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Two-particle topological Thouless spin pump
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We show that two particles interacting via spin exchange exhibit topological features found in one-dimensional
single-particle lattice models. This is accomplished by absorbing all of the spatial degrees of freedom of the
lattice into the spin degrees of freedom of the two particles. Comparing the spin system with the Su-Schrieffer-
Heeger model, we show the existence of topologically protected edge spin states and establish the bulk-edge
correspondence. Modifying the spin system with a chiral symmetry-breaking term results in it resembling the
Rice-Mele model and can therefore act as a Thouless spin pump of one of the particles when periodically and
adiabatically driven. By using the spin states as a synthetic spatial dimension, we show two particles are enough
to simulate well-known topological properties in condensed matter physics.
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I. INTRODUCTION

Accurately simulating the degrees of freedom and interac-
tions of large quantum systems is difficult or impossible for
classical computers due to their complexity. This is because
for most quantum systems the amount of memory required
to simulate evolution or even represent a single state of the
system increases exponentially with the number of particles.
In recent years, the motivation to skirt these issues has led
to other quantum systems being used as quantum simulators
[1–3] because they have quantum rules built into them which
do not need to be implemented manually like in classical com-
puters. Some examples are trapped ions [4–6] and ultracold
atoms in optical lattices [7–10] because they are relatively
easy to control, allowing for systematic study. The high degree
of control has led to a wide array of systems which can be
simulated in fields as far ranging as statistical mechanics [11]
and astrophysics [12]. However, the main direction in which
quantum simulations are directed is in solid-state physics
with a focus on simulating the motion of charged particles
in materials [13–19]. Experiments along these lines vary from
simulating well-known phenomena such as the Meissner ef-
fect in an optical ladder lattice [20] to creating new exotic
states of matter [21]. They have also made it possible to
achieve magnetic field strengths previously unattainable in
real materials, which has led to the observation of the Harper-
Hofstadter model [22–24].

One process of particular interest is the Thouless charge
pump [25], which is motion produced from the adiabatic
cyclic driving of the lattice the charges are in. The uniqueness
of the Thouless pump comes from the fact that it does not
displace charges continuously like electric or magnetic fields,
but instead displaces them in clumps and is therefore quan-
tized due to the topology of the pump cycle. Simulations of
the Thouless pump have been successfully realized in, among
other systems, ultracold atoms in optical lattices [26–28] and
in a photonic system with resonator arrays [29]. Thouless spin
pumps [30–32] have also been implemented using ultracold
atoms in optical lattices [33] where particles of opposite spin
move in opposite direction, so there is no charge transport.

In this work, we simulate the Thouless spin pump by
completely internalizing the spatial degrees of freedom of
the lattice into spin states. The system consists of just two
particles: one spin-S particle where S > 1 and one spin-1/2
particle. We show that two spins interacting via spin ex-
change is equivalent to an inhomogeneous version of the
Su-Schrieffer-Heeger (SSH) model [34] which is a one-
dimensional (1D) lattice model with a topologically nontrivial
phase. The spin system shares the topological features of
the SSH model which manifest in the form of protected ex-
treme spin states. By modifying the spin system, we show
that it is equivalent to the inhomogeneous Rice-Mele (RM)
model [35], which is another 1D lattice model well known
for being an example of a Thouless charge pump. The spin
system also shares the pumping behavior in the form of a
spin pump of the spin-S particle. The mimicking of the spatial
degrees of freedom with spin states is an example of the
use of synthetic dimensions [36–38]. Synthetic dimensions
are a useful tool in constructing quantum simulators because
they provide versatility in their construction and open up
new application possibilities. They have been employed in
experiments using single-particle states such as spin [39–41],
momentum [42–44], harmonic oscillator [45], and rotational
[46] states. Recently, many-body cavity modes of light have
also been used to simulate both one-dimensional (1D) and
two-dimensional (2D) lattices [47] and many-body states of
matter have been suggested in constructing synthetic lattices
[48,49]. The goal of this paper is to use synthetic dimensions
to highlight a different way to simulate quantized motion—
one without real-space lattices.

II. MODEL

The system we will be investigating consists of a giant
spin-S particle interacting via spin exchange with a spin-1/2
particle which can also flip its spin on its own due to an
external field. The Hamiltonian of the system is

Ĥ1 = −w(Ŝ+σ̂− + Ŝ−σ̂+) − Svσ̂x, (1)
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where the S operators belong to the spin-S particle and the
Pauli spin matrices belong to the spin-1/2 particle. The fac-
tors w and v are the energies for the spin exchange and the
spin-1/2 spin-flip processes, respectively. For S � 1, we can
perform a mean-field approximation of the spin-S operators
by replacing them with their spin-coherent expectation values
〈Ŝ±〉 = √

S2 − n2e±iφ , where φ is the azimuthal angle on a
Bloch sphere of radius S and n is the projection of the spin
onto the Sz axis of the Bloch sphere, so Ŝz|n〉 = n|n〉. The
Hamiltonian becomes

H1(n, φ) = −w
√

S2 − n2(eiφσ̂− + e−iφσ̂+) − Svσ̂x. (2)

The Su-Schrieffer-Heeger (SSH) model Bloch Hamilto-
nian is

H (k) = −w(eik σ̂− + e−ik σ̂+) − vσ̂x, (3)

which describes a single particle in a 1D lattice with two
sites per unit cell. Here, the parameters w and v represent the
tunneling energies between unit cells and within unit cells, re-
spectively. Due to the SSH model having discrete translational
invariance, the quasimomentum k is a good quantum number.
Comparing the two Hamiltonians, we see that φ is similar to
k, so it can be thought of as the quasimomentum of a spin-
state lattice. Further comparisons show that the spin-exchange
process can be thought of as tunneling between adjacent unit
cells and the spin-1/2 spin-flip process can be thought of as
tunneling between the sites within a unit cell. This means that
n is similar to the unit cell number in the SSH model and the
two states of the spin-1/2 particle label the two sites in each
unit cell. The obvious difference between the two systems is
the square root factor in Eq. (2). The source of the square root
inhomogeneity comes from the boson stimulation factors that
arise when making transitions between adjacent spin-S states,

Ŝ±|n〉 =
√

(S ∓ n)(S ± n + 1) |n ± 1〉. (4)

Therefore, the two models are equivalent when the SSH model
has broken translational invariance and the tunneling is unit
cell dependent. Figure 1 shows diagrams of the two systems
as well as the processes which correspond between them.
Although we cannot use “unit cell” in the strict sense of the
term due to the inhomogeneity, we will continue to use it
for convenience when making comparisons between the two
systems.

The SSH model is significant because it can display non-
trivial topological properties in the form of stable zero-energy
edge states. The topological phase of the system can be quan-
tified in terms of the winding number

ν = i

2π

∫ 2π

0
dk h(k)−1∂kh(k)

= 1

2
[1 + sgn(w − v)], (5)

where γ = i
∫ 2π

0 dk h(k)−1∂kh(k) is the Berry phase over the
Brillouin zone and h(k) = v + we−ik . Here, w > v represents
the topological phase with ν = 1 and one edge state at each
edge of the lattice, whereas w < v represents the trivial phase
with ν = 0 and no edge states. The winding number assumes
periodic boundary conditions, so it is a bulk quantity. The
one-to-one correspondence between the winding number and

FIG. 1. Two equivalent nontrivial topological systems. (a) Giant
spin-S particle interacting via spin exchange with a spin-1/2 particle.
The spin-1/2 particle can make transitions on its own (v, purple);
however, the spin-S particle can only gain or lose one quantum of
spin by exchanging it with the spin-1/2 particle (w, green). (b) Single
particle in a one-dimensional (1D) lattice. The particle can tunnel
through the small barrier (v, purple) or the large barrier (w, green).
There is a constant onsite energy offset between adjacent sites la-
beled � and a tunneling offset that changes along the lattice labeled
δ. The energy offset � acts as a magnetic field applied to the spin-1/2
particle only (not shown) and biases it toward the up or down state
depending on its sign. The tunneling offset δ is applied to the lattice
to match the spin-S transitions which are not homogeneous when
S > 1.

the number of edge states is a fundamental property of 1D
topological systems. In the following section, we will see what
topological properties of the SSH model are shared by the spin
system as well as the effects of the square root factors on those
properties.

III. RESULTS

A. Topological transition

We begin by looking at the spectrum of the spin model
in Fig. 2(a) for different values of the spin-1/2 transition
energy, v. Like the SSH spectrum, it is symmetric about
the E = 0 axis because both models preserve chiral sym-
metry ĈĤ1Ĉ−1 = −Ĥ1, with Ĉ = σ̂z. This symmetry means
that for every energy eigenstate |E〉, there is a partner state
σ̂z|E〉 = | − E〉. Differences between the two models are most
pronounced at v = 0 where in the SSH model there is 2S-fold
degeneracy at E± = ±w because the lattice is broken up into
2S identical disconnected sublattices of two sites each. A sim-
ilar thing happens in the spin model when v = 0: For a giant
spin-S particle, the system breaks up into 2S pairs of states
|n,↑〉 and |n + 1,↓〉, where σ̂z| ↑ (↓)〉 = +(−)| ↑ (↓)〉. Even
and odd combinations of these states form the basis and for
large S have energies E±(n) ≈ ±w

√
S2 − n2, so the large

degeneracy found in the SSH model is not present. For v < w,
the states with E 
= 0 show signs of near double degeneracy
which comes from the fact that E±(n) ≈ E±(−n).

For v = 0, the zero-energy states are the edge spin states
|S,↑〉 and | − S,↓〉. As v increases, the zero-energy states
continue to be localized at the edges because their ampli-
tudes within the bulk are suppressed due to the large gap
above and below E = 0. The top and middle-top panels of
Fig. 2(b) (red) show the doubly degenerate zero-energy wave
functions for v = 0.4w which are even and odd combinations
of states localized at the edges. For comparison, the bottom
and middle-bottom panels (blue) show the same states for
v = 1.6w where now they mainly occupy the bulk spin states
and have E 
= 0. Focusing back on Fig. 2(a), we see that at
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FIG. 2. Energies, wave functions, and winding numbers. (a) Spectrum of the spin system in Eq. (1) as a function of the spin-1/2 spin-flip
energy v for S = 5. The spectrum features doubly degenerate E = 0 edge states up until v ≈ w where they begin to significantly diverge.
(b) Top and middle-top panels show the wave functions of the E = 0, v = 0.4w [red dot in panel (a)] edge states while the middle-bottom
and bottom panels show the edge states have been destroyed for v = 1.6w [blue dots in panel (a)]. (c) Top panel shows the localized winding
number on either side of the transition point calculated from Eq. (8): v = 0.5w (green) and v = 1.5w (orange). The red dashed curve is the
mean field winding number νMF(n) for v = 0.5w. Bottom panel shows the average winding number as a function of v for S = 50 which has a
sudden drop around v = w signifying a topological transition. The average is taken over the range −10 � n � 10.

v ≈ w the zero-energy states diverge and their gaps between
neighboring states shrink, signaling the delocalization of these
states from the edge.

Whether this transition has topological origins like the
similar one in the SSH model requires the establishment of the
bulk-edge correspondence. For that, we need to calculate the
winding number and determine if it corresponds to the number
of edge states. To start, the mean-field winding number is
calculated using Eq. (5) by making the substitutions h(k) →
h(n, φ) = Sv + w

√
S2 − n2e−iφ and ∂k → ∂φ and integrating

over φ, giving

νMF(n) = 1
2 [1 + sgn(w

√
S2 − n2 − Sv)]. (6)

The winding number for the SSH model in Eq. (5) which
describes the entire bulk is now spin (site) dependent due
to the inhomogeneity. A numerical calculation from the full
quantum model in Eq. (1) is also performed using the winding
number operator [50,51]

ν̂ = 4P̂−1
↑↓ [Ŝz, P̂↑↓]. (7)

Here, the projection operator P̂ of states with E < 0 is pro-
jected onto the spin-1/2 ↑ and ↓ subspaces using P̂↑↓ =
P̂−1

↓↑ = σ̂↑P̂σ̂↓ where σ̂z = σ̂↑ − σ̂↓. Comparing ν̂ with Eq. (5)

we have replaced h(φ) with P̂↑↓ and made use of the fact that
φ and n are conjugate variables, so ∂φ is the same as −i[Ŝz, ].
The integral over φ can be replaced with a trace over the bulk
spin states; however, we localize it to a unit cell to compare it
to Eq. (6):

ν(n) = Trσ [〈n|ν̂|n〉], (8)

where Trσ is the trace over the spin-1/2 degrees of freedom.
Equation (8) is plotted in the top panel of Fig. 2(c) for v >

w (orange) and v < w (green). There is a clear difference

between the two cases where the bulk has a winding number
of unity when v = 0.5w and of zero when v = 1.5w. The
mean-field winding number is also plotted as a red dashed
curve for v = 0.5w where both it and the quantum winding
number show clear signs of being bulk quantities as they
drop to zero near the edges. The approximate location of the
drop is calculated from the mean-field winding number, giving
ndrop = ±S

√
1 − (v/w)2, where we see the winding number

extends over the bulk when there is only spin exchange present
(v/w = 0). To get a complete picture of the transition, we
plot the average bulk winding number in the bottom panel of
Fig. 3(c). The average is taken over the range −10 � n � 10
where S = 50, so it is comfortably away from the edges. A
sudden drop from unity to zero is shown at v ≈ w, agreeing
with the vanishing of edge states shown in Figs. 2(a) and
2(b). This establishes the bulk-edge correspondence in the
spin system and shows that at v = w there is a topological
transition.

B. Spin pump

With the addition of a spin-1/2 offset, the Hamiltonian
becomes

Ĥ2 = Ĥ1 − S�σ̂z. (9)

The new term breaks the chiral symmetry and allows for a
continuous transition between the two topological phases. The
Hamiltonian resembles the Rice-Mele (RM) model, which is
a well-known example of a Thouless charge pump. When the
RM model is adiabatically driven in a cycle of period T , the
charges in the lattice end up being displaced by a single unit
cell if the path in parameter space encloses the topological
transition point at (w − v,�) = (0, 0). Therefore, we should
expect the giant spin to change by a single quantum of spin if
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FIG. 3. Dynamics of spin displacement and circuit paths in pa-
rameter space. (a) Spin (S = 50) displacement as a function of time
for a circuit in parameter space that encloses the topological tran-
sition point at (w − v, �) = (0, 0) (black) and one that does not
(green). For the circuit that does enclose the transition point, the
spin dynamics looks like a staircase as the average spin increases
by one quantum of spin every cycle. The red line indicates the slope
of the ideal spin pump staircase. The deviation from the ideal case
comes from the inhomogeneity of the spin-S transitions and results in
a larger energy requirement to make transitions to higher spin states.
(b) Paths taken through parameter space in each cycle. The numerical
values are in units of w0.

an adiabatic circuit in parameter space encompasses the same
point. The time-dependent parameters which are used to trace
the circuit are

v(t ) = v0[1 − sin(2πt/T )]/2,

w(t ) = w0[1 + sin(2πt/T )]/2,

�(t ) = �0 cos(2πt/T ), (10)

where T � 1 is the driving period and is large so the driving
is adiabatic. The other parameter values are v0 = w0 and
�0 = 20w0. The evolution over one cycle can be imagined
with the following major steps: (1) t = 0, the system is ini-
tialized in the ground state with the spin-1/2 particle being in
the state | ↑〉 due to a large offset from an applied magnetic
field; (2) 0 < t � T/2, interactions are ramped up and spin
exchange takes place where the giant spin gains a quantum
of spin and | ↑〉 → | ↓〉; and (3) T/2 < t � T , interactions
are ramped down and the applied magnetic field resets the
spin-1/2 particle | ↓〉 → | ↑〉. The large offset ensures the
state is nearly completely locked into one of the spin-1/2
states and transitions only take place at the times t ≈ T/4
(spin S) and t ≈ 3T/4 (spin 1/2). The net result is that the
giant spin gains one quantum of spin much the same way a
charge is displaced one unit cell in the RM model. To show
the dynamics, we calculate the giant spin displacement

�n(t ) = 〈ψ (t )|Ŝz|ψ (t )〉 − n0, (11)

where n0 = 〈ψ (0)|Ŝz|ψ (0)〉 is the initial average spin. When
S � 1, the continuum approximation can be made and
Eq. (11) can be put into another form (Appendix A),

�s(t ) =
∫ t

0
dt ′ j(t ′), (12)

where �s(t ) = �n(t )/S is the continuous spin displacement
variable and j(t ) = ∫ 1

−1 ds j(s, t ) is the total probability cur-
rent. The right-hand side (RHS) of Eq. (12) is also the

expression for the transported charge, Q(t ), of a material
when j(t ) is the electric current averaged over the material,
so �n(t ) can be thought of as the scaled transported spin
�n(t ) = SQ(t ). This is an important connection because in
topologically nontrivial systems, the total charge transported
during one adiabatic cycle is proportional to the change in the
winding number Q(T ) ∝ ν(T ) − ν(0) [52], so this is where
the topological nature of the pump comes from.

Equation (11) is plotted in Fig. 3(a) for the cycle outlined
in Eq. (10) (black) and for the same cycle except v(t ) =
v0[4 − sin(2πt/T )]/2 (green). A clear difference is displayed
where the spin displacement increases in integer steps each
period of the cycle for the former circuit and does not go
beyond unity for the latter circuit. The two circuits through
parameter space are shown in Fig. 3(b), where the black
one encloses the topologically significant point at the origin
(w − v,�) = (0, 0) and the green one does not. Other circuits
shifted along the other three axes while not encompassing the
origin have also been checked and no displacement greater
than unity was observed in the same time frame. This behavior
matches the quantized displacement found in the RM model
and other systems, which are able to act as charge pumps.
The red line is a guide for the ideal case where the black data
should intercept it at integer values of the period T . At early
times, the spin pump does follow the ideal case; however, at
t ≈ 5T there starts to be a large discrepancy. The cause of this
is the square root factors in Eq. (4) because they increase the
energy required to transition to larger spin-S states the farther
away the state is from n = 0. For states around n = 0, the
factors act as a harmonic trap since to leading order in spin
number they are −

√
N2/4 − n2 ≈ −N/2 + n2/N . Similar sat-

uration has been observed in experiments simulating the RM
model with ultracold atoms in an optical lattice [27] because
an overall harmonic trap is required to hold the atoms in place.
The saturation was attributed to the variation of the harmonic
trap becoming comparable to the band gap. The major dif-
ference between the experiment and the spin system is that
the tunneling and the harmonic confinement in the experiment
is controlled separately with different lasers whereas that is
impossible here.

C. Many-body system

The spin-S operators can also be considered as many-
body operators for N = 2S identical spin-1/2 particles Ŝα =∑N

i=1 σ̂ i
α where α = (x, y, z). The Pauli matrices in the sum

are distinguished from the spin-1/2 ones via the superscript.
The spin-1/2 particle can represent an impurity. In this sys-
tem, the spin number becomes n = (N+ − N−)/2, which is
half the difference between the number of particles in each
of the two spin states labeled + and −. Each pump cycle is
marked by one of the N particles making a transition from
one state to the other depending on the direction of the pump,
so after one period n → n ± 1. The interaction term in Eq. (1)
can be generated if each of the N particles interacts with the
impurity with the same strength which is commonly found
in systems with infinite range interactions (interactions that
do not depend on the position of each particle). We assume
the pairwise interactions of the N identical particles are infi-
nite range as well and take the same form as their pairwise
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FIG. 4. Time dependence of the spin displacement for different
values of the interaction energy �. Each data point is the displace-
ment at the beginning of each cycle for the path enclosing the origin
in Fig. 3 and the lines connecting the points are there as a guide. The
deviation of the displacement from the ideal case (straight red line)
increases with �. The number of particles is N = 2S = 100 and the
values of � are in units of w0.

interaction with the impurity giving −�(Ŝ+Ŝ− + Ŝ−Ŝ+)/N
which can also be written as 2�Ŝ2

z /N when N is conserved.
Such interactions can be found in the infinite range isotropic
XY model where the effect for � > 0 is harmonic confine-
ment since there is a quadratic energy cost for states n 
= 0.
The additional confinement only adds to the effect of the
square root factors causing the pump to substantially deviate
from the ideal case at earlier times, which is shown in Fig. 4
for different values of � using the circuit in Eq. (10). To
reduce clutter in the graph, we only plot the displacement at
the start of each cycle.

Attractive interactions (� < 0) energetically promote the
spreading of states away from n = 0. For weak attractive in-
teractions, the ground state at t = 0 spreads, but still remains
centered near n = 0 due to the square root factors dominat-
ing. However, there is a critical interaction strength where a
quantum phase transition (QPT) occurs, resulting in the shift
of the center of the ground state to n 
= 0. The critical value is
(Appendix B)

�c = − w(w + v)√
�2 + (w + v)2

. (13)

Care must be taken when � � w, v, which is what we
have used, because the system is sensitive to any attractive in-
teractions since the critical value �c ≈ −w(w + v)/� will be
close to zero. Preparing the initial state under these conditions
could result in a large shift of the center of the state toward
the edges at n = ±N/2, where the winding number drops
rapidly, as seen in the bottom panel of Fig. 2(c), resulting
in the destruction of the pump. This issue can be resolved
by simply preparing the initial state in another segment of
the cycle around � ≈ 0. However, if � < �min

c , where |�min
c |

is the minimum interaction strength over one cycle, then the
system will ramp through the critical point twice per cycle,
resulting in unwanted excitations.

IV. CONCLUSION

We have shown that a system consisting of spinful particles
interacting via spin exchange can simulate inhomogeneous
versions of the SSH and RM models. The spin system shares
all of the topological features of both models which includes
topologically protected edge states and a quantized spin pump
in the form of a Thouless pump. We also showed that when the
spin system is interpreted as a many-body system, repulsive
interactions lead to decreased efficiency of the pump. The
majority of simulations of condensed matter systems depend
on spatial degrees of freedom such as optical lattices and
resonator arrays to simulate the crystal structure of solids;
however, all that is needed are discrete sets of states which
are abundant in quantum systems. Here, we have presented an
extreme case of this by absorbing all of the spatial dependence
into the internal spin states of two particles.

The large values of S throughout this paper are used to
highlight the topological features of the model. In reality,
the spins of individual particles are much smaller, so the
topological transition point at (w − v,�) = (0, 0) becomes
a transition region around this point due to finite-size effects.
This means the smaller S is, the smaller v must be to observe
the edge states and the larger the circuit must be to observe the
spin pump. Of course, a bulk must exist which requires S > 1
since there should be two bulk unit cells to pump between.
Therefore, the minimum case has n = ±3/2 and n = ±1/2
as the edge and bulk states, respectively. To observe larger S
effects, the infinite range XY model can be used where the
spin-1/2 particle plays the role of an impurity. We found the
best spin pump result is achieved when there are no interac-
tions between the N identical particles in the XY chain, but
there are equal interactions between the particles in the chain
and the impurity. This can happen in a variation of the central
spin model [53], where the chain makes a horseshoe shape
with the impurity at the center, so the impurity is roughly
equal distance from each particle along the chain and the
edges are maintained.

APPENDIX A: DERIVATION OF �s(t )

We start with Eq. (11) and expand the |ψ〉 states in terms
of the Ŝz eigenstates, |ψ (t )〉 = ∑

n cn(t )|n〉 where cn(t ) =
〈n|ψ (t )〉, giving

�n(t ) =
∑

n

n[|cn(t )|2 − |cn(0)|2]. (A1)

The continuum approximation is used by assuming S �
1, so that s = n/S is a continuous variable. We also
identify ρ(s, t ) = |cn(t )|2 as the probability density where∫ 1
−1 dsρ(s, t ) = 1, so Eq. (A1) becomes

�s(t ) =
∫ 1

−1
dss[ρ(s, t ) − ρ(s, 0)]. (A2)

The probability density difference can be put into integral
form ρ(s, t ) − ρ(s, 0) = ∫ t

0 dt ′∂ρ(s, t ′)/∂t ′ and the probabil-
ity continuity equation, ∂ρ(s, t )/∂t = −∇ j(s, t ), is used to
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give

�s(t ) = −
∫ t

0
dt ′

∫ 1

−1
dss∇ j(s, t ′). (A3)

Next, we use integration by parts and set the boundary terms
to zero by making the assumption that the probability current
falls off at the edges of the system which leads to the final
result,

�s(t ) =
∫ t

0
dt ′

∫ 1

−1
ds j(s, t ′). (A4)

Defining j(t ) = ∫ 1
−1 ds j(s, t ) as the total probability current

gives Eq. (11) in the main text.

APPENDIX B: DERIVATION OF �c

We are interested in the ground-state QPT, so we start
by finding an expression for the ground band energy. The
Hamiltonian including interactions is

Ĥ3 = 2�

N
Ŝ2

z − w(Ŝ+σ̂− + Ŝ−σ̂+) − Nvσ̂x/2 − N�σ̂z/2

(B1)
and making a mean-field approximation by replacing the spin-
S operators with their spin coherent expectation values gives

2H3

N
= �

2
cos2 θ − w sin θ (eiφσ̂− + e−iφσ̂+) − vσ̂x − �σ̂z,

(B2)
where we have written the spin number in terms of the polar
angle on the Bloch sphere n = (N/2) cos θ . Setting φ = 0
minimizes the Hamiltonian further and diagonalizing it gives
an expression for the ground band energy

2E0(θ )

N
= �

2
cos2 θ −

√
�2 + (v + w sin θ )2. (B3)

It is expected that the phase transition occurs when there is a
new ground state. Due to the symmetry around the ground

FIG. 5. Quantum and mean-field ground-state energies. The
ground-state energy shows a shift around the critical interaction en-
ergy of �c signaling a QPT. The parameters used in the calculations
are v = 1, � = 4 (both in units of w), and N = 400.

state at θ = π/2 (n = 0), we expect a second-order phase
transition in the ground band where the initial ground state
transforms into a local maximum and two new degenerate
θ 
= π/2 ground states appear when � < �c. We expand
E0(θ ) around θ = π/2

2E0(θ )

N
≈ A + Bδθ2 + Cδθ4, (B4)

where δθ = θ − π/2 and note that new minima occur when
B < 0 while C is positive. The constant B is

B = � + w(w + v)√
�2 + (w + v)2

, (B5)

so �c is Eq. (13) in the main text. A phase transition is marked
by a shift in the ground-state energy, which we plot in Fig. 5
where the black solid curve is calculated by diagonalizing
Eq. (B1) and the dashed red curve is calculated by finding the
minimum of Eq. (B3). The image shows excellent agreement
between the quantum and mean field predictions and that there
is a shift in the ground-state energy at � ≈ �c.
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