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Relativistic strong-field ionization of hydrogenlike atoms or ions in a constant crossed electromagnetic field
is studied. The transition amplitude is formulated within the strong-field approximation in the Göppert-Mayer
gauge, with initial and final electron states being described by the corresponding Dirac-Coulomb and Dirac-
Volkov wave functions, respectively. Coulomb corrections to the electron motion during tunneling are taken into
account by adjusting an established method to the present situation. Total and energy-differential ionization rates
are calculated and compared with predictions from other theories in a wide range of atomic numbers and applied
field strengths.
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I. INTRODUCTION

The first treatment of strong-field ionization of atoms by an
alternating electric field was provided in a seminal work by
Keldysh [1], who introduced the strong-field approximation
(SFA) in a nonrelativistic context. Shortly after, Nikishov and
Ritus [2,3] studied within Klein-Gordon theory the relativistic
strong-field ionization of a spinless particle bound by short-
range forces in the presence of an electromagnetic plane wave
or constant crossed field. Later on, Reiss [4,5] generalized
Keldysh’s consideration to the relativistic regime by calcu-
lating, within Dirac theory, the ionization of a 1s electron
bound by Coulomb forces in a plane electromagnetic laser
wave. In parallel with the SFA approaches, the Perelomov-
Popov-Terentev (PPT) theory of strong-field ionization was
developed [6]. It relies on the imaginary-time method and
allows for a relativistic generalization of Keldysh’s ionization
theory as well [7–9]. Reviews on relativistic strong-field ion-
ization are given in [10–12].

Nowadays, it is possible by table-top devices to gen-
erate laser pulses with field intensities of the order of
1019–1020 W/cm2 in the optical or near-infrared frequency
domain. The motion of a free electron exposed to such in-
tense fields becomes relativistic within less than an oscillation
cycle. Experiments on relativistic strong-field ionization of
noble-gas atoms have observed the formation of very high
charge states with ionization down to the K shell [13–16].

The rich physics of strong-field ionization is correctly
described by the SFA in a qualitative manner. In particular, de-
pending on the value of the Keldysh parameter [1], it properly
distinguishes the regimes of multiphoton, above-threshold,
and tunneling ionization. The method is also capable of de-
scribing short laser-pulse effects [17,18]. However, to reach
predictive power also in quantitative terms, it needs to be
adjusted properly. In standard SFA, the ionized electron is
described by the corresponding Volkov state, which takes
the interaction with the external electromagnetic (laser) field

fully into account but disregards the influence of the atomic
core potential on the electron dynamics during tunneling. Ac-
cordingly, a correction is needed to incorporate the Coulomb
field effects. Corresponding correction factors have been ob-
tained within the framework of the PPT theory [7–9,19–
21]. With respect to the SFA, there are heuristic approaches
using Coulomb-Volkov wave functions [22]. More recently,
it has been shown that the results from the imaginary-time
method with Coulomb corrections can be derived from the
SFA approach using the eikonal Volkov states for the con-
tinuum electron [23–25]. The Coulomb singularity in the
phase of the eikonal wave function has been removed, using
matching of the continuum wave function to the asymptotics
of the undisturbed bound state. More straightforwardly and
equivalently, in [26] it has been shown that the explicit cal-
culation of the Coulomb-corrected SFA amplitude for the
atomic s states avoids singularities because of the cancella-
tion of the Coulomb divergent contribution from the eikonal
phase with a term in the SFA prefactor. Another method
for removing the Coulomb singularity in the SFA amplitude
has been put forward in the analytical R-matrix theory, via
the imaginary-time shifting of the integration in the eikonal
phase [27,28]. It is worth mentioning that, apart from the
mainly analytical SFA and PPT approaches, also fully numeri-
cal studies of the relativistic dynamics and ionization of highly
charged ions in very strong laser fields have been carried
out [29–36].

Due to the approximations involved, SFA predictions turn
out to depend on the gauge that is chosen to describe the
external electromagnetic fields. From studies of nonrelativis-
tic strong-field ionization it is known that calculations in
the length gauge generally yield better agreement with nu-
merical solutions or experimental data than those in velocity
gauge [37]. The relativistic version of the length gauge is the
Göppert-Mayer gauge [10,17,26].

In the present paper we provide another treatment of
relativistic strong-field ionization of a hydrogenlike atomic

2469-9926/2023/107(3)/033113(9) 033113-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7208-5021
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.033113&domain=pdf&date_stamp=2023-03-20
https://doi.org/10.1103/PhysRevA.107.033113


ECKEY, KLAIBER, VOITKIV, AND MÜLLER PHYSICAL REVIEW A 107, 033113 (2023)

system. As the first step, the earlier approaches in [2–4]
are combined to calculate, within Dirac theory and standard
SFA, the relativistic ionization of a 1s electron bound by
a nuclear Coulomb potential in the presence of a constant
crossed field (CCF). In contrast to the work by Nikishov and
Ritus [2,3], we account for the Coulomb field in the bound
state and also for the electron spin. As compared with the
work of Reiss [4], we apply a CCF in the Göppert-Mayer
gauge rather than an oscillating wave in the radiation gauge.
Our study thus forms a link between the seminal papers [2–4].
The choice of the CCF is motivated by the fact that, for
small Keldysh parameters, the ionization resembles a tunnel-
ing process through the potential barrier that is formed by
the field of the atomic core and the laser field [38] which
then appears as quasistatic on the timescale of the ionization
dynamics.

In the second step we include a suitable Coulomb-
correction factor which is obtained by an appropriate modi-
fication of the procedure developed in [7–9,19] to the present
case. The modification is necessary because the long-range
Coulomb potential is already included here in the initial 1s
bound state of the electron, whereas a short-range binding
potential was assumed in the previous studies [7–9,19].

Accordingly, our paper is organized as follows. We present
our theoretical approach to relativistic strong-field ioniza-
tion in Sec. II, starting with the standard SFA calculation
in Sec. II A. In Sec. II B we determine an overall Coulomb-
correction factor that the SFA rate needs to be multiplied
with. An analytical approximation of the Coulomb-corrected
ionization rate in closed form is obtained in Sec. II C. We
illustrate our approach by numerical results in Sec. III and
compare them with predictions from other theories. A sum-
mary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section we outline our approach to relativistic
ionization in a CCF in the Göppert-Mayer gauge. In the
following, we use atomic units (a.u.) throughout, with the
elementary charge unit e = 1.

A. Ionization rate in standard SFA

The relativistic ionization process in combined laser and
Coulomb fields can be described within an S-matrix formal-
ism. The transition amplitude in the SFA can be expressed in
the prior form as

SSFA = − i

c

∫
d4x ψ̄ (−)(x)/AG(x)�1s(x), (1)

with the initial state

�1s(x) = g(r)χs exp(−iE1st ) (2)

describing the Coulomb-Dirac wave function of the hy-
drogenlike ground state. It consists of a radial part
g(r) = C1s(2Zr)σ−1 exp(−Zr), where C1s = ( Z3

π
1+σ

�(1+2σ ) )1/2,

the two possible spinors

χ+1/2 =

⎛
⎜⎜⎝

1
0

ic 1−σ
Z cos ϑ

ic 1−σ
Z sin ϑeiϕ

⎞
⎟⎟⎠

and

χ−1/2 =

⎛
⎜⎜⎝

0
1

ic 1−σ
Z sin ϑe−iϕ

−ic 1−σ
Z cos ϑ

⎞
⎟⎟⎠,

and the time evolution. Here E1s = σc2, where σ = [1 −
(Z/c)2]1/2 indicates the energy of the bound state and Z the
nuclear charge number. Correspondingly Ip = c2 − E1s de-
fines the ionization potential.

The interaction with the CCF in Eq. (1) is given by the
four-potential in the Göppert-Mayer gauge

Aμ

G(x) = ( − F · r,−ek (F · r)). (3)

The coordinate system is oriented with the electric field F
along the x axis and the magnetic field B along the y axis, with
amplitudes |F| = |B| = F . The CCF can be considered as the
infinite-wavelength limit of a plane wave. In the radiation
gauge, it is described by the potential Aμ = ãμϕk , with ãμ =
(0,−a, 0, 0), which is linear in the phase ϕk = k · x. Note that,
when performing calculations in a CCF, it proves useful to
introduce a wave four-vector kμ = ω

c (1, ez ), along with some
frequency ω as an auxiliary quantity. Accordingly, ek = ez in
Eq. (3). Evidently, all observables must be independent of the
parameter ω at the end.

The expression (1) would describe the exact transition am-
plitude if the final state accounted for the interaction of the
ionized electron with both the CCF and the nuclear Coulomb
field. However, such states are not known in analytical form.
In the standard SFA, one disregards the influence of the
Coulomb field in the continuum state and approximates the
latter by a Volkov wave function, which is an exact solution
of the Dirac equation in a plane-wave-like field. In the case of
a CCF it reads

ψ (−)(x) =
√

c

p0

(
1 − /k /A

2c(k · p)

)
up,s exp(iS(−) )

× exp[−i(ã · x)ϕk/c], (4)

with the action

S(−) = −(p · x) + 1

c(k · p)

(
(p · ã)

2
ϕ2

k − a2

6c
ϕ3

k

)
,

a free Dirac spinor up,s, and the asymptotic electron momen-
tum pμ = (p0, p), where p0 = Ep/c. The second exponential
function in (4) stems from the gauge transformation from the
radiation to the Göppert-Mayer gauge.

In Eq. (1), following [2,3], the term

(
1 − /A/k

2c(k · p)

)
exp

(
−i

(p · ã)

2c(k · p)
ϕ2

k + i
a2

6c2(k · p)
ϕ3

k + i
(ã · x)

c
ϕk

)
=

∫ ∞

−∞
ds e−isϕk

(
A(s) + i

/̃a/k

2c(k · p)
A′(s)

)
(5)
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is expressed by a Fourier integral, where

A(s) = 1

2π

∫ ∞

−∞
dϕkeiϕk s exp

(
−i

(p · ã)

2c(k · p)
ϕ2

k

+ i
a2

6c2(k · p)
ϕ3

k + i
(ã · x)

c
ϕk

)
(6)

and the prime denotes the derivative with respect to s. Now
the integration over t in Eq. (1) can be carried out; the re-
sulting 2πδ(Ep − E1s − sω) is then exploited to perform the
integration over s. For the remaining calculations the vector
q = p − sk − a

c ϕkex and the variables α = p·ã
c(k·p) , β = a2

8c2(k·p) ,

and y = (4β )2/3[ s
4β

− ( α
8β

)2], with s = Ep−E1s

ω
, are introduced

and the substitution z = (4β )1/3(ϕk − α
8β

) is applied, which
leads to

SSFA = − i

ω

√
c

p0
(4β )−1/3

∫ ∞

−∞
dz

∫
d3r e−i(q·r)g(r)ūp,s

×
(

1 − /̃a/k

2c(k · p)
ϕk

)
/AGχs

× exp

[
i

(
yz + z3

3

)]
exp

[
−i

8β

3

(
α

8β

)3

+ i
αs

8β

]
.

(7)

In order to obtain the differential ionization rate, the ab-
solute square of the transition amplitude has to be taken and
averaged (summed) over the initial (final) spin polarizations.
In carrying out these steps, we use Ref. [4] as orientation (see
also [39,40]) but adjust our calculation to the Göppert-Mayer
gauge. As a consequence of the latter, the resulting traces over
Dirac matrices are simplified decisively, in particular by the
fact that the four-products A2

G(x) = AG(x) · A(x) = AG(x) ·
k = A(x) · k = k2 = AG(x) · AG(x′) = 0 disappear. The re-
maining spatial integrations are proportional to

|SSFA|2 ∝
∫

d3r
∫

d3r′e−i(q·r)ei(q′ ·r′ )g(r)g(r′)

× (c0 + c3)r′ sin ϑ ′ cos ϕ′r sin ϑ cos ϕ, (8)

with

c0 = 1 + τ 2[cos ϑ cos ϑ ′ + sin ϑ sin ϑ ′ cos(ϕ − ϕ′)],

c3 = iτ (− cos ϑ + cos ϑ ′), (9)

and can be calculated straightforwardly in analogy to [4].
Herein q′ = p − sk − a

c (k · x′)ex and τ = (1 − σ )c/Z .
The remaining integrations are of the form∫

dz
(Z − iQ)ν ± (Z + iQ)ν

[ f ′(z)]ν
exp[− f (z)], (10)

with f (z) = −i(yz + z3/3), and can be solved by the saddle-
point method. The physically relevant saddle point is given by
z0 = i

√
y and the second derivative reads f ′′(z) = −2iz. To

this end, the denominator is expanded according to f ′(z) ≈
(z − z0) f ′′(z0) and the formula [41]∫

exp[−λ f (x)]

(x − x0)ν
dx ≈ iν

�(ν/2)

2�(ν)

(
2π

λ f ′′(x0)

)1/2

× [2λ f ′′(x0)]ν/2 exp[−λ f (x0)] (11)
is applied that is valid for large values of λ. To satisfy the
conditions for the applicability of (11), the condition y � 1
must be ensured in Eq. (7).

By using the saddle-point method, the previously purely
real quantity q becomes complex,

qx = − az

c(4β )1/3
= −i

ε

c
, q⊥ =

√
q2

x + q2
y = i

ζ

c
,

q =
√

q2
x + q2

y + q2
z = i

η

c
,

with the abbreviations

γ = p0 − pz, η =
√

c4 − E2
1s,

ε =
√

η2 + p2
yc2 + (cγ − E1s)2,

ζ =
√

η2 + (cγ − E1s)2. (12)

The rate is determined by integrating the resulting expression
in the common way over the momentum space and by dividing
it by the interaction time T ,

R =
∫

d3p
(2π )3

|SSFA|2
T

. (13)

Noticing that |SSFA|2 does not depend on px, the correspond-
ing integral in Eq. (13) yields∫

d px = FT (14)

(see also [2,42]). The remaining py and pz integrations are
transformed into integrations over py and γ , according to

R = F 2C2
1s

4
(2Z )2σ−2

∫ ∞

−∞
d py

∫ ∞

0
dγ

γ

ε
e−(4/3)y3/2{|S̃1(py, γ )|2 + τ 2[|S̃2(py, γ )|2 + |S̃3(py, γ )|2 + |S̃4(py, γ )|2]

+ 2τ Re[S̃1(py, γ )]Im[S̃2(py, γ )]}, (15)

where

S̃1(py, γ ) = ε

[
c2

η3
�

(
σ + 1

2

)
Dσ+1 − c

η2
�

(
σ + 2

2

)
Dσ+2

]
,

S̃2(py, γ ) = iε qz

[
3

c4

η5
�

(σ

2

)
Dσ − 3

c3

η4
�

(
σ + 1

2

)
Dσ+1 + c2

η3
�

(
σ + 2

2

)
Dσ+2

]
,
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S̃3(py, γ ) = − ε

ζ

[(
3
ζ 2c3

η5
− c3

η3

)
�

(σ

2

)
Dσ +

(
c2

η2
− 3

ζ 2c2

η4

)
�

(
σ + 1

2

)
Dσ+1 + ζ 2c

η3
�

(
σ + 2

2

)
Dσ+2

]
,

S̃4(py, γ ) = −i
pyc

ζ

[
c3

η3
�

(σ

2

)
Dσ − c2

η2
�

(
σ + 1

2

)
Aσ+1

]
,

with D = Zc( 2
Fγ ε

)1/2.

The remaining integrations can be carried out by numerical
means without difficulties.

B. Coulomb correction

Up to this point, the influence of the Coulomb field on the
continuum state has not been considered. However, especially
during the tunneling process, the electron continues to experi-
ence the influence of this field. Therefore, what is needed is a
way to account for the effect of the nucleus on the ionized
electron. For an electron bound by a short-range potential,
this problem has already been widely treated [7–9,19–21].
Accordingly, to include the Coulomb interaction between the
atomic core and the escaping electron in this case, its influence
is taken into account under the complete tunneling barrier.
This is achieved by dividing the barrier length into rather close
distances, where the Coulomb effects can be incorporated via
a typical Coulomb logarithm in the wave function, and rather
large distances, where the Coulomb potential can be treated
as a perturbation, with both regions being linked through a
matching procedure [7–9,19–21].

In our case, however, we do not assume short-range bind-
ing forces but instead fully account for the long-range nuclear
Coulomb field in the bound 1s state. A part of the total
Coulomb effects is therefore already contained in Eq. (15).
As a consequence, we have to appropriately truncate the
Coulomb corrections established in [7–9,19–21] in order to
avoid their overestimation. To this end, we restrict the in-
fluence on the escaping electron to the region in which the
Coulomb field, as compared with the impact of the CCF, is
a perturbation. It will turn out that this procedure provides a
remarkably good approximation to the Coulomb effects.

We determine the Coulomb correction as [7–9,19–21]

Q = exp

(
2iZ

∫ 0

t1

1

r(t )
dt

)
, (16)

where t = t1 denotes the time at which the Coulomb potential
starts to be taken into account and t = 0 denotes the time of
the tunnel exit.

The trajectory r(t ) is obtained by a solution of the classical
relativistic equations of motion in a CCF, which is adapted to
the initial conditions 	r(t0) = 0, Im[	r(0)] = 0, Im[	̇r(0)] = 0,
and 1√

1−	̇r2(t0 )/c2
= ε0, with ε0 = E1s/c2. Here t (u0) = t0 is the

time of tunnel entry. This results in the parametrized coordi-
nates [7,20,21]

x(u) = c2

2Fλ

(
u2− u2

0

)
, y(u)= 0, z(u) = i

c2

6Fλ

(
u2

0− u2)u,

ct (u) = i
c2

2Fλ
(1 + λ2)u − i

c2

6Fλ
u3, (17)

with u2
0 = 3(λ2 − 1) and λ = − ε0

2 + 1
2

√
ε2

0 + 8.

An intuitive approach to determine t1 is motivated by the
idea that for r1 = r(t1) the Coulomb field strength equals the
CCF amplitude and afterward falls below it. This leads to

r1 =
√

Z

F
. (18)

We note that r1, while being substantially larger than the size
of approximately 1/Z of the bound state, is much smaller than
the extension of approximately Z2/F of the tunneling barrier.
From this, also u1 can be determined:

c2

2Fλ

(
u2

0 − u2
)√

1 − u2

9
= r1. (19)

Taking the tunnel distance as a pure x component, where
|x(u)| � |z(u)| holds, the equation is simplified to

u1 =
√

u2
0 − 2F 1/2Z1/2λ

c2
. (20)

Interestingly, the intuitive value of r1 (as well as the associated
coordinate x1) given above can be mathematically supported
and further improved by noting that it coincides approxi-
mately with the saddle point of the integrand in the S-matrix
element of Eq. (1). Let us briefly sketch the corresponding
derivation [43]. The space-time dependence of the integrand
in cylindrical coordinates is given by

m = ρ2 cos(φ)e−iS[ρ,φ,z,t](2Z
√

ρ2 + z2)σ−1e−Z
√

ρ2+z2
e−iσc2t ,

(21)

where S[ρ, φ, z, t] denotes the classical action, which satisfies
the Hamilton-Jacobi equation(

∇S + 1

c
AG

)2

− 1

c2

(
∂S

∂t
− A0

G − Z

r

)2

+ c2 = 0. (22)

Note that the angular dependence of the spinors χ± 1/2 has
been omitted in Eq. (21), as it is contained solely in the lower
components which are suppressed by the small parameter τ .
We can now substitute the saddle-point conditions into this
equation and obtain an equation for x, which can be solved
approximately by exploiting the smallness of F/Fa (with the
atomic field strength Fa = Z3) and Ip/c2. With next-to-leading
order accuracy, we find

x̃1 = −
√

Z

F

(
1 + Z2

9c2

)
+ 1

Z
(23)

and

ũ1 =
√

u2
0 + 2Fλ

c2
x̃1. (24)

We point out that here we have taken the influence of the z
component into account, which modifies the second term in
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FIG. 1. Coulomb-correction factor from Eq. (25) as a function
of the normalized field strength F/Fbs, where Fbs = c4(1 − σ )2/4Z
denotes the barrier suppression field strength. For comparison, the
Coulomb-correction factor for the intuitive approach with ϕ1 =
arcsin(u1/3) [see Eq. (20)] is shown as dashed curves.

parentheses in Eq. (23). The Coulomb correction is accord-
ingly determined to

Q =
(

sin(ϕ0 + ϕ1)

sin(ϕ0 − ϕ1)

)2δ

exp

(
6Zϕ1

c

)
, (25)

where δ = Zε0(1 − ε2
0 )−1/2/c, ϕ0 = arcsin(u0/3), and

ϕ1 = arcsin(ũ1/3).
For illustration, Fig. 1 shows the Coulomb-correction fac-

tor from Eq. (25) by solid lines and the intuitive correction
factor based on Eq. (20) by dashed lines. The more accurate
description yields larger corrections, especially at high field
strength. Compared to the well-known result of [7], however,
the present Coulomb-correction factors turn out to be much
smaller (by about two orders of magnitude). As mentioned
before, this is because in [7] the correction is evaluated along
the complete tunnel length.

Before moving on to the next section, we note that a
general criterion for applicability of the Coulomb-factor ap-
proximation in SFA calculations has been established in [44].
Since the Coulomb correction is obtained via semiclassical
electron trajectories, artifacts in the form of artificial Coulomb
singularities can in principle arise when the electron comes
too close to the nucleus. This may happen, for example, due
to recollisions in linearly polarized laser fields in a nonrel-
ativistic interaction regime when the dipole approximation
applies. In our case of a CCF, however, the electron al-
ways remains far from the core and never returns: Already
at the saddle point, from where we start to account for the
Coulomb correction, we have r1/ra ≈ √

Fa/F � 1 (with the
atomic Bohr radius ra ≈ 1/Z) and the electron-core distance
continues to grow for later times. Recollisions are generally
suppressed by a magnetic-field component due to the mag-
netic part of the Lorentz force that induces a drift motion
of the electron (see, e.g., [11]). The applicability condition
for a Coulomb-correction factor from Ref. [44] is therefore
fulfilled.

FIG. 2. Differential rate dR
dγ

as a function of γ for different
nuclear charge numbers Z at F = Fbs (solid lines), when the py

dependence in Eq. (15) has been integrated numerically. The dashed
lines show the approximation when the exponential prefactor in
Eq. (15) is evaluated at py = 0 and γ = γ0, the py dependence is
integrated out analytically, and the remaining exponent is expanded
up to second order. The curves have been normalized to a height of 1
to facilitate their comparison.

C. Analytical simplifications

The fact that the prefactor of the exponential dependence
e−(4/3)y3/2

in Eq. (15) changes only very slowly as a function of
γ and py can now be used to solve the remaining integrations.
The py dependence is contained in the variables ε and ζ , as
well as in the exponential dependence by the variable y. In
order to be able to carry out the integration over py, the prefac-
tor is evaluated at py = 0 and the function in the exponential
is expanded around py = 0 up to the second order. The py

dependence in Eq. (15) can then be evaluated analytically as a
Gaussian integral to a very good approximation.

The γ dependence is far more complex. Nevertheless, it
proves to be practicable to integrate only over the exponential
dependence. Therefore, the value γ0 is determined at which
the exponential function reaches its maximum:

γ0 = E1s

4c
+ 1

4c

√
E2

1s + 8c4. (26)

The exponent is expanded up to the second order around γ0

and the prefactor is evaluated at this point. That this approach
reflects the differential rate from Eq. (15) very well can be
seen in Fig. 2. Here dR/dγ from Eq. (15) is shown as a solid
line for different nuclear charge numbers Z . In comparison,
the approach described above by evaluating the prefactor at
γ0 and expanding the exponent is shown as a dashed line. The
maximum of the exact differential rate lies only slightly below
γ0 and the widths of both curves (for given Z) are almost
the same [45]. By formally extending the lower integration
boundary to −∞, the γ integration over the approximated
expression for dR/dγ can be performed as a Gaussian integral
as well. This results in

R = 1

4
πF 2C2

1s(2Z )2σ−2 γ0

ε0

√
2Fγ0

ε0h′′(γ0)
e−h(γ0 )

×{|S̃1(py = 0, γ = γ0)|2
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+ τ 2[|S̃2(py = 0, γ = γ0)|2 + |S̃3(py = 0, γ = γ0)|2]

+ 2τ Re[S̃1(py = 0, γ = γ0)]Im[S̃2(py = 0, γ = γ0)]},
(27)

where

ε0 =
√

η2 + (cγ0 − E1s)2,

h(γ ) = 2ε3

3c2Fγ
.

To further simplify the expression, γ0 can be expanded for
small values of Ip/c2 
 1 to give

γ0 ≈ c − Ip

3c
. (28)

Accordingly, the main contribution of pz is around Ip

3c . This be-
havior is in agreement with the result of [26], where the same
shift of the momentum distribution along this direction has
been found. It originates from the influence of the magnetic-
field component that causes, in classical terms, a − 1

c v × B
force in addition to the electric-field force. As long as the
electron velocity v is much smaller than c, the electric-field
force is dominant, so v is mainly oriented along the negative
x direction in our frame of coordinates. The magnetic field
B along y thus leads to a Lorentz force on the electron that
points in the positive z direction and this way causes the char-
acteristic shift in the pz distribution. For ionization in a purely
electric field such a shift is accordingly absent [21,26,38].

By noting that the magnetic-field-induced shift �pz

emerges during the subbarrier motion of the electron [26,38]
and that the tunneling time amounts to τt ∼ Z/F [1,21], the
shift can be roughly estimated by order of magnitude as
�pz ∼ v

c Fτt ∼ Ip/c, with the atomic velocity v ∼ Z of the
electron. This physically intuitive argument can, in particular,
explain why the value of the magnetic-field-induced momen-
tum shift is independent of the field amplitude F .

The shift is especially important for highly charged ions
where Ip is large. More precisely, the shift becomes particu-
larly distinct when it is comparable to or even larger than the
width of approximately

√
F/Z of the pz momentum distribu-

tion, that is, when Z/c �
√

F/Fa holds.
By noticing in Eq. (27) that |S̃1| � τ |S̃i| for i ∈ {2, 3, 4}

holds in the relevant range of parameters, especially for small
and medium-sized Z , and by expanding all quantities up to the
first order in Ip/c2 
 1, the rate can be approximately written
as

R ≈ F 2−σ F 1+4σ/3
a

(2Ip)7/2+σ/2

1 + σ

�(1 + 2σ )
23σ−3 1 − 7

72
Ip

c2√
1 + 5

12
Ip

c2

× 1

(1 − 1
2

Ip

c2 )3
�

(
σ + 1

2

)2(
1 + 17

36

Ip

c2

)σ

×
⎧⎨
⎩1 − �

(
σ+2

2

)
�

(
σ+1

2

)Z

[
2

√
2Ip

F

(
1 − 1

36

Ip

c2

)]1/2
⎫⎬
⎭

2

× exp

[
−2

3

(2Ip)3/2

F

(
1 − 1

12

Ip

c2

)]
, (29)

FIG. 3. Total ionization rate as a function of the normalized field
strength F/Fbs. The solid curves show Eq. (27) corrected by the
Coulomb factor (25), the corresponding analytical approximation
(29) including the same Coulomb factor is depicted by circles, and
the Coulomb-corrected rate of [20,21] is shown as dashed curves.

with the atomic field strength Fa = Z3. While the exponen-

tial characteristic of the ionization process exp[− 2
3

(2Ip)3/2

F ]
is generally found in tunnelinglike rate expressions [1–3,7–
9,19–21], it is particularly noteworthy that the additional term
Ip/12c2 in the last line of Eq. (29) coincides as well with
that of Ref. [26]. The various relativistic ionization theories
are known to somewhat differ in the nuclear charge and
field strength dependences of the preexponential factors they
predict.

To account for the Coulomb correction, the standard SFA
rate from Eq. (15) as well as (27) has to be multiplied by the
factor Q:

RQ = R · Q. (30)

In the next section the rate RQ is compared with previously
existing calculations and it is placed in context.

III. RESULTS AND DISCUSSION

In this section we illustrate our theoretical approach by
showing the resulting ionization rates in a wide range of
field strengths and ionic systems. Moreover, we compare
our findings with already existing calculations of relativistic
strong-field ionization.

The dependence on the field strength is mainly determined
by the exponential dependence of the rate. Different ionization
theories can, however, differ in the preexponential factors they
predict.

Figure 3 shows the total ionization rate (27) corrected by
the Coulomb factor (25) as a function of the normalized field
strength (solid curves). The steep exponential dependence is
clearly seen. For comparison, the PPT result of [20,21] is pre-
sented as dashed curves. On the displayed logarithmic scale,
our results lie almost completely on the PPT curves and differ
only slightly.

The dotted curves give the Coulomb-corrected equa-
tion (29). The approximation coincides very well with the
solid curves and deviates only slightly from this result for
large nuclear charge numbers Z and large field strengths. The
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FIG. 4. Total ionization rate as a function of the normalized
ionization potential Ip/c2 for (a) F/Fa = 1

32 and (b) F/Fa = 1
25 .

The red solid lines show the (over half a cycle of an oscillating
laser wave averaged) results from Eq. (27), including the Coulomb-
correction factor (25). The red dot-dashed lines show the result
for the intuitive Coulomb-correction factor with ϕ1 = arcsin(u1/3)
[see Eq. (20)]. The blue dashed (dotted) curves represent Eq. (78)
[Eq. (97)] from [26] and the black dashed lines shows the cycle-
averaged result of [20,21].

dependence of the ionization rate on the nuclear charge, which
is encoded by the normalized ionization potential, is shown in
Fig. 4 on a linear scale. Our rate in a CCF has been averaged
over half a cycle of an oscillating laser wave with an electric
field of the form F sin(ϕk ). It is compared with the PPT results
from Refs. [20,21] (also averaged over half a laser period) and
the SFA results from Ref. [26], where ionization by a linearly
polarized laser wave was considered. We note in this regard
that Eqs. (78) and (97) in Ref. [26] represent two variants of
the Coulomb-corrected SFA that are obtained from different
partitions of the underlying Hamiltonian. While Eq. (78) relies
on the standard partition, in the dressed Coulomb-corrected
SFA of Eq. (97) the laser field makes some contribution to
the bound-state evolution. The latter brings the rates closer to
the PPT prediction. When we apply our intuitive Coulomb-
correction factor based on Eq. (20), the ionization rate comes
out a bit too low, as the red dashed curves show. This correc-
tion factor thus slightly underestimates the Coulomb effects.
The shape of the curves is however very similar to the PPT

FIG. 5. Total ionization rates of a hydrogen atom, depending on
the applied field strength. The solid curve shows the relativistic rate
in the CCF [our Eq. (27) with Coulomb correction], the dashed curve
the nonrelativistic rate in the SEF [Eq. (31)], and the circles the
relativistic rates in the SEF from [48]. The barrier-suppression field
is Fbs(Z = 1) ≈ 0.06 a.u. here.

result of [20,21] and Eq. (97) from [26]. Applying the more
accurate Coulomb correction (25) improves the ionization
rates significantly (red solid curves). Now they resemble more
closely the predictions from [26] that include the Coulomb ef-
fects in a coherent manner by using eikonal Volkov states. The
remaining differences as compared with this advanced SFA
theory indicate that further correction terms (especially those
stemming from the innermost region of the tunnel) would be
needed in our approach to enhance the agreement.

To conclude this section, we discuss the relation of our
results in a CCF with ionization rates in a static electric field
(SEF). While a magnetic-field component plays an important
role for the momentum distributions of emitted photoelectrons
(see [21,26] and Sec. II C), it has been shown in [21] that
the total relativistic ionization rates in the CCF and SEF
are almost identical. Especially in the nonrelativistic regime
of laser-atom interaction, the magnetic-field component can
usually be neglected and the dipole approximation applied.
The nonrelativistic rate for tunneling ionization in an SEF is
given by the well-known formula [46]

R(nr)
SEF = 4Z5

F
exp

(
−2Z3

3F

)
. (31)

Figure 5 shows a comparison of this formula with the pre-
diction from our approach [Eq. (27) including the Coulomb
correction (25)]. Both curves run nearly parallel, with our
results overestimating the rate (31) slightly: by about 23%
at F = 0.03 a.u. and continuously decreasing to about 11%
at F = 0.09 a.u. The deviations are caused by the approxi-
mations made in our treatment. We note that the relativistic
ionization rate in an SEF from [21], which is obtained from
a quasiclassical approach, would practically coincide with
the nonrelativistic rate (31) in the considered range of field
strengths. Total rates for relativistic ionization have also been
calculated numerically by the method of complex scaling
utilizing a finite-basis expansion [47,48]. The correspond-
ing results are included in Fig. 5 as circles. For small field
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strengths F ≈ 0.03 a.u., all approaches yield very similar ion-
ization rates. For larger fields, however, the complex-scaling
method provides smaller rates, indicating that the tunneling
theories lead to overestimations when approaching or even
exceeding the over-barrier threshold. This conclusion is in
accordance with corresponding results obtained from fully
numerical solutions of the Schrödinger equation [49].

While Fig. 5 refers to a nonrelativistic system with Z = 1,
we emphasize that relativistic effects can become very sig-
nificant in highly charged ions. In order to quantify them
we compare our Coulomb-corrected equation (27) with the
predictions from Eq. (31). For example, at F = 0.1Fbs (F =
0.3Fbs) the relativistic-to-nonrelativistic ratio of total rates
amounts to approximately 0.6 (approximately 0.94) for Z =
20 to approximately 0.048 (approximately 0.37) for Z = 40
and to approximately 1.5 × 10−6 (approximately 7.4 × 10−3)
for Z = 80. At large values of Z , our treatment thus predicts
a very substantial reduction of the ionization rate due to rel-
ativistic effects, in accordance with the results of Ref. [21].
We note that this general trend is in correspondence with the
increase of the binding potential Ip due to relativistic effects,
which makes it harder to ionize the bound electron than one
would expect on the basis of a nonrelativistic description.

IV. CONCLUSION

An alternative treatment of relativistic strong-field ion-
ization of hydrogenlike atomic systems has been presented.
Our approach combines various calculational methods that
have been developed in earlier investigations of the prob-
lem [2–4,7]. First, we calculated the total ionization rate of a
1s electron bound by a nuclear Coulomb potential in the pres-
ence of a constant crossed field in the Göppert-Mayer gauge
within Dirac theory and standard SFA. To take the influence
of the Coulomb field on the electron continuum state during

tunneling into consideration, a well-known method that relies
on the assumption of a short-range binding potential [7] was
adjusted appropriately. Two versions of the resulting modified
Coulomb-correction factor were obtained, an intuitive one and
a more accurate one, that are effectively active in the region
where the nuclear Coulomb field has fallen below the CCF.
They may be interpreted as arising from the necessity to incor-
porate Coulomb effects into the Volkov state. We emphasize
that both versions of our Coulomb-correction factor represent
approximations as they disregard the innermost subbarrier
region.

We have derived a representation of the Coulomb-corrected
total ionization rate as a double integral, which could be very
well approximated by an analytical formula in closed form.
Comparing our corresponding results with predictions from
previous studies based on PPT [20,21] or Coulomb-corrected
SFA [26] theories, we found good agreement in a wide range
of nuclear charges (ionization potentials) for field strengths
below the barrier suppression field. Our study may offer
additional insights into relativistic strong-field ionization, in
general, and the role of Coulomb corrections, in particular. It
may, moreover, help to establish further connections between
corresponding PPT and SFA theories.

As an outlook we note that our approach could be appropri-
ately applied to other strong-field problems as well to obtain,
for example, a Coulomb-corrected rate for bound-free pair
production in an intense laser field [39,40].
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