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Quantum liquid droplets in Bose mixtures with weak disorder
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We study the properties of self-bound liquid droplets of three-dimensional Bose mixtures in a weak random
potential with Gaussian correlation function at both zero and finite temperatures. Using the Bogoliubov theory,
we derive useful formulas for the ground-state energy, the equilibrium density, the depletion, and the anomalous
density of the droplet. The quantum fluctuation induced by the disorder known as the glassy fraction is also
systematically computed. At finite temperature, we calculate the free energy, the thermal equilibrium density,
and the critical temperature in terms of the disorder parameters. We show that when the strength and the
correlation length of the disorder potential exceed a certain critical value, the droplet evaporates and is eventually
entirely destroyed. We calculate the density profiles of this exotic state by means of numerical simulations of
the corresponding generalized disorder Gross-Pitaevskii equation. Our predictions reveal that as the strength of
the disorder gets larger, the atomic density varies rapidly in the plateau region. We point out in addition that
the peculiar interplay of the disorder and the repulsive Lee-Huang-Yang corrections play a pivotal role in the
collective modes of the self-bound droplet.
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I. INTRODUCTION

Ultracold Bose-Bose mixtures of atomic gases in disor-
dered media have attracted tremendous attention due to the
high degree of control over interspecies interactions and dis-
order effects (see, e.g., Refs. [1–3]). An eminent property of
such binary Bose-Einstein condensates (BECs) is the possibil-
ity to form quantum self-bound droplets, originating from the
competition of mean-field attraction and beyond-mean-field
repulsion provided by the Lee-Huang-Yang (LHY) correc-
tions [4–7]. The same exquisite stabilization mechanism leads
to the formation of self-bound droplets in single and binary
dipolar BECs, where the balance between the mean-field en-
ergy associated with short- and long-range interactions and
the LHY corrections arrests the dipolar instability at high
density [8–13]. Quantum liquid droplets have been widely
explored in various contexts (see for review Refs. [14–16] and
references therein).

The aim of this paper is to present a comprehensive un-
derstanding of the properties of self-bound liquid droplets in
a weak three-dimensional (3D) Gaussian-correlated disorder.
This latter is defined by both the strength and the correla-
tion length of the disorder (see below), which enables us to
well control the interplay between the disorder correlation
length, the LHY fluctuations, and the interspecies interaction
strength. Quite recently, two-dimensional droplets in binary
BECs subjected to a random repulsive potential have been
studied numerically in Ref. [17]. The dirty self-bound liquids
can be regarded as a feasible simulator to analyze a plethora
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of quantum phenomena. We look in particular at how the
peculiar competition between the interspecies interactions, the
LHY quantum fluctuations, and the disorder potential affect
the formation and the stability of the self-bound droplet. The
role of the LHY corrections in dirty dipolar and nondipolar
BECs has been discussed in Refs. [18,19].

Here we derive useful analytical expressions for relevant
physical quantities such as the equation of state, the equi-
librium density, the glassy fraction, the depletion, and the
anomalous density of the droplet at both zero and finite
temperatures within the framework of the Bogoliubov the-
ory. The approach is valid provided that the disorder-induced
depletion is sufficiently weak. The presence of the disorder
fluctuations furnishes an additional term which competes with
the mean-field and beyond-mean-field LHY nonlinearities,
leading to modify the properties of the droplet. Our work
is also surmised on the observation that at increasing disor-
der strength and decreasing correlation length, the self-bound
droplet splits into minidroplets trapped in small wells of the
disorder potential due to the destruction of the coherence. We
find that the equilibrium density decays with the disorder pa-
rameters. Consequently, there exists a certain critical value of
the strength and the correlation length of the disorder potential
above which the droplet evaporates and eventually completely
disappears. Such a critical strength strongly depends on the in-
terspecies interactions and on the disorder correlation length.
We then extend our study to the finite temperature case. It is
shown that the disorder substantially influences the thermal
equilibrium and the critical temperature of the self-bound
liquid droplet.

On the other hand, we derive a generalized disorder
Gross-Pitaevskii equation (GPE) employing the local density
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approximation. The numerical simulations of this equation re-
veal that the density follows the modulations of the disorder in
the plateau region. Nevertheless, the action of the disorder is
irrelevant near the edges of the droplet. The collective modes
of the droplet are analyzed by means of a variational Gaussian
ansatz. We emphasize that the disorder lowers the frequency
of the breathing oscillations.

The rest of this paper is organized as follows. Sec-
tion II introduces the Bogoliubov-Huang-Meng model for
dirty Bose-Bose mixtures. We then use the developed model
to derive analytical expressions for various physical quanti-
ties, including the equation of state, the glassy fraction, and
the normal and anomalous densities. Section III is concerned
with the ground-state properties of a disordered self-bound
droplet at both zero and finite temperatures. We look in par-
ticular at how the disorder potential affects the existence and
the formation of the liquid droplet. The equilibrium density,
the critical disorder strength, and the critical temperature
are accurately calculated in terms of the system parameters.
Section IV is dedicated to the numerical analysis of the gen-
eralized disorder GPE, which successfully describes density
profiles of the droplet in the equilibrium state. In Sec. V
we calculate the collective modes of the disordered droplet
utilizing a variational method. Finally, in Sec. VI we present
a summary of our conclusions.

II. MODEL

We consider a weakly interacting homogeneous Bose mix-
ture with equal masses m1 = m2 = m, subjected to a 3D weak
disorder potential U (r). The disorder potential is assumed to
have vanishing ensemble averages 〈U (r)〉 = 0 and a finite
correlation of the form 〈U (r)U (r′)〉 = R(r − r′). The Hamil-
tonian including all point-like interactions can be written in
terms of the creation and annihilation operators â†

j,k and â j,k,
where the subscript j = {1, 2} refers to the jth component of
the mixture, as

Ĥ =
∑
j,k

Ekâ†
j,kâ j,k + 1

V

∑
j,k,p

Uk−pâ†
j,kâ j,p

+ g j

2V

∑
j,k,p,q

â†
j,kâ†

j,pâ j,p−qâ j,k+q

+ g12

V

∑
k,p,q

â†
1,kâ†

2,pâ2,p−qâ1,k+q, (1)

where Ek = h̄2k2/2m, V is a quantization volume, and Uk is
the Fourier transform of the external random potential U (r).
In the Hamiltonian (1), we have introduced the coupling con-
stants for the intraspecies interactions gj = 4π h̄2a j/m as well
as for the interspecies interaction g12 = g21 = 4π h̄2a12/m,
with aj and a12 being the intraspecies and the interspecies
scattering lengths, respectively.

The elementary excitations and the ground-state energy of
the mixture are obtained by applying the Bogoliubov prescrip-
tion, which consists of replacing the operators â j,0 and â†

j,0 by

a c number, i.e., â j,0 = â†
j,0 = √

Njc, where Njc is the number
of condensed particles. In the resulting equation, we ignore
higher-order fluctuations and keep only terms in â†

j,k �=0, â j,k �=0

up to the second order in the coupling constants. In the context
of disordered BECs, the Bogoliubov theory suggests that for
weak enough disorder, disorder fluctuations decouple in the
lowest order [20,21].

To diagonalize the Hamiltonian (1), we introduce the
Bogoliubov-Huang-Meng transformation [20]:

â1,k = u+kb̂1,k − v+kb̂†
1,−k − β1,k, (2a)

â2,k = u−kb̂2,k − v−kb̂†
2,−k − β2,k, (2b)

where b̂†
j,k and b̂ j,k are operators of elementary excitations

obeying the usual Bose commutation relations, the quasiparti-
cle amplitudes are given by

u±,k = 1

2

(√
ε±,k

Ek
+

√
Ek

ε±,k

)
, v±,k = u±,k −

√
Ek

ε±,k
, (3)

and the disorder translations β1,k are defined by the equations

β1,k =
√

n1

V

|u+,k − v+,k|2
ε+,k

Uk,

β2,k =
√

n2

V

|u−,k − v−,k|2
ε−,k

Uk, (4)

where the excitation spectrum energies ε±,k are defined below.
In this work we consider the case of a symmetric mix-

ture with n1 = n2 = n/2 and g1 = g2 = g. The Bogoliubov
excitation energies, which turn out independent of disor-
der for the symmetric mixture studied here, reads εk± =√

E2
k + 2Eknδg±, where δg± = g(1 ± g12/g) [22].
Performing the diagonalization via (3) and the average over

the disorder, the Hamiltonian (1) transforms into

Ĥ = E +
∑
k �=0

(εk,+b̂†
1kb̂1k + εk,−b̂†

2kb̂2k ), (5)

where the ground-state energy of the system including the
disorder corrections is given by

E

V
=

∑
±

[
1

2
n2δg± − n

2π2

∫ ∞

0
dk k2Rk

Ek

ε2
k±

+ 1

4π2

∫ ∞

0
dk k2

(
εk± − 2Ek − nδg± + n2δg2

±
2Ek

)]
.

(6)

The leading term is the mean-field energy. The subleading
term gives the correction to the ground-state energy due to
the external random potential. The last term accounts for the
regularized ground-state energy owing to the LHY quantum
corrections.

The noncondensed ñ = ∑
jk〈â†

j,kâ j,k〉 and anomalous m̃ =∑
jk〈â j,kâ j,k〉 densities read as [23,24]

ñ± = 1

4π2

∫ ∞

0
dk k2

[
Ek + nδg±

εk±

√
Ik± − 1

]
+ nR± (7)

and

m̃± = − 1

4π2

∫ ∞

0
dk k2 nδg±

εk±

√
Ik± + nR±, (8)
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where Ik± = coth2(εk±/2T ), with T being the temperature
[22–24]. The Boltzmann constant set kB = 1 throughout the
manuscript.

The last term in Eqs. (7) and (8) can be evaluated through
Eq. (4):

nR± = 1

V

∑
k

〈|βk±|2〉 = n

2π2

∫ ∞

0
dk k2 E2

k

ε4
k±

Rk, (9)

which accounts for the disorder fluctuations known also as
glassy fraction.

In what follows we consider a disorder potential with
Gaussian autocorrelation function which is very popular in
ultracold atom experiments. The corresponding Fourier trans-
form has the form [25,26]

Rk = R0 e−σ 2k2/2, (10)

where R0 with dimension (energy)2 × (length)3 and σ char-
acterize, respectively, the strength and the correlation length
of the disorder. For σ → 0, the Gaussian potential reduces
to the uncorrelated δ-random potential. This simple model is
useful in three respects. First, it can be realized either with
speckle potentials or with Gaussian impurity disorders [27].
Second, it is analytically tractable, and therefore provides a
test for the numerical simulation. Third, the energy shift due
to the Gaussian-correlated disorder (10) does not require any
regularization (i.e., safe from ultraviolet divergence), unlike
the δ-correlated random potential made of a random series of
δ peaks, as we shall see in Eq. (11). Note that our formalism
can be applied for any correlated and uncorrelated disorder
potentials.

III. SELF-BOUND DROPLETS

In this section, we apply the developed approach to in-
vestigate the formation and the stabilization of self-bound
droplets in the presence of 3D disorder at both zero and finite
temperatures.

A. Zero temperature

Substituting Eq. (10) into Eq. (6) and integrating
over k, we obtain the total energy. Normalizing the
resulting energy and the density to their equilibrium
values obtained within the theory of Petrov for clean
droplets, namely, n(0) = 25π (δa+/a)2/(16384a3) and
|E0|/N = 25π2 h̄2|δa+/a|3/(49152ma2) [4,28], we then
find

E

|E0| = −3
( n

n(0)

)
+ 1

2
√

2

( n

n(0)

)3/2 ∑
±

(
δa±

a

)5/2

−
∑
±

R|δa+/a|
24

√
2π (σ/ξ )

[
1√
π

− σ

ξ±
eσ 2/ξ 2

±erfc

(
σ

ξ±

)]
,

(11)

where erfc(x) is the complementary error function, R =
R0N2/(ξ 3E2

0 ), and ξ± = ξ/
√

(n/n(0) )(δa±/a), with ξ =
h̄/

√
mgn(0). Evidently, for R = 0, Eq. (11) reduces to that

found for clean droplets [4,23,28,29]. For σ/ξ → 0, the
energy correction due to the disorder contribution reduces
to the result of δ-correlated disorder potential, namely,
R(|δa+/a|/24

√
2π )

√
(δa±/a)(n/n(0) ).

In the droplet regime g > 0 and g12 < 0, the ground-
state energy (11) becomes complex, predicting a collapse
mean-field solution. To cure this issue one may simply set
|δg+|/g 	 1 [4]. Note that the energy can also be stabi-
lized by taking into account higher-order quantum corrections
[23,24,28,29].

In order to prove the relevance of our theory for current
experiments, we consider the 39K mixture droplets [5]. The
intraspecies scattering length is chosen to a = 71a0, with a0

being the Bohr radius. Note that a12, which can be adjusted
via the Feshbach resonances, is selected in such a way that
the droplet phase is reached. The disorder strength R0 used in
the experiment ranges from ∼1.26 × 10−82 J2 m3 to ∼1.52 ×
10−80J2 m3 (or equivalently R from 75.34 to 9116.77), and the
correlation length is σ � 0.13 µm [30].

In Fig. 1 we show the ground-state energy using different
values for the disorder parameters and interspecies interac-
tions. One can clearly identify two regions: In the low-density
regime where n � n(0), we see that for fixed values of R
and σ/ξ , the energy decreases with the interspecies inter-
actions |a12/a| and then the local minimum of the energy
starts to disappear, revealing the evaporation of the self-bound
droplet [see Fig. 1(a)]. This can be attributed to the peculiar
competition between the disorder, interaction, and quantum
fluctuations. The situation is inverted for n � n(0), where the
energy increases with |a12/a|, in agreement with the case of a
clean droplet [28,31].

Figures 1(b) and 1(c) show that a robust self-bound droplet
survives only for large correlation length σ/ξ and small dis-
order strength R. However, for small σ/ξ and large R, the
shape of the energy curve does not contain a local mini-
mum, causing the formation of an unstable self-bound state.
In such a situation, the droplet most likely segregates into
multiple minidroplets, similarly to the two-dimensional case
[17]. For large enough σ/ξ , the energy simplifies to that of
clean droplets (R = 0), indicating that the disorder effects are
not important in this regime [see Fig. 1(b)]. Once the disorder
parameters exceed their critical values (i.e., R > Rc � 2.5 ×
103 and σ/ξ < σc/ξ � 0.6), the atoms leave the droplet and
accumulate in the depleted region. Therefore, the self-bound
state loses its intriguing self-evaporation phenomenon and is
eventually completely destroyed.

The critical disorder strength Rc, for which the local min-
imum of the energy disappears, in terms of the interspecies
interactions a12/a for two different values of σ/ξ is captured
in Fig. 2. We see that Rc increases with a12/a and decays with
decreasing σ/ξ .

The equilibrium density of a dirty droplet neq can be
obtained by minimizing the ground-state energy (11) with
respect to the density. Its behavior as a function of the disorder
strength for various values of a12/a and σ/ξ is depicted in
Fig. 3. Remarkably, the equilibrium density decreases with
increasing the disorder strength regardless of the values a12/a
and σ/ξ , leading to destabilizing the droplet and eventually
destroying it.
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FIG. 1. (a) Ground-state energy from Eq. (11) as a function of
the density n for various values of the interaction strength a12/a and
for R = 2.5 × 103 and σ/ξ = 0.63. (b) Ground-state energy from
Eq. (11) as a function of the density n for various values of the disor-
der correlation length σ/ξ and for a12/a = −1.1 and R = 2.5 × 103.
(c) Ground-state energy from Eq. (11) as a function of the density n
for various values of the disorder strength R and for a12/a = −1.1
and σ/ξ = 0.63.

Introducing function (10) into Eq. (9) and performing the
integration over the momentum, we obtain for the glassy frac-

FIG. 2. Critical disorder strength as a function of a12/a for two
different values of σ/ξ .

tion inside the droplet

nR

n
=

√
2R(δa+/a)2

144π

√(
n

n(0)

)(
δa−

a

)
×

[
− σ√

πξ−
+

[
1

2
+

(
σ

ξ−

)2
]

eσ 2/ξ 2
−erfc

(
σ

ξ−

)]
.

(12)

This equation is appealing since it explains the interplay
between the disorder potential, the LHY quantum corrections,
and the attractive interspecies interaction. For σ → 0, Eq. (12)
reduces to nR/n = (δa+/a)2R/[144π

√
2(n/n(0) )(δa−/a)],

which corresponds to the results of the white-noise disorder

FIG. 3. Equilibrium density of a dirty droplet neq with respect to
n(0) as a function of the disorder strength for various values of σ/ξ

and a12/a = −1.1.
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FIG. 4. (a) Glassy fraction inside the droplet nR as a function
of a12/a and σ/ξ for R = 1000. (b) Condensed depletion of the
droplet ñ = ñ0− + nR as a function of a12/a and σ/ξ for R = 1000.
(c) Anomalous density of the droplet m̃ = m̃0− + nR as a function of
a12/a and σ/ξ for R = 1000.

potential. For σ → 0 and a12 = 0, one recovers the seminal
results of Huang-Meng for a single dirty Bose gas [20]. We see
from Fig. 4(a) that in the region σ → 0 and for small a12/a,
the total glassy fraction nR/n is significant. By increasing the
disorder strength or reducing the interspecies interaction, the
macroscopic occupation of the ground state decreases more
and more, hence the fragmented droplets in the small wells of
the random potential increase even at zero temperature due to
the randomness. Lifting further the disorder strength, one can
expect that the droplet becomes completely depleted, giving
rise to destruction of the coherence. For relatively large a12/a
and σ � ξ , nR becomes negligibly small, indicating that

the atoms are less localized in such a regime, leading to the
formation of an extended droplet. This delocalization can be
interpreted as the fact that the disorder potential is screened
by both the LHY quantum corrections and the interactions.
This behavior also holds true in the case of a dirty ordinary
BEC (see, e.g., Refs. [26,32]).

For 39K atoms we have a = 71a0 [5] and for a12/a =
−1.05, R0 ∼ 1.52 × 10−80J2 m3 and σ = 0.13 µm [30], the
disorder fraction inside the droplet is about nR/neq = 6 ×
10−4, ensuring the sufficient criterion for the weak disorder
regime.

At zero temperature, the condensed depletion and the
anomalous fraction can be calculated, respectively, via
Eqs. (7) and (8). This yields

m̃0±
n

= 3ñ0±
n

= 15

96
√

2

√
n

n(0)

∣∣∣∣δa+
a

∣∣∣∣
(

δa±
a

)3/2

. (13)

Here again the standard regularization scheme is introduced in
the anomalous density in order to remove the well-known ul-
traviolet divergence problem caused by the use of the contact
interparticle interactions [23].

In the droplet phase, one should neglect the complex com-
ponent (δa+/a 	 1) of the noncondensed and anomalous
densities [24]. The profiles of the total depletion ñ = ñ0− +
nR and the anomalous density m̃ = m̃0− + nR are shown in
Figs. 4(b) and 4(c). We observe that the depletion and the
anomalous correlation of the droplet decrease with a12/a and
σ/ξ . Remarkably, the anomalous density is somehow insen-
sitive to the disorder correlation length [slightly decays with
σ/ξ , see Fig. 4(c)].

B. Finite temperature

At finite temperature the properties of the droplet can be
analyzed by minimizing the free energy, which is defined as
[23,31]

F = E+ T

2π2

∫ ∞

0
dk k2

[
ln

(
2√

Ik+ + 1

)
+ ln

(
2√

Ik− + 1

)]
.

In terms of the equilibrium density, it turns out to be given by

F

|E0| = E

|E0| −
∑
±

√
2π4(δa+/a)4(n/n(0) )−5/2

124416(δa±/a)3/2

(
T

|E0|/N

)4

,

(14)
which is divergent when the density tends to zero.

The temperature dependence of the equilibrium density
and the critical temperature of the droplet can be determined
by setting ∂F/∂n = 0 and δa+/a 	 1 [4,23]. Figure 5 shows
that the thermal equilibrium density nT

eq exhibits very weak
temperature dependence at T � 13|E0|/N , while it reduces
for higher temperatures. We see also that it sorely diminishes
with the disorder strength, indicating that the droplet becomes
strongly depleted.

Effects of the disorder strength on the critical temperature
are displayed in Fig. 6. We see that Tc decreases with increas-
ing R and with |a12/a|.
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FIG. 5. Thermal equilibrium density nT
eq/n(0) as a function of the

temperature for different values of the disorder strength and a12/a =
−1.1 and σ/ξ = 0.63.

IV. GENERALIZED DISORDER GROSS-PITAEVSKII
EQUATION

To better understand effects of disorder on the droplet state,
we will derive in this section the generalized disorder GPE and
solve it numerically.

In the miscible phase and close to the collapse point, we
can describe the system with an effective low-energy theory,
an effective single component GPE, and we consider identical
spatial modes for the two components [4]. We then will intro-
duce two assumptions: (i) The condensate, the thermal cloud,
and the anomalous correlation must vary slowly at the scale of
the extended healing length [23,24]. (ii) The disorder potential
changes smoothly in space on a length scale comparable to the
healing length [18,19].

For the sake of simplicity, we neglect the fluctuations in-
duced by disorder potential. The functional energy associated
with the equation of state (11), which describes a self-bound
droplet subjected to an external disorder, can be written in the
following dimensionless form:

E (φ, φ∗) = 1

2
|∇φ|2 − 3

2
|φ|4 +

√
neq

n(0)
|φ|5 + Ũ |φ|2, (15)

FIG. 6. Critical temperature as a function of the disorder strength
R for different values of a12/a and σ/ξ = 0.63.

FIG. 7. Density profiles of the droplet for different values of the
disorder strength for N = 3000, σ̃ = 0.1, and a12/a = −1.05.

where Ũ = Uτ/h̄, and τ = 6h̄/neqg|δa/a+|. The correspond-
ing GPE can be derived using i∂φ/∂ t̃ = ∂E/∂φ∗. This yields

i
∂φ(r̃, t̃ )

∂ t̃
=

(
−1

2
�r̃ − 3|φ|2 + 5

2

√
neq

n(0)
|φ|3 + Ũ (r̃)

)
φ(r̃, t̃ ),

(16)

where we introduced the rescaled coordinate r̃ = r
√

m/h̄τ

and the rescaled time t̃ = t/τ . Equation (16) can be thought of
as describing self-consistently the LHY and disorder effects.
The stationary solutions can be found via the transformation
φ(r̃, t̃ ) = φ(r̃) exp(−iμt̃ ).

We consider now a Gaussian correlated disorder potential
defined as [33,34]

Ũ (r̃) = Ũ0

M∑
j=1

f (r̃ − r̃ j ), (17)

where M is the number of impurities, U0 is the amplitude, r̃ j

are the uncorrelated random positions, and f is a real-valued
function of width σ and has Gaussian-shaped impurities
f (r̃) = e−r̃2/σ̃ 2

, with σ̃ = σ
√

m/h̄τ being the dimensionless
characteristic length of the disorder.

The ground-state density profile of the disordered droplet is
obtained from the numerical integration of the stationary GPE
(16) using the split-step method, which is based on the fast
Fourier transforms [6]. To generate the Gaussian potential we
use a set of random numbers which are then mapped into the
interval [−L, L] by a linear transformation. We choose M =
300, L = 30, and a small width [34].

In Fig. 7 we plot the density profiles as a function of the
radial distance. Two fascinating properties are observed here.
First, the density in the plateau region increases and varies
fastly with the disorder strength. Second, the situation is com-
pletely different at the edge of the droplet, where the atomic
density varies slowly even for large disorder strength since
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the LHY and interaction energies dominate over the disorder
effects.

V. COLLECTIVE MODES

This section deals with the collective modes of disordered
droplets. A useful way to qualitatively or even quantitatively
analyze them is to use a variational method. We then consider
a simplified Gaussian variational ansatz:

φ(r̃, t̃ ) =
√

Ñ

π3/2q(t̃ )3
exp

[ −r̃2

2q(t̃ )2
+ iγ (t̃ )r̃2

]
, (18)

where the variational parameters are the droplet width q
and the phase γ . The normalization factor ensures the con-
servation of the condition

∫
d3r̃φ(r̃, t̃ ) = Ñ , where Ñ =

(m/h̄τ )3/2N/neq, with N being the total number of par-
ticles in the droplet. We replace the ansatz (18) in the
density Lagrangian L = (i/2)[φ (dφ∗/dt ) − φ∗(dφ/dt )] + E
and obtain the Lagrangian L = ∫ ∞

0 d3r̃L:

L

Ñ
= 3

2
γ̇ q2 + 3γ 2q2 + 3

4q2
− 3Ñ

25/2π3/2q3

+
√

neq

n(0)

23/2Ñ3/2

π9/453/2q9/2

+
M∑

j=1

Ũ0
σ̃ 3

(q2 + σ̃ 2)3/2
exp

[−r̃2
j

σ̃ 2

(
1 − q2

q2 + σ̃ 2

)]
.

(19)

The corresponding Euler-Lagrange equations of motion read

γ = 1

2q

dq

dt
(20)

and

d2q

dt2
= −dUeff(q)

dq
, (21)

where we have introduced the effective potential for oscilla-
tions of the droplet width

Ueff(q) = 1

2q2
− Ñ

23/2π3/2q3
+

√
neq

n(0)

25/2Ñ3/2

3π9/453/2q9/2

+ 2

3

M∑
j=1

Ũ0
σ̃ 3

(q2 + σ̃ 2)3/2

× exp

[−r̃2
j

σ̃ 2

(
1 − q2

q2 + σ̃ 2

)]
. (22)

The low-lying excitations around the equilibrium solutions
q0 (droplet minimum) can be computed by using the lin-
earization q(t ) = q0 + δq(t ), where δq(t ) 	 q0, and δq(t ) =
δqeiωt . This gives for the frequencies of the breathing
modes

ω2 = d2Ueff(q)

dq2

∣∣∣
q=q0

. (23)

FIG. 8. (a) Excitation frequencies in units of 1/τ as a function of
the particle number for several values of Ũ0. (b) Droplet width as a
function of the particle number for several values of Ũ0. Parameters
are a12/a = −1.05 and σ̃ = 0.1.

In Fig. 8 we represent the resulting oscillation frequencies
as predicted by Eq. (23). It is interesting to observe that the
frequencies of the breathing modes of the droplet are increas-
ing with the disorder strength in the whole range of atom
numbers as shown in Fig. 8(a).

Figure 8(b) depicts that the droplet width q increases
with the particle number while it decreases with the disorder
strength notably for large Ñ .

VI. CONCLUSIONS

In this paper, we studied the effects of a weak random po-
tential with a Gaussian correlation function on the properties
of self-bound droplets. Within the Bogoliubov approach, we
calculated corrections due to the disorder fluctuations to the
energy and to the condensed density. The equilibrium density,
the quantum depletion, and the anomalous density have also
been obtained in terms of the disorder parameters and the
interspecies interactions. We showed that the disorder de-
creases the energy, leading to destabilize the droplet state. The
critical disorder strength above which the droplet evaporates
has been accurately established. One can expect that for strong
disorder, the self-bound droplet breaks down to form several
minidroplets. At finite temperature, we found that the disorder
plays a crucial role in the thermal density equilibrium and in
the critical temperature of the self-bound liquid. Additionally,
we derived self-consistently a generalized disorder GPE and
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solve it numerically using a suitable scheme. Our results indi-
cate that the density follows the modulation of the disorder
in bulk and becomes important for large disorder strength.
We also examined the influence of the disorder on the width
and the breathing modes of droplets via a Gaussian variational
ansatz.

It is clear that the results we predict in this work are
achievable in current experimental setups. Our study not only
bridges the gap between ultradilute droplets and disorder but

also elucidates the localization phenomenon of droplets in
binary BECs.
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