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Optimal field-free orientation of molecules with resonant tailored multicolor fields
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Optimal field-free molecular orientation for a given number of populated states, achieved by using resonant
laser pulses, is theoretically investigated for linear molecules. An optimal phase difference between the rotational
states can be obtained, at full revival times, after the laser pulses have decayed and these phase conditions are
analytically derived for multilevel systems (J > 2). The dependence of the phase difference on the duration and
absolute area of the laser pulses is analyzed. Finally, the optimal degree of molecular orientation can be obtained
by adjusting the ratios of the peak amplitudes of the laser pulses, with the carrier-envelope phases or the delay
time between the pulses fulfilling the phase conditions.
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I. INTRODUCTION

Molecular alignment and orientation have long been noted
for playing a critical role in many physical and chemical
processes, such as controlling the probability of ionization
and chemical reaction control [1–7]. Spatially aligned and
oriented molecules can also be viewed as crucial prerequisites
for high-order harmonic generation [8–10], which is widely
used in molecular imaging [11], nuclear dynamics retrieving
[12], and attosecond pulse production [13].

Molecular alignment has been well studied both theoret-
ically and experimentally [6,14–16]. As a head-versus-tail
order of the molecules needs to be established, controlling
molecular orientation is more challenging. Many theoretical
and experimental studies have been carried out to control
molecular orientation, see Ref. [17] (and references therein),
which can be roughly divided into adiabatic and nonadiabatic
schemes. When the pulse duration τ is sufficiently longer than
molecular rotational periods Trot, i.e., τ � Trot, molecules are
adiabatically oriented in laser fields. The adiabatic orientation
is obtained by using laser pulses with long temporal widths,
and a high degree of orientation can be obtained with the
help of optimal phase differences between adjacent rotational
states at full revival times [18–22].

For the case of τ � Trot, molecules are nonadiabatically
oriented after the laser pulse. One regime is based on the inter-
action between ultrashort nonresonant two-color laser pulses
and the molecular hyperpolarizability, which can change
the parity of the wave function [23–26]. Alternatively, laser
fields in the THz region have been used to control molec-
ular orientation by permanent dipole-moment interaction. In
the sudden-impact limit, half-cycle THz laser pulses (HCP)
and few-cycle THz pulses [27,28], with asymmetric temporal
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waveforms, are utilized to excite many rotational states based
on the “kick” mechanism [29–31], while time-symmetric
single-cycle pulses [32–35] with pulse duration comparable to
the rotational period of molecules are used to induce resonant
dipole transitions between neighboring rotational states. In
addition, some combination schemes were proposed in order
to excite higher rotational states for a high degree of orien-
tation [36–38]. It is necessary to ensure that the frequency
spectrum of the laser pulses overlap with the rotational energy
differences. Another key point is to get an optimal phase
difference between adjacent populated rotational states at full
revival times, independent of the rotational state, which is
challenging for a nonadiabatic process [39,40].

Recent works show that, in the nonadiabatic limit, an op-
timal degree of alignment or orientation is obtained when an
optimal phase difference appears at full revival times [33,41].
Furthermore, the phase differences can be well controlled
in a three-state system according to the analytically derived
optimal amplitude and phase conditions [42]. As the upper
limit for the degree of orientation in a three-state system is
0.775 [22], it is highly desirable to consider the case including
more rotational states. However, it is challenging to give an
analytical description for multilevel systems (J > 2).

In this paper, we use a set of resonant laser pulses to
control the molecular orientation. The phase conditions for
multilevel systems (J > 2) are analytically derived based on
the first-order Magnus expansion. According to the analytical
description, an optimal phase difference can be obtained at
full revival times by a simple choice of the carrier-envelope
phases of the laser pulses. Furthermore, the dependence of the
dynamics of the system on the absolute area of the laser pulses
is discussed. It shows that the absolute area of the pulses
has to be controlled to satisfy the phase condition. Finally,
an optimal orientation can be obtained by adjusting the ratio
of the laser pulse intensities when the phase conditions are
satisfied.
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II. THEORY

A. Model and basic equations

In our scheme, linearly polarized resonant laser pulses are
used to control the field-free orientation of a linear molecule.
The form of the laser pulses is expressed as a superposition of
Gaussian pulses

E (t ) =
∑
J=1

εJ exp

(
−4 ln 2

(t − tJ )2

τ 2

)

× cos[ωJ,J−1(t − tJ ) + φJ ] (J = 1, 2, 3, . . .), (1)

where εJ , tJ , and φJ are the electric-field amplitude, center
time, and carrier-envelope phase of the Jth laser pulse, re-
spectively, ωJ,J−1 is the transition frequencies of the rotational
states, and τ is the full width at half maximum (FWHM).
Within the rigid-rotor approximation, the Hamiltonian of the
molecule irradiated by laser pulses is given by Ĥ (t ) = Ĥ0 +
V̂ (t ), with the field-free Hamiltonian Ĥ0 = BĴ2 and the dipole
interaction term V̂ (t ) = −μE (t ) cos θ . B is the rotational con-
stant, Ĵ is the angular-momentum operator, μ is the permanent
dipole moment, and θ is the angle between laser polarization
and the molecular axis.

The dynamics are formulated in terms of the density-
matrix method. The time evolution of the density operator is
determined by the quantum Liouville equation, which can be
solved by using the fourth-order Runge–Kutta method [43]. In
the |JM〉 state representation, the degree of molecular orien-
tation after the laser pulses have decayed is given by (h̄ = 1)

〈cos θ〉(t ) = 2
Jmax∑
J=0

J∑
M=−J

|CJ,MCJ−1,M |

× 〈J, M| cos θ |J − 1, M〉
× cos(�EJ,J−1t − ϕJ,J−1), (2)

where Jmax is the highest rotational state in the sum, CJ,M is the
complex coefficient of the rotational state, �EJ,J−1 = 2BJ ,
and ϕJ,J−1 = arg(CJ,M ) − arg(CJ−1,M ) are energy differences

and constant phase differences between adjacent rotational
states, respectively. The full revivals in the field-free ori-
entation occur at a time interval Trot = π/B and maximal
orientation for a given coherent superposition of states is
obtained when the phase difference between adjacent ro-
tational states �EJ,J−1t − ϕJ,J−1 equals 2kπ or (2k + 1)π ,
where k = 0,±1,±2, . . . . We can get the full revival time trev

from �E1,0trev − ϕ1,0 = 2Btrev − ϕ1,0 = 2kπ or (2k + 1)π .
Then we substitute trev into �EJ,J−1trev − ϕJ,J−1 = 2BJtrev −
ϕJ,J−1 = 2kπ or (2k + 1)π and obtain the phase conditions as
follows:

ϕJ,J−1−Jϕ1,0 = 2kπ,

or ϕJ,J−1−Jϕ1,0 = (J − 1)(2k + 1)π,
(k=0,±1,±2, . . . ).

(3)
When the phase conditions are satisfied, the phase differences
between adjacent rotational states are in phase at the full re-
vival times trev = (2kπ + ϕ1,0)/2B or [(2k + 1)π + ϕ1,0]/2B.

B. The phase conditions for a multilevel system

To derive the dependence of phase conditions in Eq. (3)
on the laser pulses, we extend the derivation in Refs. [33,42]
to a multilevel system and discuss the underlying physics.
The theoretical derivation is based on the first-order Magnus
expansion. The time evolution of the system in the interaction
picture, from the initial time t0 to a given time t , can be
described by the unitary operator

Û (t, t0) = I − i
∫ t

t0

ĤI (t ′)Û (t ′, t0)dt ′, (4)

where ĤI (t ) = exp(iĤ0t )V̂ (t ) exp(−iĤ0t ) is the Hamiltonian
in the interaction picture. The matrix element of ĤI (t ) in
the |JM〉 state representation is −μJ ′,JE (t ) exp(iωJ ′,Jt ) with
μJ ′,J = μ〈J ′, M| cos θ |J, M〉 and ωJ ′,J = EJ ′ − EJ .

Next, the Magnus expansion is performed on the time-
evolution operator Û (t, t0) = exp[

∑∞
n=1 Ŝ(n)(t )] [42]. The first

leading term is given by Ŝ(1)(t ) = iA(t ) = −i
∫ t

t0
dt ′ĤI (t ′). In

the |JM〉 state representation,

A(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 β10(t ) 0 · · · 0 0

β∗
10(t ) 0 β21(t ) · · · 0 0

0 β∗
21(t ) 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 βm,m−1(t )

0 0 0 · · · β∗
m,m−1(t ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where

βm,m−1(t ) = μm,m−1

∫ t

t0

E (t ′)e−iωm,m−1t ′
dt ′. (6)

The unitary operator including the first-order term Ŝ(1)(t ) reads Û (1)(t, t0) = exp[iA(t )] = ∑
m exp(iλm)|λm〉〈λm|, where λm

is an eigenvalue of A(t ) and the corresponding eigenstate is |λm〉. Since A(t ) is a Hermitian matrix, λm is a real number. If the
order of the matrix A(t ) is an odd number, one of the eigenvalues of A(t ) is zero. The other roots come in pairs, and the roots of
each pair are opposite numbers for each other. For example, λ0 = 0, λ1 = −λ2, λ3 = −λ4, . . . . If the order of the matrix A(t )
is an even number, the roots come in pairs, and the roots of each pair are opposite numbers of each other. In our scheme, the
initial state is set to |00〉. Because the electric field of the pulse is linearly polarized, the quantum number M is conserved. The
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eigenstate |λk〉 can be expanded in the |JM〉 state representation,

|λk〉 = c(k)
0 |00〉 + c(k)

1 |10〉 + · · · + c(k)
m |m0〉. (7)

The relationship between the complex coefficients in Eq. (7) can be obtained from the secular equation A(t )|λk〉 = λk|λk〉.
Then we have

c(k)
1 = λk

β10
c(k)

0 ,

c(k)
2 =

(
λ2

k − |β10|2
)

β10β21
c(k)

0 ,

c(k)
3 = λk

(
λ2

k − |β10|2 − |β21|2
)

β10β21β32
c(k)

0 ,

c(k)
4 = λ4

k − λ2
k

(|β10|2 + |β21|2 + |β32|2
) + |β10|2|β32|2

β10β21β32β43
c(k)

0 ,

... (8)

The wave function after the laser pulses have decayed is given by

|ψ〉 = Û (1)(t, t0)|00〉 =
∑

m

eiλm |λm〉〈λm | 00〉 = (
c(0)

0

)∗
eiλ0

(
c(0)

0 |00〉

+ c(0)
1 |10〉 + · · · + c(0)

m |m0〉) + (
c(1)

0

)∗
eiλ1

(
c(1)

0 |00〉 + c(1)
1 |10〉 + · · · + c(1)

m |m0〉) + · · ·
+ (

c(m)
0

)∗
eiλm

(
c(m)

0 |00〉 + c(m)
1 |10〉 + · · · + c(m)

m |m0〉). (9)

By the substitution of Eq. (8) into Eq. (9), considering the relationship between the eigenvalues of A(t ) (λ1 = −λ2, λ3 =
−λ4, . . . ), then we have |ψ〉 = C0|00〉 + C1|10〉 + · · · + Cm|m0〉, where

C0 =
{∣∣c(0)

0

∣∣2 + 2
∣∣c(1)

0

∣∣2
cos λ1 + 2

∣∣c(3)
0

∣∣2
cos λ3 + 2

∣∣c(5)
0

∣∣2
cos λ5 + · · · + 2

∣∣c(m−1)
0

∣∣2
cos λm−1

}
,

C1 = i

β10

{
2λ1 sin λ1

∣∣c(1)
0

∣∣2 + 2λ3 sin λ3

∣∣c(3)
0

∣∣2 + · · · + 2λm−1 sin λm−1

∣∣c(m−1)
0

∣∣2
}
,

C2 = 1

β10β21

{
− |β10|2

∣∣c(0)
0

∣∣2 + 2
(
λ2

1 − |β10|2
)

cos λ1

∣∣c(1)
0

∣∣2 + 2
(
λ2

3 − |β10|2
)

cos λ3

∣∣c(3)
0

∣∣2

+ · · · + 2
(
λ2

m−1 − |β10|2
)

cos λm−1

∣∣c(m−1)
0

∣∣2
}
,

C3 = i

β10β21β32

{
2λ1

(
λ2

1 − |β10|2 − |β21|2
)

sin λ1

∣∣c(1)
0

∣∣2 + 2λ3
(
λ2

3 − |β10|2 − |β21|2
)

sin λ3

∣∣c(3)
0

∣∣2

+ · · · + 2λm−1
(
λ2

m−1 − |β10|2 − |β21|2
)

sin λm−1

∣∣c(m−1)
0

∣∣2
}
,

C4 = 1

β10β21β32β43

{
|β10|2|β32|2

∣∣c(0)
0

∣∣2 + 2
[
λ4

1 − λ2
1(|β10|2 + |β21|2 + |β32|2) + |β10|2|β32|2

]
cos λ1

∣∣c(1)
0

∣∣2

+ 2
[
λ4

3 − λ2
3(|β10|2 + |β21|2 + |β32|2) + |β10|2|β32|2

]
cos λ3

∣∣c(3)
0

∣∣2

+ · · · + 2
[
λ4

m−1 − λ2
m−1(|β10|2 + |β21|2 + |β32|2) + |β10|2|β32|2

]
cos λm−1

∣∣c(m−1)
0

∣∣2
}
,

... (10)

Note that, if the order of the matrix A(t ) is an even number, c(0)
0 equals zero. As the order of the matrix A(t ) increases, it is

impossible to get the analytical expression of λk and the expression of the coefficient Ck becomes more complex. However, the
phase of the coefficient Ck can be found from Eq. (10). The arguments of the coefficients are given by

arg(C0) = 0 + (π ),

arg(C1) = π/2 − arg(β10) + (π ),

arg(C2) = − arg(β10) − arg(β21) + (π ),

arg(C3) = π/2 − arg(β10) − arg(β21) − arg(β32) + (π ),

arg(C4) = − arg(β10) − arg(β21) − arg(β32) − arg(β43) + (π ),

... (11)
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FIG. 1. The temporal shape and the frequency spectrum for the
scheme involving five resonant laser pulses with τ = 30 ps and
electric-field amplitude 2 MV/m. The carrier-envelope phases of the
laser pulses φJ are set to −π/2.

The notation (π ) in Eq. (11) means that sometimes we have
to add π to the value of arg(Ck ). This is related to the value
in the curly bracket in Eq. (10), which is a real number. If
the value in the curly bracket is a positive number, we do
not have to add π to the value of arg(Ck ), while if it is a
negative number, we have to add π to the value of arg(Ck ). The
value in the curly bracket is related to βk,k−1 and λk which are
determined by the parameters specifying the peak amplitude
and duration of the laser pulses.

According to Eq. (11), the constant phase differences be-
tween adjacent rotational states are given by

ϕ1,0 = − arg (β10) + π/2 + (π ),

ϕ2,1 = − arg (β21) − π/2 + (π ),

ϕ3,2 = − arg (β32) + π/2 + (π ),

ϕ4,3 = − arg (β43) − π/2 + (π ),

...

ϕJ,J−1 = − arg (βJ,J−1) + (−1)J−1π/2 + (π ), (12)

where βJ,J−1 at t = t f (t f is the time after the pulses
have vanished) is defined in Eq. (6), which is the product
of the transition-dipole moment μJ,J−1 and Fourier trans-
form of the electric field at ωJ,J−1. For the Gaussian pulse
in Eq. (1), arg(βJ,J−1) = φJ + ωJ,J−1tJ and arg(βJ,J−1) =
φJ when ωJ,J−1tJ = 2kπ (k = 0,±1,±2, . . .). We can set
arg(β1,0) to any value and the other values of arg(βJ,J−1) (J 	=
1) can be solved according to Eq. (12) and the phase

FIG. 3. The difference between �EJ,J−1t − ϕJ,J−1 and π at full
revival times for (a) J = 1, (b) J = 2, and (c) J = 3 in the three-pulse
scheme as a function of peak amplitude and pulse width with φJ =
−π/2. The right panels show the evolution of the rotation population
with time and the laser parameters (d) εJ = 1.0 × 106 V/m and τ =
70 ps, (e) εJ = 1.4 × 106 V/m and τ = 70 ps, and (f) εJ = 1.6 ×
106 V/m and τ = 70 ps corresponding to the position of the arrow
in panels (a)–(c).

conditions in Eq. (3). We choose arg(βJ,J−1) to be equal to
the same value for all J , considering the phase conditions in
Eq. (3) and neglecting (π ) in Eq. (12), and we get arg(βJ,J−1)
equals to −π/2 or π/2.

As a result, we have a simple solution for the case
ωJ,J−1tJ = 2kπ , the phase conditions can be satisfied by
choosing the carrier-envelope phase φJ equal to either −π/2
or π/2. As the peak amplitude or the duration of the pulse
changes gradually, the sign in the curly brackets in Eq. (10)
will suddenly change at a certain laser parameter, which re-
sults in a sudden change of ϕJ,J−1 by π , i.e., ϕ1,0 changes from

FIG. 2. Field-free population of the rotational states and the phase difference �EJ,J−1t − ϕJ,J−1 at full revival times as a function of J
for (a) three, (b) four, and (c) five pulses with τ = 30, 50, 70, 90, and 110 ps and identical peak times. The carrier-envelope phase φJ is set
to −π/2.
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FIG. 4. (a) The population distribution of rotational states with different carrier-envelope phases φJ of five laser pulses. (b) The phase
difference �EJ,J−1t − ϕJ,J−1 at full revival times as a function of J for different combinations of carrier-envelope phases of the laser pulses.
(c) Orientation dynamics with respect to the combination of carrier-envelope phases of the laser pulses. The laser parameters are εJ = 1.1 ×
106 V/m and τ = 70 ps.

− arg(β10) + π/2 to − arg(β10) + π/2 + π . If the phase con-
dition is destroyed, we can just change the carrier-envelope
phase φ1 by π to satisfy the phase condition.

III. RESULTS AND DISCUSSION

The linear molecule HCN is selected as a model. The
parameters of the molecule used in our calculation are as

FIG. 5. The population distribution and phase difference
�EJ,J−1t − ϕJ,J−1 at full revival times as a function of J . The pulse
width of each pulse is 30 ps. φJ is set to −π/2. (a)-(c) show the
results for laser pulses for the case tJ = 0, and (d)-(f) show the
results for time-delayed laser pulses with center time tJ = 2(J −
1)Trot . The peak amplitude of each laser pulse, with a unit of
106 V/m, is shown as follows: (a) ε1 = 1.5, ε2 = 2.0 and ε3 = 1.9;
(b) ε1 = 1.7, ε2 = 2.4, ε3 = 2.5 and ε4 = 2.2; (c) ε1 = 1.8, ε2 = 2.7,
ε3 = 3.1, ε4 = 2.9 and ε5 = 2.6; (d) ε1 = 1.4, ε2 = 1.2 and ε3 =
0.8; (e) ε1 = 1.5, ε2 = 1.4, ε3 = 1.1 and ε4 = 0.8; (f) ε1 = 1.5,
ε2 = 1.5, ε3 = 1.3, ε4 = 1.1 and ε5 = 0.8.

follows [33]: B = 1.457 cm−1 and μ = 2.89 D. The funda-
mental energy difference (2B) corresponds to 0.0874 THz.
The molecular model is considered at T = 0 K. At first, we
set the delay times between the laser pulses to zero, i.e.,
tJ = 0 for all J . According to the derivation in Sec. II B, to
satisfy the phase condition, the carrier-envelope phases of
the laser pulses φJ are set to −π/2. The peak amplitude εJ

of each pulse is set to the same value. In order that there
is no overlap between the frequency spectrum of each laser
pulse, we have to set the pulse width larger than 30 ps. The
resonant frequencies ωJ,J−1 of the laser pulses are (2B, 4B,
6B) for the three-pulse scheme and (2B, 4B, 6B, 8B, 10B)
for the five-pulse scheme. The temporal shape and the fre-
quency spectrum for five resonant laser pulses with τ = 30 ps
are shown in Fig. 1. The populations and phase differences
�EJ,J−1t − ϕJ,J−1 at full revival times after three, four, and
five laser pulses are shown in Fig. 2. As the pulse width
increases, a nearly identical phase difference of π is obtained,
which matches the analytic derivation in Sec. II B. It has been
explained in Ref. [42] that a pulse with narrow bandwidth is
beneficial for suppressing optical transitions via the higher-
order terms in the Magnus expansion. That is, the validity
of the analytical analysis is best in the narrow-bandwidth
regime.

It should be noted that, as the pulse width is changed in
Fig. 2, the absolute value of the pulse area is kept constant
(i.e.,

∫ ∞
−∞ |E (t )|dt = C). Then a nearly identical popula-

tion distribution is obtained after the laser pulses, see also
Ref. [44]. As the absolute area of the pulses is a key parameter
for the dynamics of the system, we further investigate the
dependence of the phase difference on the absolute area of
the pulses.

Figures 3(a)–3(c) shows the difference between
�EJ,J−1t − ϕJ,J−1 and π at full revival times for the
three-pulse scheme with different peak amplitudes εJ and
pulse durations τ . For Gaussian pulses, we find that the
absolute area of the pulses is proportional to the value εJτ .
The relationship between εJ and τ and the absolute area of the
pulses give a curve which is a hyperbola in Figs. 3(a)–3(c).
The value of �EJ,J−1t − ϕJ,J−1 on the same hyperbolic curve
varies as the pulse duration increases. This variation decreases
as the pulse width increases [see the dashed line in Fig. 3(a)].
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The same result can be found in Fig. 2. It is found that the
phase condition can be well satisfied when the absolute area
of the pulses is less than a certain value (the blue region in
the lower left corner of the figures). As the absolute area of
the pulses increase, which means the hyperbolic curve will
move away from the origin in Figs. 3(a)–3(c), �E1,0t − ϕ1,0

suddenly changes from π to zero at the boundary between
the blue and red regions [Fig. 3(a)]. Then �E2,1t − ϕ2,1 and
�E3,2t − ϕ3,2 suddenly changes successively as the absolute
area of the pulses further increase [Fig. 3(b) and 3(c)]. As
discussed in Sec. II B, the sign of the value in the curly
brackets in Eq. (10) is dependent on the peak amplitude and
duration of the laser pulses. As the sign changes, a sudden
change of ϕJ,J−1 will be observed resulting in the sudden
change of �EJ,J−1t − ϕJ,J−1. The sudden change of ϕJ,J−1

is more obvious for the laser pulses with a larger τ , which
also indicates that the numerical results match better with
the analytical results in the narrow-bandwidth regime. As the
absolute area of the pulses is further increased, there is no
sudden change of phase difference from π to zero and the
optimal phase difference cannot be obtained. It indicates that,
as the energy of the laser pulses is large enough, an analytic
solution based on the first-order Magnus expansion cannot
well describe the dynamics of the system. Therefore, we have
to keep the absolute area of the pulses in the blue region in
the lower left corner of Figs. 3(a)–3(c) to satisfy the phase
condition in our scheme.

Figures 3(d)–3(f) show the time evolution of the popu-
lations of the rotational states when the sudden change of
ϕJ,J−1 occurs. As ϕ1,0 suddenly changes from π to zero,
the population of J = 0 is almost empty [see the solid line
in Fig. 3(d)]. Likewise, as the amplitude of the laser pulse
further increases, the sudden change of ϕ2,1 and ϕ3,2 occurs
successively when the population of J = 1 and J = 2 ap-
proach zero, respectively [see the dashed line in Fig. 3(e)
and the dotted line in Fig. 3(f)]. Considering that the value
in the curly brackets in Eq. (10) changes continuously with
the peak amplitude and duration of the laser pulses, arg(Ck )
suddenly changes when Ck = 0, namely, when the population
of the kth rotational state is empty. This results in the sudden
change of ϕk+1,k . It indicates that one way to satisfy the phase
condition is to control the rotational population. For example,
we can control the intensity of the fundamental frequency
(2B) pulse to avoid the population of J = 0 decaying to zero.
We can also control the intensities of the other pulses to
avoid the populations of the other rotational states decaying
to zero.

Figure 4 shows the case where ϕ1,0 suddenly changes
from π to zero with εJ = 1.1 × 106 V/m and τ =
70 ps for five laser pulses. According to Eq. (12), it
means ϕ1,0 = − arg(β10) + π/2 + π = −(−π/2) + π/2 +
π = 2π . We can just change the carrier-envelope phase of
the first laser pulse φ1 from −π/2 to π/2, resulting in ϕ1,0 =
ϕ2,1 = ϕ3,2 = ϕ4,3 = ϕ5,4 = π . Then an optimal phase differ-
ence is obtained [the second row in Fig. 4(b)] at full revival
times trev = nTrot (Trot = π/B, n = 1, 2, 3, . . .). This corre-
sponds to the negative peak around 183 ps in Fig. 4(c). We
can also change the carrier-envelope phase of the other pulses
to satisfy the phase condition. As shown in the third and last
row in Fig. 4(b), φ3 and φ5 are changed from −π/2 to π/2,

successively. Then ϕ3,2 and ϕ5,4 change from π to zero and
the phase condition is satisfied as well (ϕ1,0 = ϕ3,2 = ϕ5,4 =
2π , ϕ2,1 = ϕ4,3 = π ). It can be seen that the full revival
time does not occur at the time, which is an integer multi-
ple of the rotational period. However, the phase difference
�EJ,J−1t − ϕJ,J−1 equals (2k + 1)π (k = 0,±1,±2, . . .) at
trev = nTrot + Trot/2 (n = 1, 2, 3, . . .). Consequently, the full
revival time is delayed by half a rotational period [see the
negative peak around 189 ps in Fig. 4(c)]. Interestingly, as
the carrier-envelope phases are modified, the rotational popu-
lations are unchanged [Fig. 4(a)]. Equation (10) shows that the
populations of rotational states, namely |Ck|2, are independent
of the carrier-envelope phases φJ .

The maximum values of |〈cosθ〉|max for Jmax = 3, 4, and
5 are 0.861, 0.906, and 0.932, respectively [22]. To get the
optimal degree of orientation, we keep the phase condition
to be satisfied and modify the peak amplitude of each laser
pulse with a specific FWHM. To avoid a sudden change of
ϕJ,J−1, the peak amplitude of the fundamental frequency pulse
is controlled to avoid the population of J = 0 decaying to
0. As shown in Fig. 5, where three pulses [Fig. 5(a)], four
pulses [Fig. 5(b)], and five pulses [Fig. 5(c)] are utilized to
control the rotational state population, the maximum degree
of orientation reaches 0.860, 0.903, and 0.928, respectively,
which is very close to the optimal values. Keeping the absolute
area of the pulses constant, as the pulse duration increases, a
flatter phase difference can be obtained at full revival times,
which is beneficial for getting a higher degree of orientation.

Finally, we investigate the scheme by considering time-
delayed laser pulses. To satisfy the phase condition, the center
time of the laser pulses must satisfy ωJ,J−1tJ = 2kπ (k =
1, 2, 3, . . .). Figures 5(d)–5(f) show the rotational popula-
tion and phase difference at full revival times after the laser
pulses have decayed. The optimal degree of orientation can
be obtained again. Furthermore, the peak amplitudes of the
time-delayed laser pulses are lower than those of the zero-
delayed pulses. It provides a method to get the optimal degree
of orientation utilizing resonant laser pulses with less energy
based on our scheme.

IV. CONCLUSION AND OUTLOOK

We have used a set of resonant laser pulses to control
the molecular orientation of HCN. An analytical result for
multilevel systems (J > 2) is derived based on the first-order
Magnus expansion. According to the analytical result, we
can modify the carrier-envelope phase of the laser pulses to
satisfy a phase condition, such that an optimal phase differ-
ence between rotational states can be obtained at full revival
times. When the absolute area of the laser pulses is kept
constant, below a certain threshold, the rotational popula-
tion distribution after the pulses, which is independent of the
carrier-envelope phases, remains unchanged. The dependence
of the phase difference �EJ,J−1t − ϕJ,J−1 on the absolute area
of the pulses is discussed and the sudden change of ϕJ,J−1 can
be well explained based on our analytical model. However, the
analytical model cannot describe the dynamics of the system
for laser pulses with high energy. According to the evolution
of the populations of rotational states, we find a method to
avoid the sudden change of ϕJ,J−1. Thus, by adjusting the
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peak amplitude below a certain value, the rotational popula-
tions can be selectively changed without changing the phase
condition.

The optimal degrees of orientation for 4, 5, and 6 populated
rotational states are obtained by modifying the peak ampli-
tudes of the laser pulses. Furthermore, we find that the optimal
degree of orientation can be obtained by time-delayed laser
pulses with smaller peak amplitudes. The present scheme is
applicable beyond the example of HCN. We note that the pulse
amplitudes described here ≈106 V/m with durations of 30 ps
and up to 110 ps may be hard to achieve by the commonly
used THz generation techniques. For molecules with larger

moments of inertia, the resonant transitions move into the
microwave region. As the validity of our analytical analy-
sis is best in the narrow-bandwidth regime, the method will
work even better for nanosecond pulses. Tailored nanosecond
pulses of the type used in the present work are now available
in the microwave region [45].
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