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We investigate the time-dependent Rényi entanglement entropy after a quantum quench starting from the
Mott-insulating and charge-density-wave states in a one-dimensional free boson system. The second Rényi
entanglement entropy is found to be the negative of the logarithm of the permanent of a matrix consisting of time-
dependent single-particle correlation functions. From this relation and a permanent inequality, we obtain rigorous
conditions for satisfying the volume-law entanglement growth. We also succeed in calculating the time evolution
of the Rényi entanglement entropy in extremely large systems by brute-force computations of the permanent.
We discuss possible applications of our findings to the real-time dynamics of noninteracting bosonic systems.
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I. INTRODUCTION

The concept of entanglement is indispensable for under-
standing quantum many-body physics these days. A pure
quantum many-body state is entangled when it cannot be
represented by a product state [1]. The entanglement entropy
quantifies the degree of entanglement and is a valuable probe
for characterizing states of quantum many-body systems. For
example, in critical systems, the entanglement entropy ex-
hibits the universal scaling with the size of a subsystem;
the universal coefficient is determined by the corresponding
conformal field theory [2–7]. Topologically ordered states,
which cannot be described by conventional order parameters,
would be characterized by the topological entanglement en-
tropy [8–11].

The von Neumann entanglement entropy is a standard ref-
erence value to quantify the entanglement. When a system
possesses a pure state |ψ〉 and can be divided into two sub-
systems A and B, the von Neumann entanglement entropy
is defined as SvN = −TrAρ̂A ln ρ̂A, where ρ̂A = TrBρ̂ is the
reduced density matrix of ρ̂ = |ψ〉〈ψ | and TrA(B) is the trace
over the basis of subsystem A (B). The Rényi entanglement
entropy is another quantity, which behaves similarly to the
von Neumann entanglement entropy [12,13], and is defined as
Sα = [ln TrA(ρ̂α

A)]/(1 − α). The von Neumann entanglement
entropy can be regarded as the α → 1 limit of the Rényi
entanglement entropy.

The entanglement entropy is not merely an ideal quantity
in theory, but it is also measurable experimentally. The pro-
tocol for measuring the Rényi entanglement entropy was first
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proposed in 2012 [13,14]. In Ref. [13], the authors considered
the real-time dynamics of cold atoms in optical lattices, which
can be realized in experiments [15], and suggested preparing
two copies of the same state. The Rényi entanglement entropy
can be evaluated by controlling the tunnel coupling between
these copies and by measuring the parity of the atom num-
bers. The second Rényi entanglement entropy has been indeed
observed during a quench dynamics of one-dimensional (1D)
cold atomic gases in an optical lattice [16,17].

Previous theoretical studies have actively discussed the
dynamics of entanglement entropy after a quantum quench in
connection with information propagation and thermalization
[6,7,18–30]. While the dynamics of entanglement entropy in
1D lattice systems can be accurately analyzed by means of nu-
merical methods based on matrix product states [20–25], the
tractable time scale is rather limited in general due to the linear
growth of the entanglement entropy in time [18]. In the case
of 1D systems described by fermionic quasiparticles, such as
the transverse-field Ising model, when the system is quenched
to a noninteracting parameter region, long-time dynamics
can be investigated analytically [18,29,31,32]. In particular,
when the initial state is a Gaussian state, i.e., a ground or
thermal state of some free (quadratic) Hamiltonian, the time-
evolved state remains Gaussian. Then, the time evolution
of the entanglement entropy can be evaluated from single-
particle correlation functions. The fermionic Gaussian states
include simple product states such as the Mott-insulating (MI)
and charge-density-wave (CDW) states, which can also be
prepared in experiments.

By contrast, studies of the entanglement growth during
the quench dynamics for (soft-core) bosons are very few
even in the case that the system is quenched to the nonin-
teracting point. This is partly because a simple product state,
which is often used as an initial state of quench dynamics
in experiments [16,17], is not a Gaussian state for bosonic
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systems. Starting from product states such as the MI and
CDW states, single-particle correlation functions are analyt-
ically calculable [33–35]. However, it is not straightforward
to calculate the entanglement entropy from these correlation
functions because a time-evolved state is not a Gaussian
state.

This situation raises the following questions:
(i) Can we get an analytical form of the Rényi entangle-

ment entropy concerning real-time dynamics of noninteract-
ing bosonic systems?

(ii) Supposing we obtain the analytical form, can we rigor-
ously obtain conditions under which the volume-law scaling
is satisfied during the real-time evolution?

(iii) Can we numerically evaluate the Rényi entanglement
entropy in systems much larger than the best currently avail-
able methods can handle?

To answer these questions, we take the 1D soft-core Bose-
Hubbard model as the simplest playground. When the system
is quenched to the noninteracting Hamiltonian, we obtain the
analytical form of evaluating the second Rényi entanglement
entropy. It can be expressed by the expectation value of the
shift (SWAP) operator [13,14,16,17] and is given as the neg-
ative of the logarithm of the permanent of a time-dependent
matrix consisting of single-particle correlation functions. We
also give the condition for the volume-law scaling of the
Rényi entanglement entropy by using a permanent inequality
[36]. In addition, we obtain the long-time evolution of the
Rényi entanglement entropy in extremely large systems by
numerically computing the matrix permanent. Although direct
calculations of the permanent require exponential-time cost in
general, accessible sizes are found to be much larger than the
exact diagonalization and matrix-product-state methods can
deal with. Last but not least, we propose that the infinity norm
of rows of the matrix consisting of the correlation function
offers an entropy-density-like value and would give a practical
bound for the Rényi entanglement entropy. This value would
free us from exponential-time computations of the permanent,
as long as we are interested in a qualitative behavior of the
entanglement entropy growth rather than the value itself.

This paper is organized as follows: In Sec. II, we present
the 1D Bose-Hubbard model and introduce two initial states
for the quench dynamics. In Sec. III, we calculate the
time-evolved states after the sudden quench and derive the
analytical form of the Rényi entanglement entropy. In Sec. IV,
we summarize some interesting properties of the matrix con-
sisting of the correlation function introduced in Sec. III and
show the condition for the volume-law scaling of the Rényi
entanglement entropy. We describe some examples of the
application of the condition to quench dynamics in our model.
In Sec. V, we directly compute the permanent of the matrix
consisting of the correlation function and obtain the time evo-
lution of the Rényi entanglement entropy. We also compare
our results with other reference values. In addition, we intro-
duce an entropy-density-like value, which can be calculated
in polynomial time, and discuss a bound for the Rényi en-
tanglement entropy. In Sec. VI, we draw our conclusions and
discuss possible applications to several problems on real-time
dynamics of free boson systems. Throughout this paper, we

set h̄ = 1, take the lattice constant to be unity, and consider
the zero-temperature dynamics, for simplicity.

II. ONE-DIMENSIONAL BOSE-HUBBARD MODEL

We consider the quench dynamics in the 1D Bose-Hubbard
model under the open boundary condition. The Hamiltonian is
defined as

Ĥ = −J
L−1∑
j=1

(b̂†
j b̂ j+1 + H.c.) +

L∑
j=1

� j n̂ j

+ U

2

L∑
j=1

n̂ j (n̂ j − 1). (1)

Here the symbols b̂ j and n̂ j denote the boson annihilation and
number operators, respectively. The strength of the hopping
and the interaction are given as J and U , respectively, and
� j denotes the single-particle potential. The number of sites
is represented as L. This model quantitatively describes 1D
Bose gases in optical lattices when the lattice potential is
sufficiently deep.

We focus on the quench from insulating states to the nonin-
teracting (U = 0) and homogeneous (� j = 0) point. As initial
states, we specifically choose the MI state at unit filling, which
is represented as

|ψMI〉 =
L∏

j=1

b̂†
j |0〉, (2)

and the 010101 · · · CDW state at half filling, which is de-
scribed as

|ψCDW〉 =
L∏

j=2,4,...

b̂†
j |0〉, (3)

where |0〉 is the vacuum state of b̂ j and L is taken as an
even number. The MI state is the ground state of the Bose-
Hubbard model at unit filling for the large-U limit and can
be prepared in experiments via a slow ramp-up of the op-
tical lattice potential [16,17,35,37]. The CDW state is the
ground state of the Bose-Hubbard model at half filling when
� j = �(−1) j+1, �/J � 1, and U/J � 1. It can be pre-
pared in experiments with use of a secondary optical lattice
whose lattice constant is twice as large as that of the primary
lattice [38].

III. EVALUATING THE SECOND RÉNYI ENTANGLEMENT
ENTROPY USING SHIFT OPERATORS

We first consider the time evolution of the many-body wave
function. Since the matrix representation of the single-particle
Hamiltonian after the quench is tridiagonal, we easily find the
single-particle energy

εk = −2J cos

(
kπ

L + 1

)
(4)
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and corresponding eigenstate

xk,l =
√

2

L + 1
sin

(
kπ

L + 1
l

)
, (5)

where k, l = 1, 2, . . . , L. The time-evolved many-body states
|ψ (t )〉 = e−iĤt |ψ (0)〉 are given as

|ψMI(t )〉 =
L∏

j=1

[
L∑

l=1

y j,l (t )b̂†
l

]
|0〉, (6)

|ψCDW(t )〉 =
L∏

j=2,4,...

[
L∑

l=1

y j,l (t )b̂†
l

]
|0〉, (7)

where all information about real-time dynamics is encoded in

y j,l (t ) =
L∑

k=1

xk, je
−iεkt xk,l . (8)

The second Rényi entanglement entropy can be obtained
by utilizing the expectation value of the shift (SWAP) operator
V̂ [13,14,16,17]. Let us suppose that we have two copies of
the state |ψ (t )〉, which we call copies 1 and 2, and that the
total wave function is given by the product state of the two
copies,

|ψcopy(t )〉 = |ψ (t )〉 ⊗ |ψ (t )〉. (9)

We divide the system into two subsystems A and B. Here sub-
system A contains j = 1, 2, . . . , LA sites in this paper. Let us
consider the shift operator V̂A which swaps states in subsystem
A. The expectation value of V̂A in terms of |ψcopy(t )〉 is related
to the reduced density matrix ρ̂A as

〈ψcopy(t )|V̂A|ψcopy(t )〉 = Tr′
A(ρ̂A ⊗ ρ̂AV̂A) = TrAρ̂2

A, (10)

where Tr′
A stands for the trace over the basis of subsystem A

of copies 1 and 2. As long as V̂A acts on a product state of
copies 1 and 2, such as Eq. (9), the shift operator transforms
the creation operator as

V̂Ab̂†
jV̂

−1
A =

{
ĉ†

j ( j ∈ A)

b̂†
j ( j ∈ B),

(11)

V̂Aĉ†
jV̂

−1
A =

{
b̂†

j ( j ∈ A)

ĉ†
j ( j ∈ B),

(12)

where operators b̂ and ĉ respectively correspond to boson
operators for copies 1 and 2. For derivation of Eqs. (11)
and (12), see Appendix A. Making use of these relations,
we can evaluate the second Rényi entanglement entropy in
an elementary way. For example, for the MI state, it can be
evaluated as

S2 = − ln
〈
ψMI

copy(t )
∣∣V̂A

∣∣ψMI
copy(t )

〉
, (13)

∣∣ψMI
copy(t )

〉 =
⎧⎨
⎩

L∏
j=1

[
L∑

l=1

y j,l (t )b̂†
l

]⎫⎬
⎭

×
⎧⎨
⎩

L∏
j=1

[
L∑

l=1

y j,l (t )ĉ†
l

]⎫⎬
⎭|0〉⊗2, (14)

V̂A

∣∣ψMI
copy(t )

〉 =
⎧⎨
⎩

L∏
j=1

⎡
⎣ LA∑

l=1

y j,l (t )ĉ†
l +

L∑
l=LA+1

y j,l (t )b̂†
l

⎤
⎦
⎫⎬
⎭

×
⎧⎨
⎩

L∏
j=1

⎡
⎣ LA∑

l=1

y j,l (t )b̂†
l +

L∑
l=LA+1

y j,l (t )ĉ†
l

⎤
⎦
⎫⎬
⎭

× |0〉⊗2. (15)

Since both |ψMI
copy(t )〉 and V̂A|ψMI

copy(t )〉 are many-boson
states and their wave functions are symmetric under the per-
mutation of b̂ bosons (and ĉ bosons as well), the expectation
value 〈ψcopy(t )|V̂A|ψcopy(t )〉 can be rewritten by the perma-
nent of single-particle correlation functions Z and Z̃:

〈ψcopy(t )|V̂A|ψcopy(t )〉 = perm

(
Z̃ Z
Z Z̃

)
, (16)

where Z (Z̃ ) is a single-particle overlap matrix
between single-particle states e−iĤt b̂†

j |0〉⊗2 and

V̂Ae−iĤt ĉ†
l |0〉⊗2 (e−iĤt b̂†

j |0〉⊗2 and V̂Ae−iĤt b̂†
l |0〉⊗2). Using

the fact that Z + Z̃ = I , where I is an identity matrix, we
obtain the analytical expression of the Rényi entanglement
entropy:

S2 = − ln permAZ , (17)

AZ =
(

I − Z Z
Z I − Z

)
. (18)

Here the element z j,l of the Hermitian matrix Z is given as

zMI
j,l =

LA∑
m=1

y∗
j,m(t )yl,m(t ) ( j, l = 1, 2, . . . , L), (19)

zCDW
j,l =

LA∑
m=1

y∗
2 j,m(t )y2l,m(t ) ( j, l = 1, 2, . . . , L/2). (20)

Note that a somewhat similar formula for the Rényi entangle-
ment entropy given by the permanent has been proposed for
excited states in the static system [39].

In the following, L̃ denotes the size of the square matrix
AZ . It is given by 2N , where N is the number of particles.
For example, L̃ = 2L (L) for the MI (CDW) state. Hereafter
we will mainly consider the Rényi entanglement entropy for a
bipartition of the system into two half chains (LA = L/2).

IV. ANALYTICAL RESULTS

In this section, we analytically evaluate the system size
L dependence of the Rényi entanglement entropy S2 by ex-
amining the permanent of the matrix AZ . We will discuss
the condition for S2 to satisfy the volume-law scaling. Then,
we apply the obtained volume-law condition to the quench
dynamics of the present case.

A. Remarks on the matrices Z and AZ

Let us first summarize the characteristics of the matrices Z
and AZ . The purpose of this section is to show ||AZ ||2 = 1 for
both MI and CDW initial states. Here the operator 2-norm is
defined as ||A||2 := sup||x||2�1,x∈CM ||Ax||2 with M being the
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size of a square matrix A [on the right-hand side of the equa-
tion, ||x||p := (

∑
j |x j |p)1/p is an Lp norm of a vector x], or

the largest singular value of the matrix A. We will utilize this
fact to obtain the condition for the volume-law entanglement
growth in the next section.

For the quench from the MI state, the matrix ZMI is a com-
plex orthogonal projection matrix, satisfying (ZMI)2 = ZMI =
(ZMI)† (see Appendix B). Therefore, all the eigenvalues are
either 0 or 1. For the quench from the CDW state, the matrix
ZCDW is a principal submatrix of the Hermitian matrix ZMI;
i.e., it can be obtained from ZMI by removing L/2 rows and the
same L/2 columns. Using Cauchy’s interlace theorem [40,41],
we can show that all the eigenvalues of ZCDW are bounded by
the largest eigenvalue 1 and the smallest eigenvalue 0 of ZMI.
As a result, 0 � ||ZCDW||2 � ||ZMI||2 = 1.

All the eigenvalues of the matrix AZ can be obtained
from those of Z . Let us write the eigenvalues of Z as ε

(Z )
k

and the eigenvectors of Z as |ε (Z )
k 〉 = (vk,1, vk,2, . . . , vk,n)T

for k = 1, 2, . . . , n with n(= L̃/2) being the length of the
square matrix Z . Then, half of all the eigenvalues of AZ are
ε

(AZ )
k = 1, and the corresponding eigenvectors are |ε (AZ )

k 〉 =
(vk,1, vk,2, . . . , vk,n, vk,1, vk,2, . . . , vk,n)T . The remaining half
are ε

(AZ )
k+n = 2ε

(Z )
k − 1, and the corresponding eigenvectors

are |ε (AZ )
k+n 〉 = (vk,1, vk,2, . . . , vk,n,−vk,1,−vk,2, . . . ,−vk,n)T .

Therefore, ε
(AZ )
k , ε

(AZ )
k+n ∈ [−1, 1] because ε

(Z )
k ∈ [0, 1]. Thus,

the operator 2-norm of the matrix AZ satisfies ||AZ ||2 = 1.
For the quench from the MI state, the matrix AMI

Z becomes a
unitary matrix, which can be shown by the relations (ZMI)2 +
(I − ZMI)2 = ZMI + (I − ZMI) = I and ZMI(I − ZMI) = 0.
This unitarity also ensures ||AMI

Z ||2 = 1. For the quench from
the CDW state, the matrix ACDW

Z is not a unitary matrix in
general; however, ||ACDW

Z ||2 = 1 still holds.
Note that the elements of matrix AZ satisfy∑

l

a j,l = 1,
∑

j

a j,l = 1, (21)

for any rows j and columns l , which is a part of the defini-
tion of the doubly stochastic matrix while the non-negativity
condition a j,l � 0 is absent. (Here the matrix AZ is complex
and satisfies 0 � |a j,l | � max(|a j,l |) � ||AZ ||2 = 1.) The per-
manent of the doubly stochastic matrix has been intensively
studied [42–49], while little is known about the permanent of
a general complex matrix so far.

B. Condition for volume-law entanglement entropy

To quantify the L̃ dependence of the entanglement entropy,
we utilize the inequality [36]

|permA| � CM exp

{
−10−5 ×

[
1 − gA(M )

C

]2

M

}
, (22)

which holds for an arbitrary M × M complex matrix A and
an arbitrary nonzero constant C satisfying C � ||A||2. The
function gA(M ) is defined as

gA(M ) := 1

M

M∑
j=1

||r j ||∞ (23)

with r j’s being rows of a matrix A and ||x||∞ := max j |x j |,
which satisfies 0 � gA(M ) � ||A||2.

We apply inequality (22) to our case given by Eqs. (17)
and (18). From Eq. (10), permAZ equals TrAρ̂2

A, implying
permAZ > 0. In addition, because ||AZ ||2 = 1, we can choose
C = 1 as the tightest bound. Then, the inequality is simplified
as

permAZ � exp{−10−5 × [1 − gAZ (L̃)]2L̃}, (24)

where

gAZ (L̃) = 1

N

N∑
j=1

N
max
l=1

(|z j,l |, |δ j,l − z j,l |). (25)

Note that |permA| � 1 holds for any unitary matrix A [50],
as is the case with the quench from the MI state. Even if A
is nonunitary, as is the case with the quench from the CDW
state, |permA| � (||A||2)M holds [51]. Inequality (22) gives a
much tighter constraint on the permanent of A than these two
inequalities.

Consequently, the Rényi entanglement entropy satisfies

S2 � 10−5 × [1 − gAZ (L̃)]2L̃. (26)

This inequality rigorously guarantees that when

lim
L̃→∞

[1 − gAZ (L̃)] �= 0, (27)

the Rényi entanglement entropy shows the volume-law scal-
ing. In other words, when Eq. (27) holds, the area-law scaling
(and the area-law scaling with a logarithmic correction, as
is often the case in critical systems [2–5]) is prohibited. If
limL→∞[1 − gAZ (L̃)] = 0 (L̃ ∝ L), inequality (26) becomes
meaningless and either the area-law or volume-law scaling is
allowed. From the volume-law condition given in Eq. (27),
we expect that the value 1 − gAZ (L̃) (� 0) could be used as an
entropy-density-like value, which we will discuss in Sec. V E.

C. Application to the quench dynamics

Here we give two examples which violate the volume-law
condition in Eq. (27). One is a product state and the other
is a time-evolved state after a short time. Neither of these is
expected to follow the volume-law scaling, and in the follow-
ing we show that they indeed break the condition in Eq. (27).
Here, we take a state starting from the MI state as an example.

The first case is a product state at t = 0, which apparently
has zero entanglement entropy. This fact implies the violation
of the condition in Eq. (27). A straightforward calculation on
the matrix ZMI gives a matrix

ZMI =
(

IN/2 0N/2

0N/2 0N/2

)
. (28)

The matrix AZ becomes just a permutation matrix, which is a
square matrix whose every row and column contains a single
1 with 0s elsewhere. In fact, gAZ (L̃) = ||AZ ||2 = 1 if and only
if the matrix AZ is a permutation matrix [36]. Therefore,
the product state always breaks the condition irrespective of
L. On the other hand, we can directly calculate the Rényi
entanglement entropy by the permanent. The permanent of
a permutation matrix is unity, and thus the entanglement en-
tropy for a product state is zero, as expected.
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j
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10−10 10−8 10−6 10−4 10−2 100
|zj,l|

FIG. 1. Time dependence of the absolute value of the correlation
function |z j,l | from the MI initial state with L = 256 at (a) tJ/L = 0,
(b) tJ/L = 0.05, (c) tJ/L = 0.1, and (d) tJ/L = 0.25. At t = 0, the
correlation function z j,l is given by Eq. (28). For 0 < tJ < L/4, z j,l

is approximately given by Eq. (29) and the length of the sides of the
square where |z j,l | > 10−10 holds is nearly equal to 2β ≈ 4tJ .

The second case is a time-evolved state with a short
time, t � L/vC, where vC is the propagation velocity of
correlations. In the present 1D free boson system, vC is
equivalent to the maximum quasiparticle velocity vmax. The
velocity is given by the maximal group velocity and vmax = 2J
[34,35] (when h̄ = 1 and the lattice constant is chosen to be
unity) in the present case. Because the single-particle corre-
lation function extends up to a distance vCt , it is likely that
the entanglement entropy does not grow with increasing L
when L > vCt . Therefore, the time-evolved state with fixed
t (� L/vC) is expected to follow the area-law scaling, imply-
ing the breaking of the volume-law condition in Eq. (27).

In this situation, we can approximate the matrix ZMI as

ZMI ≈
⎛
⎝IN/2−β 0 0

0 Z ′
2β 0

0 0 0N/2−β

⎞
⎠, (29)

where β is a positive integer and is roughly proportional to
2tJ . Z ′

2β would be a dense matrix with the size 2β × 2β.
Figure 1 shows the time dependence of the absolute value of
ZMI. We see that ZMI actually has the matrix structure given
in Eq. (29) when tJ � L/4. For the derivation of Eq. (29) and
the specific value of β, see Appendix C.

Using Eq. (29), we can verify the breaking of the volume-
law condition of Eq. (27). Substituting Eq. (29) into gAZ (L̃) in
Eq. (25), we obtain

gAZ (L̃) = N − 2β

N
+ 1

N

∑
j∈


max
l∈


(|z j,l |, |δ j,l − z j,l |), (30)
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FIG. 2. Time dependence of the Rényi entanglement entropy for
the quench from the (a) MI and (b) CDW states. For a short time
(tJ � L/4), the Rényi entanglement entropy S2 exhibits an increase
proportional to time t . After a long time (tJ � L/4), S2 is nearly
saturated at the value proportional to the system size L.

where 
 = [N/2 − β, N/2 + β]. Because 0 � |z j,l | � 1, 1 −
gAZ (L̃) is bounded like

0 � 1 − gAZ (L̃) � 2β

N
. (31)

Since β depends on 2tJ but not on the system size L, by taking
the thermodynamic limit L(∝N ) → ∞, we conclude

lim
L→∞

[
1 − gAZ (L̃)

] = 0. (32)

We note that the breaking of the volume-law condition
does not directly mean the area-law scaling, as mentioned
before. Because we do not have the criterion on the area-law
scaling of the entanglement entropy at this stage, we rely on
the numerical calculation to check the area-law scaling. The
numerical results of the Rényi entanglement entropy will be
shown in the next section. Calculated Rényi entanglement
entropies with a short time tJ � L shown in Fig. 2 take
almost the same value with increasing L, implying that the
entanglement entropy of this state would obey the area-law
scaling.

Another less rigorous evidence of the area-law entan-
glement scaling can be seen from the permanent formula.
Substituting the approximated expression on ZMI in Eq. (29)
into Eq. (18), we obtain the permanent of the matrix AZ as

permAZ ≈ permAZ ′

= perm

(
I2β − Z ′

2β Z ′
2β

Z ′
2β I2β − Z ′

2β

)
. (33)
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Applying the same discussion in Sec. IV B with replacing
the matrix size L̃ with 2β, we expect that the entanglement
entropy would be constant when 1 − gAZ′ = 0 or proportional
to 2β when 1 − gAZ′ �= 0. Strictly speaking, this argument
does not exclude the possibility that the entanglement entropy
is also proportional to the system size L. However, since the
condition for the volume-law scaling in Eq. (27) itself ensures
the proportionality of the entanglement entropy with respect
to L̃, it is unlikely that the volume-law scaling of entanglement
would be satisfied if the proportionality to L̃ is replaced by that
to β.

V. NUMERICAL RESULTS

In this section, we will numerically evaluate the perma-
nent to obtain the Rényi entanglement entropy. In general,
permanent calculations require an exponentially long time.
However, we can practically obtain the Rényi entanglement
entropy for systems larger than the exact diagonalization
method can handle and can perform longer simulations than
the method based on matrix product states, even by perform-
ing a brute-force permanent calculation.

The advantages of getting the Rényi entanglement entropy
by the permanent calculation are the following:

(i) We do not need Hamiltonian eigenstates, which require
much memory cost. This is the main reason why our method
enables us to access larger systems than the exact diagonaliza-
tion method can handle.

(ii) Without explicit time evolution, we can directly cal-
culate the Rényi entanglement entropy at a given time, which
allows us parallel computations.

(iii) In a system of soft-core bosons, there is no upper limit
to the number of bosons at any site, but it is common to set a
realistic limit when performing numerical calculations. With
the present method we have proposed, we do not have to care
about the size of such a local Hilbert space limitation.

A. Summary of algorithm

Here we briefly review the algorithm for the permanent
calculation. The permanent of an M × M matrix A is defined
as

permA =
∑

σ∈Sym(M )

M∏
j=1

a j,σ ( j), (34)

where Sym(M ) is the symmetric group, i.e., over all per-
mutations of numbers 1, 2, . . . , M. Since straightforward
calculations require M! × M arithmetic operations, we should
use a more efficient algorithm. The best known algorithms
so far are the Ryser formula [52–54] and Balasubramanian-
Bax-Franklin-Glynn (BBFG) formula [54–58]. Both take
O(M2M−1) computation time. Hereafter we mainly use the
BBFG formula for the permanent calculation. It is given by

permA = 1

2M−1

∑
δ

(
M∏

m=1

δm

)
M∏

l=1

M∑
j=1

δ ja j,l , (35)

where δ = (δ1, δ2, . . . , δM ) ∈ {±1}M with δ1 = 1. Although
the computation time using the above straightforward BBFG
formula is O(M22M−1), it can be reduced to O(M2M−1) by

utilizing a specific ordering of the binary numeral system,
known as Gray code [59,60]. Our numerical source code is
based on the PYTHON program in “The Walrus” library [61].

The current feasible matrix size is up to ∼50 × 50 [62–64].
For the quench from the MI (CDW) state, the size of the
matrix AZ is 2L × 2L (L × L). Therefore, in principle, we
may handle L � 25 (L � 50) for the MI (CDW) case. Here
we present our results for L � 20 (L � 40) for the quench
from the MI (CDW) state. Although we may be able to uti-
lize the symmetry of the matrix AZ to accelerate permanent
computations [65], we stick to the original BBFG formula.
Even without improving the original algorithm, it allows us
to calculate the permanent for systems much larger than the
exact diagonalization method can deal with. (Note that, for
example, exact diagonalization calculations for L = 14 from
the MI state to U/J = 3.01 have been reported [23].) As for
the size at which the permanent is computable, the Rényi
entanglement entropy can be obtained at any given time,
allowing for longer simulations than the methods based on
matrix product states.

B. Time dependence of Rényi entanglement entropy

We examine the time dependence of the Rényi entangle-
ment entropy (see Fig. 2). For a short time (tJ � L/4), S2

grows linearly with t . After tJ � L/4, S2 is almost saturated
and reaches the value nearly proportional to L. S2 exhibits os-
cillations whose period grows with L. These observations are
consistent with the fact that the t-linear growth of the entan-
glement entropy terminates at t ∼ L/(2vmax), where vmax =
2J is the maximum quasiparticle velocity [27,34,35].

To see this behavior more clearly, we rescale the time tJ
and the Rényi entanglement entropy S2 in the unit of the
system size L (see Fig. 3). All the lines nearly overlap for
tJ/L � 1 when L � 10 (L � 20) for the quench from the MI
(CDW) state. The deviation from the thermodynamic limit
appears to be smaller for the CDW state because the feasible
size is larger than the MI state.

C. Comparison with the Rényi entanglement entropy estimated
from the Gaussian state

The MI or CDW state quenched to U = 0 evolves to a
Gaussian state after a long time in the thermodynamic limit
(L � tJ � 1) [33,66,67]. The entanglement entropy of the
Gaussian state can be calculated from the eigenvalues of the
matrix, consisting of 〈b̂†

j b̂l〉 and 〈b̂ j b̂l〉 [18,29,31,32,68]. After
diagonalizing the matrix in bosonic systems, we obtain the
eigenvalues, which correspond to the expectation values of the
mode occupation numbers nμ. The Rényi entanglement en-
tropy Sα of order α can be described by nμ as [18,29,31,32,68]

Sα = 1

α − 1

∑
μ

ln
[
(nμ + 1)α − nα

μ

]
. (36)

The time-evolved state is not a Gaussian state for tJ, L <

∞ in general. However, it is not outrageous to extract
reference values using the Gaussian state, which exhibits
the same single-particle correlation functions of the (non-
Gaussian) time-evolved state for a finite time and finite sizes.
At least for the MI quench, as we see below, single-particle
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FIG. 3. Rescaled time dependence of the Rényi entanglement
entropy for the quench from the (a) MI and (b) CDW states. The
Rényi entanglement entropy and the time are rescaled by L. The
dashed lines correspond to the Rényi entanglement entropy densities
SGaussian

2 /L estimated from Eq. (36). The dashed line is independent
of L for the MI state, while it is obtained for a sufficiently large
size (L = 1024) for the CDW state. The insets show the long-time
behavior of the Rényi entanglement entropy densities.

correlations are independent of time and size. As a result,
the Rényi entanglement entropy of Eq. (36) obtained from
the mode occupation numbers nμ for any tJ, L < ∞ gives the
true Rényi entanglement entropy for L � tJ � 1. Hereafter
we use the symbol SGaussian

2 to denote the Rényi entanglement
entropy estimated from Eq. (36).

For the quench starting from the MI state, the matrix
consisting of the correlation function is already diago-
nal; 〈b̂†

j b̂l〉 = δ j,l and 〈b̂ j b̂l〉 = 0 ( j, l = 1, 2, . . . , LA) for all
L and tJ . The mode occupation numbers, nμ = 1 (μ =
1, 2, . . . , LA), are independent of time and sizes. Therefore,
the Rényi entanglement entropy of subsystem A, whose size is
LA = L/2, is given by SGaussian

2 = ln 3 × L/2 ≈ 0.5493 × L.
Indeed, numerically obtained S2 for tJ � L fluctuates around
SGaussian

2 [see Figs. 3(b) and 4(b)], while a t-linear growth is
not reproduced in SGaussian

2 for a short time (tJ � L).
For the quench starting from the CDW state, we numeri-

cally evaluate the Rényi entanglement entropy for a subsystem
size LA = L/2. In this case, 〈b̂†

j b̂l〉 depends on time, and there-
fore, SGaussian

2 oscillates in time. Again, numerically obtained
S2 for tJ � L fluctuates around SGaussian

2 [see Figs. 3(b) and
4(b)], whereas a t-linear growth in a short time is absent for
SGaussian

2 . The Rényi entanglement entropy in the thermody-
namic limit for a long time is estimated to be SGaussian

2 /L =
0.31(1) for the Gaussian state, and S2 is expected to converge
to this value for L � tJ � 1.
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FIG. 4. Comparisons among the Rényi entanglement entropy S2

(solid lines), that estimated from Eq. (36), SGaussian
2 (dashed lines),

and the Page value SPage
2 (dotted lines) for the (a) MI and (b) CDW

states. Note that SGaussian
2 and SPage

2 of L = 10 for the MI state take
almost the same value. We do not show error bars of SPage

2 because
they are invisibly small.

D. Comparison with Page value

The Bose-Hubbard model is nonintegrable (integrable)
for |U | > 0 (U = 0). The system is thermalized when it is
quenched to the parameter region |U | > 0 [69,70]. The en-
tanglement entropy would be nearly saturated at that of the
random state vector, which is known as the Page value SPage

2
[71]. For the Bose-Hubbard model, an analytical expression
for the Page value has not been obtained yet. We can obtain
the Page value within the statistical error bars by numerically
taking an average of random state vectors [25,72]. When
taking this average, we should directly use the Hilbert space
of the Bose-Hubbard model. The dimension of the Hilbert
space grows exponentially when increasing the system size.
Therefore, we can estimate the Page value only for rather
small system sizes. In this paper, we calculate SPage

2 up to
L = 12 (L = 16) at unit filling (half filling).

For the U = 0 quench, the time-evolved state is not ther-
malized. The Rényi entanglement entropy, in this case, would
deviate from the Page value. To examine whether we can
tell the difference between the entanglement entropy of the
thermalized state and that of the state quenched to U = 0, we
compare the Rényi entanglement entropy at U = 0 with the
Page value. We calculate the Page value by averaging 1024
random samples.

As for the quench from the MI state, the Page value SPage
2

at unit filling is close to the Rényi entanglement entropy S2

for a longer time (tJ � L/4) and for all systems (L � 12)
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FIG. 5. System size dependence of the Rényi entanglement en-
tropy density for (a) the MI initial state and (b) the CDW initial
state. Circles represent the time average of the Rényi entanglement
entropy density of the time-evolved state S2/L from tJ = 1 to tJ =
104. Diamonds are the time average of SGaussian

2 /L from tJ = 1 to
tJ = 104. Squares are the Page value. The solid and dotted lines are,
respectively, linear fits of S2/L and SPage

2 /L using five largest systems.
The dashed line in (a) represents SGaussian

2 /L, which is independent
of the system size L. The dashed line in (b) shows a linear fit of
SGaussian

2 /L using data satisfying L � 20. We do not show error bars
because they are small compared to symbol sizes.

that we have considered [see Fig. 4(a)]. When increasing the
system size L, we see that the Page value becomes greater
than the Rényi entanglement entropy S2 at a longer time. This
observation indicates that when taking the thermodynamic
limit, the Page value converges to the value larger than S2.
We examine the system-size dependence and extrapolate these
values, as well as SGaussian

2 , to the thermodynamic limit, as
shown in Fig. 5(a). The Rényi entanglement entropy S2 in
the thermodynamic limit is very close to that of the Gaussian
state, which is expected from previous studies [33,66,67],
although we see a small deviation due to finite-size effects. On
the other hand, in the thermodynamic limit, the Page value is
greater than S2 and SGaussian

2 . Thus, it is expected that a jump
occurs between the entropies of U = 0 and |U | > 0 quenches
after long-time evolution for sufficiently large system sizes,
although they take similar values in a small system. In this
respect, we compare the Rényi entanglement entropy of U =
0 with that of U > 0 and confirm the presence of a jump in
Appendix D.

For the quench from the CDW state at half filling, the
Rényi entanglement entropy S2 is slightly smaller than the
Page value unlike the MI case [see Fig. 4(b)]. The deviation
seems to be more enhanced with increasing system sizes. It

is likely that the Rényi entanglement entropy density would
be smaller than the density of the Page value in the thermo-
dynamic limit although the Rényi entanglement entropy itself
satisfies the volume-law scaling, as can be seen from Fig. 3(b).
We investigate the system-size dependence and extract the
Rényi entanglement entropy density in the thermodynamic
limit, as shown in Fig. 5(b). From the same discussion as
in the MI case, there is a jump between the entropies of
U = 0 and |U | > 0 quenches after long-time evolution, which
is discussed in Appendix D.

The time-averaged Rényi entanglement entropy density
S2/L of the U = 0 quench is smaller than the Page value
SPage

2 /L, which is also the value S2/L expected for the |U | > 0
quench, as shown in Fig. 5. This would be understood from
the viewpoint of the number of states and the integrability.
When the state is thermalized, the entanglement entropy is
saturated at the Page value and the state would be character-
ized by the thermal distribution. Therefore, the entanglement
entropy as well as the Page value would be identified as the
thermal entropy, described by the logarithm of the number of
states. When we denote ζ as the number of states per site, the
number of states in subsystem A is given by ζ LA and the Page
value SPage

2 /L would be approximated by [ln(ζ )]/2 (where
LA = L/2). On the other hand, after a long-time evolution, the
state quenched to U = 0 relaxes to a state characterized by the
generalized Gibbs ensemble (GGE), which is the Boltzmann
(thermal) distribution taking into account not only the internal
energy but also a set of conserved quantities [73]. In this case,
the time-averaged Rényi entanglement entropy can be seen as
the logarithm of the number of states in the GGE [74]. Due to
the presence of the exponentially large number of conserved
quantities, the number of states in the GGE would be ζ LA/ηLA ,
where η(>1) represents the number of conserved charges per
site. Consequently, the entropy density of the GGE, S2/L,
is estimated as [ln(ζ/η)]/2. Comparing the Page value and
the entropy density of the GGE, we see that S2/L is always
smaller than SPage

2 /L.

E. Entropy-density-like value and practical bound
for the Rényi entanglement entropy

From the argument in Sec. IV B, we obtain the rigorous
lower bound for the second Rényi entanglement entropy den-
sity, which is given as

S2

L̃
� 10−5 × [

1 − gAZ (L̃)
]2

. (37)

Moreover, the tighter bound was conjectured to be permA �
exp{−const × M[1 − gA(M )]}, where M is the size of matrix
A [36], which gives the lower bound of the Rényi entangle-
ment entropy as

S2

L̃
� const × [

1 − gAZ (L̃)
]
. (38)

We briefly note that the conjectured bound gives the same con-
dition for the volume-law entanglement growth as Eq. (27).
These inequalities lead us to expect that s̃(L̃) = 1 − gAZ (L̃)
determines the qualitative behavior of the Rényi entanglement
entropy density and serves as an entropy-density-like value.
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FIG. 6. Comparisons between the rescaled Rényi entanglement
entropy S2/L̃ and s̃(L̃) estimated from the infinity norm of rows of
the matrix AZ for the quench from the (a) MI (L̃ = 2L) and (b) CDW
(L̃ = L) states. The value s̃(L̃ → ∞) is obtained for a sufficiently
large size (L = 1024). Note that s̃(L̃)′s are the same for the MI and
CDW states as shown in Appendix E.

s̃(L̃) is obtained from gAZ in Eq. (25):

s̃(L̃) = 1 − 1

N

N∑
j=1

N
max
l=1

(|z j,l |, |δ j,l − z j,l |). (39)

As shown in Appendix E, the entropy-density-like value can
be expressed in a simple form:

s̃(L̃) = 1

2
− 1

N

N∑
j=1

∣∣∣∣z j, j − 1

2

∣∣∣∣. (40)

Unlike the permanent of matrix AZ , which requires costly cal-
culation, s̃(L̃) is easy to compute numerically and analytically.
Hence if s̃(L̃) has a similar tendency with S2/L̃, it would
be a helpful quantity to qualitatively capture features of the
entanglement entropy density.

To see the behavior of s̃(L̃) in the thermodynamic limit,
we compare s̃(L̃) for a much larger system L = 1024 with
S2/L̃ for L̃ � 40 in Fig. 6. We have confirmed that s̃(L̃) con-
verges well when L � 256 and, therefore, regarded s̃(L̃) with
L = 1024 as that in the thermodynamic limit, s̃(L̃ → ∞).
Both s̃(L̃ → ∞) and S2/L̃ are found to behave in a qualita-
tively similar way including the period of oscillations. Thus,
we confirm that s̃(L̃ → ∞) certainly captures the qualitative
behavior of the Rényi entanglement entropy density.

While Eq. (38) means that const × s̃(L̃) serves as a lower
bound of S2/L̃, we observe in Fig. 6 that the rescaled Rényi en-
tanglement entropy S2/L̃ would be practically bounded from
above by the entropy-density-like value in the thermodynamic

FIG. 7. Comparisons between the rescaled Rényi entanglement
entropy S2/L̃ and s̃(L̃) estimated from the infinity norm of rows
of the matrix AZ for the quench from the (a) MI (L̃ = 2L) and
(b) CDW (L̃ = L) states for L = 4, 8, and 12. In both cases, the
Rényi entanglement entropy density S2/L seems to be bounded by
2s̃(L̃). Note that s̃(L̃)′s are the same for the MI and CDW states as
shown in Appendix E.

limit s̃(L̃ → ∞). This observation leads us to expect that s̃(L̃)
would play a role of an upper bound of S2/L̃ for any system
sizes and motivates us to examine how s̃(L̃) bounds the Rényi
entanglement entropy S2/L̃ from above. For this purpose, we
compare these for some finite L’s, as shown in Fig. 7. We
find a region where the expected inequality S2/L̃ < s̃(L̃) is
slightly violated. Even in this case, for the MI quench, S2/L̃
is bounded by 2s̃(L̃) from above and they well overlap in the
time range tJ/(2L) � 0.02 [see Fig. 7(a)]. Likewise, in the
case of the CDW quench, 2s̃(L̃) still gives an upper bound for
S2/L̃ [see Fig. 7(b)]. From these observations, we speculate
that some constant value times s̃(L̃) would practically give an
upper bound of the Rényi entanglement entropy.

To sum up this section, we have observed

S2

L̃
� s̃(L̃ → ∞) for L̃ � 1, (41)

S2

L̃
� const × s̃(L̃) for finite L̃. (42)
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These results imply that s̃(L̃), which can be obtained from the
infinity norm of rows of the matrix AZ , would be a helpful
guide in qualitatively estimating the Rényi entanglement en-
tropy at least in the present case. We expect that the current
discussion is applicable to other initial conditions and Hamil-
tonians.

VI. SUMMARY AND OUTLOOK

We have studied the time evolution of the Rényi entangle-
ment entropy in a 1D free boson system. We have focused
on the quench dynamics of the 1D Bose-Hubbard model at
the noninteracting point starting from the Mott-insulating and
charge-density-wave initial states. We have obtained the an-
alytical form of the second Rényi entanglement entropy by
calculating the expectation value of the shift operator. The
Rényi entanglement entropy was found to be the negative of
the logarithm of the permanent of the matrix whose elements
are time-dependent single-particle correlation functions. Us-
ing a permanent inequality, we have rigorously proven that the
Rényi entanglement entropy satisfies the volume-law scaling
under a certain condition. We have also numerically obtained
the long-time evolution of the Rényi entanglement entropy by
direct computations of the permanent. Although it requires
exponential time in general, the present approach is superior
to the best currently available methods such as the exact
diagonalization and matrix-product-state methods. The feasi-
ble system size is about twice the size that the conventional
method can handle [23]. Since our method enables us to com-
pute the Rényi entanglement entropy at any time, the reach-
able time is also much longer than the conventional methods.

The procedure presented in this paper can be extended
to systems containing long-range hopping parameters and
those with randomness. Real-time dynamics of such complex
quantum many-body systems of free fermions have attracted
much attention recently, whereas those of free bosons are
yet to be explored because of their computational diffi-
culties. Our method would be helpful for studying such
bosonic counterparts. Typical examples include (i) nonin-
teracting higher-dimensional systems (see Refs. [75–77] for
correlation-spreading dynamics with an interaction quench in
two dimensions), (ii) Anderson localization with long-range
hopping (see Refs. [78,79] for free fermions), (iii) local-
ization in disorder-free or correlated-disorder systems such
as the Aubry-André model [80] (see Refs. [78,81] for free
fermions), and (iv) Lindblad dynamics of free bosons (see
Refs. [82–86] for free fermions). Our formula would also be
useful in studying the entanglement properties of mixtures of
bosons and fermions (e.g., fermion system in cavities [87] and
Bose-Fermi-Hubbard systems [88]).

We have introduced the entropy-density-like value using
the infinity norm of rows of the matrix consisting of the
correlation function and have numerically demonstrated that it
well captures the features of the Rényi entanglement entropy
density. We have also discussed a practical bound of the en-
tanglement entropy, i.e., that of the matrix permanent, which
usually requires exponential time computations. Our findings
on the practical bound would also stimulate mathematical
research on the permanent of general complex matrices and

research in the field of quantum computing involving boson-
sampling techniques [89,90].

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with S. Goto
and Y. Takeuchi. This work was financially supported by
JSPS KAKENHI (Grants No. 18H05228, No. 19K14616, No.
20H01838, No. 21H01014, and No. 21K13855), by Grant-in-
Aid for JSPS Fellows (Grant No. 22J22306), by JST CREST
(Grant No. JPMJCR1673), by MEXT Q-LEAP (Grant No.
JPMXS0118069021), and by JST FOREST (Grant No. JP-
MJFR202T).

APPENDIX A: DERIVATION OF EQUATIONS (11) AND (12)

Although we apply Eqs. (11) and (12) to the product state
of the same state living in copies 1 and 2, such as Eq. (9),
in the main part, it holds even if states of copies 1 and 2 are
different. To prove this, we first Schmidt-decompose the state
of copy 1 (2) as

|ψ〉1(2) =
∑

l

s1(2)
l |φl〉1(2),A|ϕl〉1(2),B, (A1)

where |φl〉1(2),A and |ϕl〉1(2),B are orthonormal states of sub-
systems A and B, respectively. s1(2)

l is the Schmidt coefficient.
The product state of copies 1 and 2 is given by

|ψprod〉 = |ψ〉1 ⊗ |ψ ′〉2, (A2)

where we assume that copies 1 and 2 can have different states.
We consider how V̂Ab̂†

jV̂
−1

A acts on the state given by

Eq. (A2). Note that V̂ −1
A = V̂A holds because of V̂ 2

A = Î , where
Î is an identity operator. When j ∈ B, V̂Ab̂†

jV̂
−1

A |ψprod〉 =
b̂†

j |ψprod〉 trivially holds. In the case of j ∈ A, the action of

V̂Ab̂†
jV̂

−1
A on the product state is given by

V̂Ab̂†
jV̂

−1
A |ψprod〉

= V̂Ab̂†
jV̂

−1
A

∑
l,m

s1
l s′2

m |φl〉1,A|ϕl〉1,B|φ′
m〉2,A|ϕ′

m〉2,B

= V̂Ab̂†
j

∑
l,m

s1
l s′2

m |φ′
m〉1,A|ϕl〉1,B|φl〉2,A|ϕ′

m〉2,B

= V̂A

∑
l,m

s1
l s′2

m (b̂†
j |φ′

m〉1,A)|ϕl〉1,B|φl〉2,A|ϕ′
m〉2,B

=
∑
l,m

s1
l s′2

m |φl〉1,A|ϕl〉1,B(ĉ†
j |φ′

m〉2,A)|ϕ′
m〉2,B

= ĉ†
j |ψprod〉. (A3)

Thus, we proved Eq. (11) [and Eq. (12) in the same manner]
as long as it acts on the product state of copies 1 and 2.

APPENDIX B: MORE ON THE PROPERTY
OF THE MATRIX ZMI

The matrix X , having the element xk,l in Eq. (5), is unitary
and diagonalizes the single-particle Hamiltonian matrix H ,
namely, HX = XE , with the matrix E being a diagonal matrix
consisting of all the corresponding eigenvalues. The matrix
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D = e−iEt (t � 0) is also unitary, and the matrix Y , having
the component y j,l in Eq. (8), is given as Y = X †DX . Because
YY † = Y †Y = I , Y is also unitary.

The Hermitian matrix ZMI can be represented as

ZMI = (Y PL/2Y
†)T , PL/2 =

(
IL/2 0L/2

0L/2 0L/2

)
, (B1)

where IL/2 and 0L/2 are, respectively, an L/2 × L/2 iden-
tity matrix and an L/2 × L/2 zero matrix. Since PL/2 is
a projection matrix, satisfying P2

L/2 = PL/2, we immediately
obtain (ZMI)2 = ZMI. Therefore, the matrix ZMI is a projec-
tion matrix. Note that this argument holds for any Hermitian
single-particle Hamiltonian matrix H , in particular, containing
long-range hopping parameters with randomness.

APPENDIX C: DERIVATION OF EQUATION (29)

The purpose of this Appendix is to prove Eq. (29) for a
time-evolved state with a short time, t � L/vC. Correspond-
ing to the limit in Eq. (27), we consider the thermodynamic
limit, L → ∞ with a fixed time t in the following.

Since we consider the case tJ � L and the thermodynamic
limit, the summation in Eq. (8) can be replaced with the
integral. In this case, the single-particle wave function y j,l and
the correlation function z j,l can be expressed as

y j,l = (−i) j−l [Jj−l − (−1)l J j+l ], (C1)

z j,l = i j (−i)l
LA∑

m=1

[Jj−mJl−m + Jj+mJl+m

− (−1)mJj−mJl+m − (−1)mJj+mJl−m], (C2)

where we use an abbreviation Jn = Jn(2tJ ) with Jn(x) being
the Bessel function of the first kind.

We note that the Bessel function is exponentially small
when |n| > (e/2)x because of the inequality of the Bessel
function,

|Jn(x)| � (x/2)|n|

|n|! ≈ e−(|n|+1/2)ln(2|n|/ex)

√
πex

, (C3)

where x � 0 and n is an integer. Note that J−n(x) =
(−1)nJn(x) holds. When deriving the right-hand side of
Eq. (C3), we assume that |n| is large and use Stirling’s ap-
proximation. Using this fact, we can simplify the correlation
function z j,l . Let β be the smallest positive integer for which
|Jβ (2tJ )| is negligibly small. When we specifically demand
|Jβ (2tJ )| < ε, β is approximately given by

β � e

2
(2tJ ) − ln

√
πe(2tJ )ε + · · · , (C4)

where we assume that 2tJ � 1 and β � 1. By definition,
Jn(2tJ ) for |n| > β is exponentially small.

We evaluate z j,l in detail using the aforementioned prop-
erties of the Bessel function. When (i) j > LA + β, (ii)
j < LA − β, (iii) l > LA + β, and (iv) l < LA − β, we can
approximate z j,l to a simple form. When (i) j > LA + β,
all terms in the summation of Eq. (C2) are exponentially
small because the smallest index ( j − m or j + m) of the
Bessel functions with varying m is j − LA(>β ). Thus, we

can approximate the correlation function as z j,l ≈ 0. A similar
argument holds for case (iii) by replacing j with l .

Before moving to the next case, we note that due to the
unitarity of y j,l , the correlation function z j,l can be regarded
by δ j,l when the upper limit of the summation (LA) in Eq. (C2)
can be replaced by L. This can be approximately achieved
when

∑L
m=LA+1 y∗

j,myl,m is negligibly small. [Compare the
definition of z j,l in Eq. (19).] When (ii) j < LA − β, the
index with the smallest absolute value of the Bessel func-
tions in

∑L
m=LA+1 y∗

j,myl,m with varying m is j − (LA + 1)

(< − β ) and we can approximate
∑L

m=LA+1 y∗
j,myl,m ≈ 0.

Therefore, we can regard z j,l as δ j,l . For case (iv), we can
obtain the same result by replacing j with l .

As a result, ZMI has a structure shown in Fig. 1. Denoting
the dense matrix part that does not fall under the above sim-
plifications as Z ′

2β (whose matrix size is 2β × 2β), we obtain
Eq. (29).

APPENDIX D: QUENCH TO FINITE U FROM THE MI AND
CDW INITIAL STATES

As shown in Figs. 4 and 5, when the system is quenched
to the noninteracting point (U = 0) starting from the MI and
CDW initial state, the Rényi entanglement entropy after the
long-time evolution deviates from the Page value. When the
system is quenched to finite U , it is expected that thermaliza-
tion occurs and the Rényi entanglement entropy approaches
the Page value after the long-time evolution. These facts indi-
cate that there is a jump between saturated values of the Rényi
entanglement entropy for the U = 0 and finite-U quenches.

To confirm this, we calculate the time evolution of the
Rényi entanglement entropy for the quench to finite U starting
from the MI and CDW states by the exact diagonalization
method [91,92] and compare it with that for the U = 0
quench, as shown in Figs. 8(a) and 8(b). In both cases, we ob-
serve the jump between the Rényi entanglement entropies of
U = 0 and small but finite U . We also find that the Rényi en-
tanglement entropies for finite U converge to the Page value.
Thus, we can distinguish whether the state is thermalized
(for U > 0) or not (for U = 0) from the Rényi entanglement
entropy in a sufficiently large system (see Figs. 4 and 5).

APPENDIX E: PROPERTIES OF THE
ENTROPY-DENSITY-LIKE VALUE

In this Appendix, we show the derivation of Eq. (40) and
analytically prove the agreement of the entropy-density-like
value s̃(L̃) of the MI initial state and 010101 · · · CDW initial
state with the same system size L as seen in Figs. 6 and 7.

To show Eq. (40), we first point out that there is an upper
bound of elements of the matrix Z . This can be followed by
the fact that 2ZMI − I is a unitary matrix. Indeed, the relation

(2ZMI − I )†(2ZMI − I )

= (Y †)T (2PL/2 − I )Y T (Y †)T (2PL/2 − I )Y T = I (E1)

holds from Eq. (B1). The unitarity of 2ZMI − I ensures
||ZMI − I/2||2 = 1/2, which leads to

max
j,l

(∣∣∣∣zMI
j,l − 1

2
δ j,l

∣∣∣∣
)
�

∣∣∣∣
∣∣∣∣ZMI − 1

2
I

∣∣∣∣
∣∣∣∣
2

= 1

2
. (E2)
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FIG. 8. Comparisons of the time evolution of the Rényi entropies
for the quench to U/J = 0, 0.2, and 0.4 from the (a) MI and
(b) CDW initial states. The dashed line shows the Page value as
the expected entanglement entropy when thermalization occurs. For
finite U/J , the Rényi entanglement entropy is calculated from the
exact diagonalization method [91,92]. To reduce the memory cost,
it is calculated from a wave function utilizing U(1) symmetry [93],
associated with the conservation of the total particle number [94–97].

In particular, considering the case j �= l and recalling that
all elements of ZCDW are embedded in ZMI as discussed in
Sec. IV A, we obtain

max
j,l, j �=l

(∣∣zMI
j,l

∣∣) � 1

2
, max

j,l, j �=l

(∣∣zCDW
j,l

∣∣) � 1

2
. (E3)

The function maxN
l=1(|z j,l |, |δ j,l − z j,l |) in the definition of

s̃(L̃) in Eq. (39) always picks up the diagonal part of the matrix

Z because either z j, j or 1 − z j, j is greater than 1/2. Therefore,
we get

N
max
l=1

(|z j,l |, |δ j,l − z j,l |) =
∣∣∣∣z j, j − 1

2

∣∣∣∣ + 1

2
. (E4)

Substituting Eq. (E4) into Eq. (39), we immediately obtain
Eq. (40).

Next, we show why the entropy-density-like values s̃(L̃) of
the MI initial state and 010101 · · · CDW initial state with the
same system size L coincide. To this end, we first examine the
relation between the matrices Z of the MI and CDW states.
By definition, even index elements of ZMI are simply related
to elements of ZCDW through

zMI
2 j,2l = zCDW

j,l ( j, l = 1, 2, . . . , L/2). (E5)

Note that the sizes of ZMI and ZCDW are, respectively,
L × L and L/2 × L/2. Odd index elements of ZMI are also
related to elements of ZCDW. The eigenfunction of the single-
particle Hamiltonian xk, j is also the eigenfunction of the
parity operator, satisfying xk,L+1− j = (−1)k+1xk, j . This leads
to yL+1− j,l = y j,L+1−l and

zMI
j,l + zMI

L+1− j,L+1−l = δ j,l , (E6)

where we assume that LA = L/2. Using Eqs. (E5) and (E6),
we obtain

zMI
2 j−1,2l−1 = δ j,l − zCDW

L/2+1− j,L/2+1−l , (E7)

for j, l = 1, 2, . . . , L/2. Using the relations between the ma-
trices Z of the MI and CDW states, Eqs. (E5) and (E7),
and dividing the summation of s̃(L̃) in Eq. (40) of the MI
initial state into the even and odd index parts, we conclude
s̃MI(L̃) = s̃CDW(L̃).

The coincidence of s̃(L̃) between the MI and 010101 · · ·
CDW initial states seen in Figs. 6 and 7 is rather special. This
is true only for the MI and 010101 · · · CDW initial states with
LA = L/2. When either condition is broken, such as consid-
ering 001001 · · · CDW states or LA = L/4, the coincidence
disappears.
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