot (2θ ) cos (ϕ), (17d)

dθ

dt
= �R√

2
sin (ϕ). (17e)

Equation (17a) indicates that the momentum is conserved due
to the translational symmetry of the system with gs = 0. To
understand this point, we make an infinitesimal translation
δzc for the center of mass, and then the Lagrangian after the
translation becomes L(zc + δzc) = −δzc

dk
dt + L, which shows

clearly that the translation invariance of the Lagrangian re-
quires dk

dt = 0 as confirmed by Eq. (17a). Equation (17b)
shows that η decouples from the other parameters and is de-
termined completely by the strength of the spin-independent
interaction. Since η−1 accounts for the width of the solitary
wave, gn should be negative, which coincides with the initial
assumption gn < 0.

With Eq. (17), we can further derive the equation of motion
for the spin-nematic vector as

d

dt

⎛
⎝Qx

Qy

Qz

⎞
⎠ =

⎛
⎝ 0 0 kRk

0 0
√

2�R

−kRk −√
2�R 0

⎞
⎠

⎛
⎝Qx

Qy

Qz

⎞
⎠, (18)

which indicates that the Raman coupling and the STMC cou-
ple the spin vector with the nematic tensors linearly in the
dynamical evolution. Equation (18) can also be written as
dQ
dt = Q × Beff, with Beff = (

√
2�R,−kRk, 0), which can be

viewed as the extension of the Bloch equation for describing
the precession of the spin-nematic vector on a unit Bloch
sphere under the action of the effective field Beff.

A. Properties of ground-state solitary waves

We first study the ground-state solitary wave, in which the
variational parameters are time independent and minimize the
total energy. From the energy (12), both of the two special
uniaxial nematic solitary waves with sin(2θ ) = 0 should have
energy higher than that of the spin-nematic solitary wave with

FIG. 2. (a) and (b) The parameters θ , k, and Qx,y,z in the ground
state for different �R/k2

R by fixing gn/kR = −1. (c) and (d) Real and
imaginary parts of the ground-state wave functions at �R/k2

R = 1.
The lines (solid line, dashed line, dash-dotted line) and the circles
represent the results obtained by the GP simulations and variational
calculations, respectively.

sin(2θ ) = 0 for the same momentum k, because the Raman
coupling favors a nonzero spin to reduce the energy. There-
fore, to obtain the ground-state solitary wave, we minimize the
energy (12) with respect to the variational parameters under
the constrained conditions sin(2θ ) = 0 and φ↑ = φ↓, which
leads to the following algebraic equations for gs = 0:

θ = ± arcsin(
√

k/kR), (19a)

0 = k2
Rk4 − k3

Rk3 + 2�2
Rk2 − 2�2

RkRk + 1

2
k2

R�2
R, (19b)

ϕ = nπ, (19c)

zc = arbitrary real number, (19d)

where n in Eq. (19c) is an integer. Actually, the ground-
state solutions are nothing but the fixed points of Eq. (17).
Equations (19a) and (19b) indicate that the amplitude of the
ground-state solitary wave is related to its momentum, which
depends on the strengths of the Raman coupling and the
STMC. Equation (19d) demonstrates again that the ground-
state solitary wave has translational symmetry for gs = 0.

For simplicity, we consider n = 0, zc = 0, and 0 < θ <

π/2 for �R � 0 in the ground state. Figure 2 shows the
ground-state properties of the solitary wave. We can observe
that the ground-state solitary wave carries a finite momen-
tum decreasing monotonically with �R/k2

R. The spin-nematic
vector Qx,y,z indicates that the solitary wave has nonzero
spin and nematicity simultaneously, and they are not inde-
pendent of one another. The ground-state wave functions
indicate that the parity of the real part of ψσ is opposite to
that of the imaginary part, because the GP equations with
gs = 0 have joint symmetry Ô = P̂K̂ , where P̂ and K̂ are
the parity and complex conjugate operators, respectively. We
have also used the backward-forward Euler time discretiza-
tion scheme to solve the imaginary-time propagation of the

033308-5



QIU, HU, CAI, SAITO, ZHANG, AND WEN PHYSICAL REVIEW A 107, 033308 (2023)

GP equation (6) numerically for obtaining the ground-state
solitary wave solutions [80], where the time and space steps
are dt = 0.001 and dz = 0.1, and the spatial derivative terms
are computed by using the Fourier pseudo-spectral method,
which is spectrally accurate. In the numerical computation,
the iteration stops until Max[|�n+1(z) − �n(z)|] < 10−10 and
|En+1 − En| < 10−10, where n represents the iterative number,
and E is the total energy. The value of θ can be obtained in
the GP simulations by defining

∫ +∞
−∞ |ψ0|2dz = cos2(θ ) and∫ +∞

−∞ |ψ↑,↓|2dz = 1
2 sin2(θ ) due to the normalization condi-

tion of the wave functions, and the value of k is given by
the average momentum. The results of the GP simulations
are shown in Fig. 2, which agree well with the variational
analysis.

Next, we perform the linear stability analysis of the
ground-state solitary wave against a small perturbation based
on Eq. (17). For this purpose, we set the variational parameter
as ζ (t ) = ζg + δζ (t ), where ζg represents the ground-state
solution of the variational parameter, and δζ (t ) denotes the
time-dependent deviation of the variational parameter from
the ground-state solution. Substituting it into Eq. (17) and lin-
earizing Eq. (17) around ζg, we obtain the ordinary differential
equations

d

dt

⎛
⎜⎜⎝

δk
δzc

δϕ

δθ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 0 0
1 0 0 −kR sin(2θg)

kR 0 0 − 2
√

2�R

sin2 (2θg)
0 0 �R√

2
0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

δk
δzc

δϕ

δθ

⎞
⎟⎟⎠. (20)

Setting δζ = |ζ |eiωt with the eigenfrequency ω and solving
Eq. (20) yield the eigenmodes of the system with eigenvectors

V± =

⎛
⎜⎜⎜⎝

0

±i
√

2kR�R

ω2±

i
√

2
�R

ω±
1

⎞
⎟⎟⎟⎠, V0 =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠, (21)

and eigenfrequencies

ω± = ±
√

2�R

sin(2θg)
, ω0 = 0. (22)

Since all the eigenfrequencies are real, δζ will not grow or
decay exponentially with time. The zero-energy mode with
the frequency ω0 and the eigenvector V0 is the Goldstone
mode, which arises from the translational symmetry breaking
of the solitary wave, and hence the solitary waves will move
with no energy cost under perturbation. For the frequency ω±
corresponding to the eigenvector V±, the solitary waves will
oscillate without damping, where the frequency ω± depends
on the strengths of the Raman coupling and the STMC as
shown in Fig. 3(a).

We also solve the BdG equation (8) numerically to ob-
tain the full low-energy excitation frequency. The results are
shown in Fig. 3(b), which confirms that the ground-state
solitary waves are dynamically stable under perturbation and
will not grow or decay exponentially with time, since all the
excitation frequencies are real. Since the BdG function has
more degrees of freedom than the variational function, the
BdG spectrum in Fig. 3(b) has many more modes than the

FIG. 3. (a) Frequency ω± obtained by the variational approach
as a function of �R/k2

R. (b) Bogoliubov excitation frequency ω for
�R/k2

R = 1 and gn/kR = −1, where the two blue circles represent
the frequency ω± in Eq. (22) and the red points are obtained by the
BdG equation.

variational result (22) [79]. For example, besides the Gold-
stone modes, there are two other zero-energy modes due to
the global phase invariance.

B. Time evolutions of spin-nematic solitary waves

We explore the dynamical evolution of the spin-nematic
solitary wave for gs = 0 without a harmonic trap. Since the
momentum is time independent, Eqs. (17) and (18) have exact
solutions:

Qx(t ) = kRk√
2�R

[
c2 sin (� t )−c1 cos (� t )+ 2�2

R

k2
Rk2

c0

]
, (23a)

Qy(t ) = c2 sin (� t ) − c1 cos (� t ) − c0, (23b)

Qz(t ) = �√
2�R

[c1 sin (� t ) + c2 cos (� t )], (23c)

zc(t ) = c2kR

�
sin2

(�

2
t
)

− c1kR

2�
sin (� t ) + v0t, (23d)

with the time-independent constants

c0 = kRk

� 2
[
√

2�R sin(2θ0) cos(ϕ0) − kRk cos(2θ0)], (24a)

c1 = − �R

� 2
[2�R cos (2θ0)+

√
2kRk sin (2θ0) cos (ϕ0)], (24b)

c2 = −
√

2�R

�
sin(2θ0) sin(ϕ0), (24c)

v0 = k − kR(c0 + 1)/2, (24d)

� =
√

2�2
R + k2

Rk2, (24e)

where θ0 and ϕ0 represent the initial values of θ and ϕ at t = 0,
respectively. The solutions for the amplitude and the relative
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FIG. 4. Time evolution of the initially population-balanced soli-
tary wave with θ0 = arccos(

√
3/3) and ϕ0 = 0. (a) and (b) Time

evolution of the spin-nematic vector for momentum k = 4�R/kR. In
panel (a), the solid red line, the dashed blue line, and the dash-dotted
green line represent the numerical results of the GP simulations, and
the circles are the results of the variational analysis. In panel (b), the
blue arrow represents the spin-nematic vector at t = 0, the colored
line is the trajectory of the spin-nematic vector, and the colorbar is
the corresponding time. (c) and (d) Time evolution of the density
for the initial momentum k = 0 obtained by the GP simulations. The
solid black lines are the evolutions of the center of mass given by the
variational analysis. The other parameters are �R = 0.5, gn = −10,
and kR = 0.1 in panels (a)–(d). (e) and (f) Oscillation period T of the
center of mass as a function of �R/k2

R for gn/kR = −10. The momen-
tum in panels (e) and (f) are k/kR = 0 and k/kR = 0.2, respectively.
The solid black lines and the dashed red lines in panels (e) and (f)
represent the periods given by the GP simulations and the variational
analysis, respectively.

phase are θ (t ) = 1
2 arccos(Qy) and ϕ(t ) = arctan(−Qz/Qx ),

respectively.
Figure 4 shows the typical dynamical evolutions of

the initially population-balanced solitary waves with θ0 =
arccos(

√
3/3) and ϕ0 = 0 for different initial momenta k.

From Eqs. (23a)–(23c), if c1 and c2 are nonzero, as shown
in Figs. 4(a) and 4(b), Qx,y,z oscillate periodically with the
frequency � , leading to the periodic flip of the spin-nematic
vector along a closed circular orbit on the unit Bloch sphere.
Equation (23d) indicates that the center-of-mass motion of
the solitary wave can be viewed as the superposition of the
linear motion with the constant velocity v0 and the periodic
motion with the frequency � , as shown in Figs. 4(c) and
4(d). By using the second-order time-splitting Fourier pseudo-
spectral method [81], we have also solved the GP equation (6)
numerically by taking Eq. (9) as the initial wave functions.
The GP simulations confirm the variational results as shown
in Figs. 4(a)–(d).

To extract the intrinsic physical mechanism for the motion
of the solitary wave, we rewrite the equation of motion for the
center-of-mass coordinate in terms of the spin-nematic vector
as

dzc

dt
= k − kR

2
+ kR

2
Qy. (25)

The first two terms on the right-hand side of Eq. (25) in-
dicate that the solitary wave would move with a constant
velocity related to the STMC and the momentum. The last
term accounts for the coupling between the center-of-mass
momentum and the spin-nematic vector. With Eq. (18), we
obtain the following relation:

d2zc

dt2
= kR�R√

2
Qz. (26)

This shows clearly that the solitary wave may experience a
periodical force with strength ∝ kR�R√

2
Qz for nonzero c1 and

c2, which originates from the oscillation of Qz. Thus, the
interplay of the STMC and the Raman coupling induces the
periodic flip of the spin-nematic vector under the action of
an effective field Beff, and the periodic flip of the spin-nematic
vector couples to the orbital motion of the solitary wave, man-
ifesting the STMC effects clearly in the dynamics of solitary
waves.

We have also performed the GP simulations for other sys-
tem parameters and confirmed that the variational results can
capture the essential physics effectively and provide the qual-
itative explanations for the dynamical evolutions of solitary
waves under the action of the STMC and the Raman coupling.
However, as shown in Figs. 4(e) and 4(f), for small �R/k2

R,
the oscillation period T of the center of mass has quantitative
difference between the numerical results and the variational
results. We note that when �R/k2

R is very small, as shown in
Fig. 1(b), the single-particle energy band E0 is close to the
left and right sides of E+ and E−, respectively, and the atomic
interactions may mix these different bands, leading to an ad-
ditional oscillation in different energy bands [60]. Therefore,
for small �R/k2

R, the variational wave functions need to be
further optimized to capture the mixing effect, for example,
considering the coherent superposition of the solitary waves
in three energy bands [60].

V. DYNAMICS OF SPIN-NEMATIC SOLITARY WAVES
FOR gs �= 0 WITHOUT A TRAP

When gs = 0, Eqs. (12) and (13) are complicated, and
it is difficult to obtain the analytical solutions. To analyze
the effects of the spin-dependent interaction on the dynamics
of solitary waves for γ = 0, we minimize the energy (12)
numerically to obtain the ground-state solitary waves, and we
use the fourth-order Runge-Kutta method to solve Eq. (13)
numerically to study the dynamics of solitary waves.

Figure 5 shows the properties of the ground-state solitary
waves for gs > 0 and gs < 0. We can observe that the varia-
tional parameters θ and k show features similar to those in the
case of gs = 0. Compared with the ground state for gs = 0, the
main difference is that, due to the relative phase ϕ = 2nπ for
minimizing the Raman coupling energy, the center of mass
must be a definite value, which indicates that the ground-
state solitary wave does not have the translational symmetry
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FIG. 5. Properties of the ground-state solitary waves for
gs/kR = −0.1 [panels (a) and (b)] and gs/kR = 0.1 [panels (c) and
(d)], where the strength of the spin-independent interaction is
gn/kR = −1. Panels (a) and (c) show θ , k, and zc for different �R/k2

R.
Panels (b) and (d) show the norms of the ground-state wave functions
for �R/k2

R = 1. In panels (a)–(d), the lines (solid line, dashed line,
dash-dotted line) and circles represent the results obtained by the
GP simulations and the variational calculations, respectively. Panels
(e) and (f) show the Bogoliubov excitation frequencies (red points)
given by the BdG equations for gs = −0.1 and gs = 0.1, respectively,
where �R/k2

R = 1. The blue crosses represent the four excitation
frequencies ω1,± and ω2,± given by the variational analysis.

due to the spatial-dependent exponential factors in the spin-
dependent interaction terms. For example, if ϕ = 0 with
n = 0, as shown in Fig. 5, the center of mass of the ground-
state solitary wave should be zc = 0 for gs < 0 and kRzc = 1

2π

for gs > 0, which can minimize the spin-dependent interac-
tion energy. These results have also been confirmed by the
imaginary-time evolution of the GP equation.

We further study the stabilities and the low-energy
excitations of the ground-state solitary waves under the per-
turbation. In the presence of the spin-dependent interaction,
after linearizing Eq. (13) around the ground-state solutions of
the variational parameters, we have

dδζ

dt
=

⎛
⎜⎜⎜⎜⎝

0 gsε2 − gs

kR
ε2 0

1 0 0 −kR sin
(
2θg

)
kR 0 0 gsε3 − 2

√
2�R

sin2 (2θg)
0 gsε1

√
2

2 �R − gs
ε1
kR

0

⎞
⎟⎟⎟⎟⎠δζ ,

(27)

with the parameters

ε1 = 1
3πkRη f (η) cos(2kRzc,g) sin(2θg), (28a)

ε2 = 1
3πk2

Rη f (η) cos(2kRzc,g) sin2(2θg), (28b)

ε3 = 2
3η[1 + π f (η) cos(2kRzc,g)] sin(2θg), (28c)

where δζ = (δk, δzc, δϕ, δθ )T represents the deviations of the
variational parameters from the ground-state solutions, and
we have neglected the deviation of the width for a very weak
spin-dependent interaction. The excitation frequency ω can be
obtained by diagonalizing the 4 × 4 matrix on the right-hand
side of Eq. (27), which has four nonzero pure real values de-
noted as ω1,± and ω2,± shown in Figs. 5(e) and 5(f). Therefore,
if the solitary waves deviate from the ground states, they will
oscillate stably without damping, and the motions of solitary
waves would be the superposition between two different os-
cillations, where the frequencies ω1,± and ω2,± also depend
on gs. We have also solved the BdG equation (8) numerically.
The typical low-energy excitation frequencies for gs < 0 and
gs > 0 are shown in Figs. 5(e) and 5(f), respectively, which
demonstrate that the ground-state solitary waves are dynam-
ically stable. Moreover, the BdG spectrum also contains the
zero-energy mode due to the global phase invariance.

Finally, we solve Eq. (13) numerically using the fourth-
order Runge-Kutta method to study the motions of solitary
waves in the presence of a weak spin-dependent interac-
tion. Figure 6 shows the typical dynamical evolutions of
the initially population-balanced solitary waves with θ0 =
arccos(

√
3/3), ϕ0 = 0, and k0 = 1 for gs < 0. From Eq. (13a),

due to the lack of the translational symmetry, the momentum
of the solitary wave is not conserved but changes with time as
shown in Fig. 6(a). In particular, the spin-dependent interac-
tion couples Qx,y,z nonlinearly in the dynamical evolution:

dQx

dt
= 1

3πgsη f (η)Qy[Qx sin (2kRzc) + Qz cos (2kRzc)]

+ kRkQz − 1
3 gsηQyQz, (29a)

dQy

dt
=

√
2�RQz − 1

3πgsη f (η)
(
Q2

x − Q2
z

)
sin (2kRzc)

− 2
3πgsη f (η)QzQx cos (2kRzc), (29b)

dQz

dt
= 1

3πgsη f (η)Qy[Qx cos (2kRzc) − Qz sin (2kRzc)]

− kRkQx −
√

2�RQy + 1
3 gsηQyQx. (29c)

As shown in Figs. 6(b)–(d), the nonlinear coupling leads to
the different oscillation frequencies of Qx,y,z, and thus the tra-
jectory of the spin-nematic vector on a unit Bloch sphere is not
a closed orbit as shown in Fig. 6(e). Consequently, as shown
by Eq. (25), besides the flip of the spin-nematic vector, the
change of momentum also affects the center-of-mass motion
of the solitary wave shown in Figs. 6(f)–(h). By using Eq. (9)
as the initial wave functions, we have also solved the GP
equation (6) numerically. Similar dynamical phenomena are
also observed, and the variational results qualitatively agree
with the results given by the GP simulations as shown in
Fig. 6. However, the GP simulations show that the widths of
solitary waves also change with time as shown in Figs. 6(f)
and 6(g). It would be better to add a chirp term ∝ z2 to the
phase of the variational wave function (9), which is generated
intrinsically by the changes of the widths [79], and then the
quantitative differences between the variational results and
the numerical solutions of the GP equation may be further
improved.
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FIG. 6. Time evolution of the initially population-balanced solitary wave with θ0 = arccos(
√

3/3), ϕ0 = 0, and k0 = 1. (a) Momentum.
(b)–(e) Spin-nematic vector. (f) and (g) Norms of the wave functions obtained by the GP simulations. (h) Center of mass. The parameters are
gn = −10, gs = −1, �R = 0.5, and kR = 0.2. In panel (e), the blue arrow represents the spin-nematic vector at t = 0, the colored line is the
trajectory of the spin-nematic vector, and the colorbar is the corresponding time. In panels (a)–(d) and (h), the solid black lines represent the
results given by the GP simulations, and the dash-dotted red lines and the red circles are the variational results.

VI. DYNAMICS OF SPIN-NEMATIC SOLITARY WAVES
IN THE HARMONIC TRAP

In experiments, the BEC is usually confined in a harmonic
trap, which also has a critical impact on the dynamics of
solitary waves. Without the STMC, the ground-state solitary
wave must localize at the center of the harmonic trap to mini-
mize the trap energy, and the solitary wave oscillates with the
trapping frequency in a harmonic trap [32,33]. It is, therefore,
important to study the dynamics of the solitary waves under
the combined action of the STMC and the harmonic trap.

We first study the ground-state solitary waves in the har-
monic trap by setting all the variational parameters to be
time independent and minimizing the energy (12) under the
limitation sin(2θ ) = 0. In the case of gs = 0, the parameters
k, θ , and ϕ in the ground state still satisfy Eqs. (19a)–(19c),
but the center of mass of the ground-state solitary wave is
located at the origin to minimize the trap energy, and the
width η−1 satisfying the equation 4η4 + 2gnη

3 = π2γ 2 also
depends on the trapping frequency γ . In the presence of the
spin-dependent interaction, for gs < 0, the variational param-
eters show features similar to those in the uniform case with
gs < 0 for a fixed γ . However, for gs > 0, the trap will com-
pete with the spin-dependent interaction in determining the
center of mass of the ground-state solitary wave. As shown in
Fig. 7(a), for �R/k2

R � 1, due to θ ∼ π/2, the spin-dependent
interaction energy ∝ sin2(2θ ) is very small, and the solitary
waves localize at the center of the trap. When �R/k2

R surpasses
a critical value, the spin-dependent interaction dominates and
shifts the center of mass of the ground-state solitary wave to
a nonzero value. Thus, for gs > 0, in a harmonic trap, the
center of mass of the ground-state solitary wave experiences a

transition from zero to nonzero value with increasing �R/k2
R.

As shown in Fig. 7(a), the variationally predicted critical point
for �R/k2

R deviates from the one given by the GP simulation,
which can be improved by using a better function as the vari-
ational ansatz. Moreover, when �R/k2

R surpasses the critical
point, the stationary solitary wave with zc = 0 can actually
exist as shown in Fig. 7(b), but becomes unstable under a
perturbation as shown in Figs. 7(c) and 7(d).

Finally, we study the motions of solitary waves under the
combined action of the STMC and the harmonic trap. From
Eqs. (13a), (13c), and (13e), we can get

d2zc

dt2
= kR�R√

2
Qz − γ 2zc, (30)

which indicates that the solitary wave experiences a linear
restoring force produced by the harmonic trap, in addition to
the force given by the STMC. The general solution of Eq. (30)
is

zc(t ) = c

γ
sin (γ t ) + kR�R√

2γ

∫ t

0
sin[γ (t − t ′)]Qz(t ′)dt ′, (31)

where we have assumed zc(t = 0) = 0, c = k0 + kR(Qy,0 −
1)/2 is a time-independent constant, and k0 and Qy,0 represent
the initial values of the momentum k and the spin-nematic
vector Qy, respectively. It is obvious that the harmonic trap
will induce an additional center-of-mass oscillation with pe-
riod 2π/γ .

To further clarify the combined effects of the trap and
the STMC on the motions of solitary waves, we use Eq. (9)
as the initial wave functions to solve the GP equation (6)
numerically. Figures 8(a)–(c) show the dynamical evolutions
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FIG. 7. (a) and (b) Parameters θ , k, and zc in the harmonically
trapped ground-state solitary wave for different �R/k2

R. The solid
red line, the dashed blue line, and the dash-dotted green line are the
results given by the GP simulations, and the red, blue, and green
lines with solid circles are the results of the variational analysis.
(b) Parameters θ and k in the stationary solitary wave with zc = 0 for
different �R/k2

R, which are obtained by solving the time-independent
equation (13). (c) and (d) The excitation frequencies ω1,± and ω2,± of
the stationary solitary wave with zc = 0 for different �R/k2

R, which
are obtained by the linear stability analysis of Eq. (13). In panels
(a)–(d), the other system parameters are gn/kR = −10, gs/kR = 1,
and γ /k2

R = 0.2.

of the initially population-balanced solitary waves for gs = 0.
We can observe that the solitary waves display two different
oscillations. To distinguish these two different oscillations,
we take the solution (23c) as the approximation for Qz in a
weak harmonic trap with γ � 1, and the center of mass can
be approximated as follows:

zc � c − �α1

γ
sin (γ t ) − α2 cos (γ t ) + α sin (� t + β ),

(32)

where the constants are α =
√

α2
1 + α2

2 and β =
arctan(α2/α1), with α1,2 = c1,2kR�/(2γ 2 − 2� 2).
Equation (32) shows clearly that the first two terms are
the trap-driven oscillations with the frequency γ , and the
last term is the STMC-driven oscillation with the frequency
� . Therefore, the motions of solitary waves can be viewed
as the superposition of the trap-driven oscillation and the
STMC-driven oscillation, as shown in Figs. 8(a)–(c). For
gs = 0, we have also performed the GP simulation for a weak
harmonic trap and obtained a similar result, as shown in
Fig. 8(d).

VII. CONCLUSIONS

In summary, we have investigated the dynamics of bright
solitary waves in the spin-tensor-momentum coupled spin-1

FIG. 8. Time evolution of the initially population-balanced soli-
tary wave in the harmonic trap with γ = 0.1. (a)–(c) Time evolutions
of the densities and the center of mass for gs = 0, where the pa-
rameters are gn = −10, �R = 0.5, and kR = 0.1. (d) Evolution of
the center of mass for gs = −0.1. The other parameters are the
same as those in panels (a)–(c). Panels (a) and (b) are given by
the GP simulations, and the solid black lines and the red circles in
panels (c) and (d) represent the results of the GP simulations and the
variational analysis, respectively.

BEC. By using the variational method and the numerical
simulation of the GP equation, the properties of stationary
and moving bright solitary waves were explored analyti-
cally and numerically. We found that the solitary waves have
nonzero spin and nematicity simultaneously, and hence they
are termed spin-nematic solitary waves. The ground-state soli-
tary wave carries a finite momentum due to the STMC, and the
low-energy excitations contain the zero-energy modes and os-
cillation modes with frequencies related to the STMC and the
Raman coupling. The equations of motion for the variational
parameters show that the spin-nematic vector couples with
the center-of-mass coordinate, and the interplay of the STMC
and the Raman coupling induces the flip of the spin-nematic
vector on a unit Bloch sphere, which in turn provides a force
to drive the solitary waves to oscillate, leading to the STMC
effects in the motions of solitary waves. In the presence of
a harmonic trap, it competes with the spin-dependent inter-
action in determining the center of mass of the solitary wave
and induces an additional collective oscillation with frequency
related to the trapping frequency. These analytical results were
also confirmed by the direct numerical simulations of the GP
equations. The present study may also be extended to the case
of dark solitary waves for the repulsive spin-dependent atomic
interaction. We believe that these interesting dynamical fea-
tures of solitary waves affected by the STMC can be observed
in future experiments.
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APPENDIX: THE PARAMETERS IN THE BdG EQUATION

In the BdG equation (8), the parameters are A = A1 +
g+A2 + 2gsA3 − �R√

2
Fx and B = −g+B1 − B2 − gsB3, with

g± = gn ± gs. The matrices Aj and Bj with j = 1, 2, and 3
are

A1 =
⎛
⎝ h↑ 0 g−ψ↑,0ψ

∗
↓,0

0 h0 0
g−ψ∗

↑,0ψ↓,0 0 h↓

⎞
⎠, (A1)

A2 =
⎛
⎝ 0 ψ↑,0ψ

∗
0,0 0

ψ∗
↑,0ψ0,0 0 ψ0,0ψ

∗
↓,0

0 ψ∗
0,0ψ↓,0 0

⎞
⎠, (A2)

A3 =
⎛
⎝ 0 κψ0,0ψ

∗
↓,0 0

κ∗ψ∗
0,0ψ↓,0 0 κ∗ψ↑,0ψ

∗
0,0

0 κψ∗
↑,0ψ0,0 0

⎞
⎠, (A3)

B1 =
⎛
⎝ ψ2

↑,0 ψ↑,0ψ0,0 0
ψ↑,0ψ0,0 0 ψ0,0ψ↓,0

0 ψ0,0ψ↓,0 ψ2
↓,0

⎞
⎠, (A4)

B2 =
⎛
⎝ 0 0 g−ψ↑,0ψ↓,0

0 gnψ
2
0,0 0

g−ψ↑,0ψ↓,0 0 0

⎞
⎠, (A5)

B3 =
⎛
⎝ 0 0 κψ2

0,0
0 2κ∗ψ↑,0ψ↓,0 0

κψ2
0,0 0 0

⎞
⎠, (A6)

where κ = ei2kRz, and the hσ ’s with σ =↑, 0, and ↓ are

h↑ = h + ikR
∂

∂z
+ g+(2ρ↑,0 + ρ0,0) + g−ρ↓,0 − μ, (A7)

h0 = h + g+ρT,0 + g−ρ0,0 − μ, (A8)

h↓ = h + ikR
∂

∂z
+ g+(ρ0,0 + 2ρ↓,0) + g−ρ↑,0 − μ, (A9)

with h = − 1
2

∂2

∂z2 + 1
2γ 2z2 and ρT,0 = ∑

σ ρσ,0, where ρσ,0 =
|ψσ,0|2 is the total density of the ground state. The chemical
potential μ is

μ =
∫ +∞

−∞

[
�†H� + gnρ

2
T,0 + gs(ρ↑,0 − ρ↓,0)2

+ 2gs

∣∣eikRzψ∗
↑,0ψ0,0 + e−ikRzψ∗

0,0ψ↓,0

∣∣2]
dz, (A10)

where H = h + ikRF 2
z

∂
∂z − �R√

2
Fx; � = (ψ↑,0, ψ0,0, ψ↓,0)T ,

with T being the transpose; and the superscripts ∗ and † rep-
resent the conjugate and the conjugate transpose, respectively.
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