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In frequently studied two-band models for solid-state high-order harmonic generation, interband harmonics,
in principle, can range from the minimum to the maximum band gap. However, it is known that a laser-intensity-
dependent cutoff exists that may be well below the maximum band gap unless the laser intensity is so high that
the electrons explore the entire Brillouin zone. We show that this laser-intensity-dependent cutoff is formed by
destructive interference of the emission of electrons starting at different initial states in the Brillouin zone. The
calculations in this work are for Su-Schrieffer-Heeger chains, but our findings apply to other two-band systems
as well. The destructive interference is complete and forms the cutoff only when the sampling of the Brillouin
zone is fine enough or, equivalently, a finite chain is long enough in position space. For coarser sampling and
shorter chains all harmonics between minimum and maximum band gap are emitted. A time-frequency analysis
shows how certain trajectories are responsible for the formation of the cutoff.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an important
tool to create ultrashort laser pulses up to frequencies in the
x-ray regime. It was first observed in atomic systems and
subsequently described using a semiclassical three-step model
[1,2] 30 years ago. The efficient generation of high harmonics
in solids was reported in 2010 [3]. HHG in solids is very
attractive for several reasons. For instance, the higher target
density compared to gases allows for more compact radiation
sources [4–7] and better scalability. From a fundamental re-
search perspective, HHG can be used to probe static properties
[8–10] and dynamical processes [11–16] in condensed matter.
HHG in solids was recently reviewed in [17,18].

In solids, several processes contribute to the generation of
high-order harmonics: harmonics originating from the move-
ment of electrons within a band (intraband harmonics) and
harmonics due to transitions between two bands (interband
harmonics). Further, the time-dependent injection of electrons
into the conduction band also generates harmonics [19]. The
well-established three-step model for atomic HHG can be
adopted to describe the interband harmonics [20]. First, an
electron from the valence band is excited into the conduction
band. This tunneling process occurs preferentially around the
minimal band gap. In the presence of the laser field, the
electron (hole) moves in the conduction (valence) band. The
electron and hole might recombine, which leads to the emis-
sion of harmonic radiation.

HHG in condensed matter can be theoretically simulated
by solving the time-dependent Schrödinger equation (TDSE)
for noninteracting electrons directly in position space (e.g., if
finite-size effects and the influence of edges are of interest)
or, after a Bloch ansatz, in momentum space for the bulk or
a finite system with periodic boundary conditions. Electron-
electron interaction can be included on a density-functional

level [9]. The semiconductor Bloch equations can be used
if relaxation processes due to couplings to other degrees of
freedom (e.g., phonons or an environment) need to be taken
into account via ad hoc relaxation times [20,21]. Relaxation
or dephasing processes were also modeled with an imaginary
potential [22].

In this work, we restrict ourselves to the noninteracting
TDSE level and a simple tight-binding description of a one-
dimensional chain, the so-called Su-Schrieffer-Heeger (SSH)
model [23], in order to investigate in detail a fact that we
observed during our previous works: HHG spectra for the bulk
might strongly depend on the �k sampling of the Brillouin zone
(BZ). For finite systems with periodic boundary conditions,
the �k sampling is uniquely defined by the number of lattice
sites N . However, for the bulk in the thermodynamic limit
N → ∞ one should, in principle, integrate over the first BZ
or, numerically, sample fine enough to reach convergence. As
we show in this paper, this convergence can be surprisingly
slow, and a new qualitative feature in the HHG plateau, i.e.,
a pronounced drop in the harmonic yield, emerges only for
large enough N . This drop depends on the laser intensity
and can be seen as a cutoff. This is in agreement with other
studies (e.g., [24–27]) that reported a similar effect. The
same behavior is observed in TDSE simulations of large, but
finite, chains in position space, showing that the observed
effect is not merely a numerical curiosity but has physical
relevance.

Figure 1 shows a finite SSH chain (top) and a periodic
one (bottom). The chains consist of two sublattice sites, in-
dicated by open (sublattice site α = 1) and solid (sublattice
site α = 2) circles. Two sites form a unit cell. The distance
between two neighboring unit cells is the lattice constant a.
As the SSH model is based on the tight-binding description,
hopping amplitudes between adjacent sites are introduced.
The hopping amplitude between sites in the same unit cell is
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FIG. 1. Sketch of the SSH model for a finite chain and a periodic
chain. Each unit cell consists of two lattice sites, indicated by the
open (sublattice site α = 1) and solid (sublattice site α = 2) cir-
cles. Unit cells are numerated by m = 1, 2, . . . , Na/2, with the total
number of atoms Na in the chain chosen to be even. The hopping
amplitude between sites within one unit cell is given by v, and that
across unit cells is given by w. The lattice constant is a. Relative
to an equidistant grid (vertical lines), the lattice sites are shifted
alternatingly by ±δ. For the periodic system, hopping between the
rightmost site and the leftmost site of the chain is possible with
amplitude w.

v, and across neighboring unit cells it is w. Hopping (i.e., tun-
neling) should be more likely if two sites are closer together.
Hence, different hopping amplitudes v and w correspond to
different distances. Starting from the equidistant configuration
where v = w (dashed vertical lines), we consider the sites to
be shifted alternatingly by −δ or +δ. For the periodic system,
hopping between the leftmost site and the rightmost site is
allowed with amplitude w. Finite SSH chains host topological
edge states for |w| > |v| [28], whose effect on HHG was stud-
ied in [29–32]. However, the topological nature of the SSH
model is not relevant for the size and sampling dependence
discussed in this work.

This paper is structured as follows. First, the methods and
theory are described in Sec. II. The dependence of the HHG
spectra on the size of the finite chains and the sampling
of the BZ are shown in Secs. III A and III B, respectively.
Section III C covers the amplitude dependence of HHG, and
the results of a semianalytical treatment for small laser-field
strengths are presented in Sec. III D. In Sec. III E, a time-
frequency analysis of the HHG is presented. The work is
summarized in Sec. IV.

II. METHODS

Considering that tunneling probabilities scale exponen-
tially with distance, we model the hopping amplitudes for the
SSH chain as

v = −e−(a/2−2δ),

w = −e−(a/2+2δ). (1)

The results shown in this paper are for a lattice constant of
a = 4.0 and a shift of δ = 0.15. However, our findings are not
specific to this choice of model parameters (a and δ).

In the following, we briefly review the theory of the SSH
bulk model and its coupling to a laser field. The treatment of
finite SSH chains was covered in [31] and is briefly summa-
rized in Appendix A.

Atomic units (h̄ = |e| = me = 4πε0 = 1) are used unless
stated otherwise.

A. Static bulk system

The bulk Hamiltonian of the SSH chain can be obtained
with a Bloch ansatz (see Appendix B or [33]), resulting in a
2 × 2 Hamiltonian,

Ĥ (k) =
(

0 s∗(k)
s(k) 0

)
, (2)

with

s(k) = ve−i(a/2−2δ)k + wei(a/2+2δ)k . (3)

Note that in Ref. [33] the lattice constant a is set to 1 and
the shifts δ are considered small and hence set to zero. In this
work we take the exact distances into account.

The time-independent Schrödinger equation (TISE) for the
bulk system reads

En(k)gn(k) = Ĥ (k)gn(k), (4)

where gn(k) = (g1
n(k), g2

n(k))�, with gα
n being the value of the

wave function at sublattice site α = 1, 2, and the index n = ±
indicates the valence (−) or conduction (+) band. The band
gap (energy difference between valence and conduction bands
for a given k) is given by

Eg(k) = E+(k) − E−(k) = 2E+(k) = 2
√

s(k)s∗(k)

= 2
√

v2 + w2 + 2vw cos(ak). (5)

B. Presence of an external field

In the presence of an external field, using the velocity
gauge and dipole approximation, the Hamiltonian becomes
time dependent:

Ĥ (k, t ) =
(

0 s∗(k, t )
s(k, t ) 0

)
, (6)

with

s(k, t ) = ve−i(a/2−2δ)[k+A(t )] + wei(a/2+2δ)[k+A(t )]

= s[k + A(t )]. (7)

Hence, the time-dependent function s(k, t ) is the time-
independent function s(keff ) evaluated at an effective lattice
momentum keff = k + A(t ). As a consequence, the time-
dependent Hamiltonian can be obtained by replacing the
argument of the time-independent one, i.e., Ĥ (k, t ) = Ĥ [k +
A(t )].

A laser pulse consisting of ncyc = 5 cycles is considered,
described by the vector potential

A(t ) = A0 sin2

(
ω0t

2ncyc

)
sin ω0t, 0 < t < 2πncyc/ω0, (8)

and zero otherwise. The angular frequency is set to ω0 =
0.0075 (i.e., the wavelength λ0 � 6.1μm). The amplitude A0

is varied in this paper but is chosen to be positive. The laser
pulse is quite short (ncyc = 5); hence, one could think that
the carrier-envelope phase (CEP) might have an effect on our
results. However, we have checked that the formation of the
cutoff due to destructive interference is independent of the
CEP.

The time-dependent Schrödinger equation reads

iġ(k, t ) = Ĥ (k, t )g(k, t ), (9)
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where g(k, t ) = (g1(k, t ), g2(k, t ))� is the time-dependent
state in k space. The initial value is g(k, t = 0) =
(g1

−(k), g2
−(k))�, which is the eigenstate with the smallest

energy for one particular k (i.e., corresponding to the valence
band) of the time-independent Hamiltonian (2).

To obtain the harmonic spectrum, the current is calculated
according to

j(k, t ) = g†(k, t )[∂kĤ (k, t )]g(k, t ). (10)

Hence, the derivative of the time-dependent Hamiltonian with
respect to k is the current operator. This statement holds true
only if the right Bloch ansatz, in which the distances between
the sites are taken into account, is chosen [33]. The derivative
gives

∂kĤ (k, t ) = i

(
0 −s∗

−(k, t )
s−(k, t ) 0

)
, (11)

with

s−(k, t ) = (a/2 − 2δ)ve−i(a/2−2δ)[k+A(t )]

− (a/2 + 2δ)wei(a/2+2δ)[k+A(t )]. (12)

The current (10) is calculated for different k values within the
first BZ, with

kn = n
2π

Na
, n ∈ [0, 1, 2, . . . , N − 1]. (13)

Here, N determines the sampling of the first BZ. The current
is summed over all calculated k values, giving the total current

J (t ) =
N−1∑
n=0

j(kn, t ). (14)

We are interested in the spectrum of this current, which we
obtain via Fourier transformation,

Itotal(ω) =
∣∣∣∣
∫ +∞

−∞
J (t ) e−iωt dt

∣∣∣∣
2

. (15)

In order to reveal interference effects it is useful to compare
Itotal(ω) with the analog incoherent result

Iincoherent (ω) =
N−1∑
n=0

I (ω, kn), (16)

in which the emission spectra of the single-electron currents
with lattice momentum kn

I (ω, kn) =
∣∣∣∣
∫ +∞

−∞
j(kn, t ) e−iωt dt

∣∣∣∣
2

(17)

are added up.
Fourier transforms are approximated by the fast Fourier

transformation using a Hann window and subtracting a con-
stant offset to avoid artificial features.

C. Time-frequency analysis

A time-frequency analysis displays the time-resolved emis-
sion spectrum. For this, the current (14) is first multiplied
with a narrow window function f (t, t0), which is almost zero
anywhere except in close vicinity to t = t0,

J (t, t0) = J (t ) f (t, t0). (18)

FIG. 2. (a) Harmonic yield for A0 = 0.2 and different finite chain
sizes. Spectra are normalized to their maximum. (b) Harmonic yield
for a coherently and incoherently summed up dipole acceleration
for A0 = 0.2 and Na = 2000. The dashed vertical lines in (a) and
(b) indicate the minimal and maximal band gap.

Fourier transforming this current gives J̃ (ω, t0), and the ab-
solute value squared |J̃ (ω, t0)|2 reveals which harmonics
are emitted at time t0. The window function is chosen to be
Gaussian,

f (t, t0) = e−(t−t0 )2/(2σ ), (19)

with a full width at half maximum of FWHM = 100, which
corresponds to 2σ � 3606.7.

The variable t0 is sampled in small steps between t0 = 0
and the end of the laser pulse (t0 = 2πncyc/ω0). For all Fourier
transformations, a Hann window as broad as the laser pulse
is applied. Whenever we show a time-frequency analysis, we
replace t0 by t at the abscissa.

III. RESULTS

A. Convergence of HHG from finite SSH chains

High-order harmonic radiation emitted from finite chains
depends on the size of the chains (see, for instance, Ref. [34]).
In previous studies, harmonic spectra of a finite chain con-
taining 100 sites were investigated using time-dependent
density-functional theory [29,30] and the SSH model [31].
The results were similar for chains containing 30 and 100 sites
[30].

For our current work, we calculated HHG spectra for much
longer, finite chains. In Fig. 2(a), the spectra for different num-
bers of atoms Na are shown. For the spectra of the finite system
the dipole acceleration (see Appendix A) is used instead of
the current (used for the bulk results). We do this to increase
the dynamic range such that the high-frequency emission is
not buried under the background due to the finite-time Fourier
transform. The amplitude of the vector potential is A0 = 0.2
(corresponding to a laser intensity of � 7.9 × 1010 W/cm2).
The spectra for Na = 200 and Na = 400 are similar. However,
if Na is increased further, differences appear. This is seen for
Na = 600 and is even more obvious for Na = 800, where a
drop in the harmonic yield around order 60 clearly develops.
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FIG. 3. (a) Harmonic spectra (A0 = 0.2) for different sampling
rates of the first BZ of the bulk, normalized to their maximum values.
(b) Harmonic yield for a coherently and incoherently summed up
current for A0 = 0.2 and N = 2000. The dashed vertical lines in
(a) and (b) indicate the minimal and maximal band gap.

Changing the number of atoms to a much higher number of
Na = 2000 does not change the spectrum any further. The
point is that if we had considered chains only up to Na = 200
and Na = 400, we might have erroneously concluded that
convergence had been reached already. Note that the effect
we observe here is very different from the finite-size effects
discussed in [34], in which much smaller chains (up to 100
sites) are investigated.

The drop in the harmonic yield causes a cutoff at a smaller
energy for longer chains compared to smaller ones. The in-
creased yield around the maximal band gap is already several
orders smaller than the harmonic yield of the plateau. It is not
negligible but far less important than the plateau.

In Fig. 2(b), the harmonic yields for the coherently and
incoherently summed-up dipole accelerations for Na = 2000
sites are compared. Only the result for the coherent sum shows
the drop in the harmonic yield around harmonic 60. As the
incoherent sum does not show this feature, it has to originate
from destructive interference of the emissions due to single-
electron currents.

B. Convergence of HHG from the bulk of the SSH chain

HHG spectra in the bulk limit are calculated according
to (15) with the total current (14). In Fig. 3(a), the spectra
for different samplings kn, n = 0, 1, 2, . . . , N − 1, are shown
for a laser amplitude of A0 = 0.2. The spectra are similar
to the results for the finite chain: if the BZ is not sampled
finely enough (small N), the spectrum has a plateau for inter-
band harmonics between the minimal and maximal band gap
(dashed lines). If the sampling is higher, the harmonic yield
around harmonic order 60 decreases significantly. This leads
effectively to a smaller plateau with a cutoff around harmonic
order 50. A local maximum around the maximal band gap is
observed as well. This decreased harmonic yield before the
maximal energy gap is again due to destructive interference,
as it is not visible for the calculation using the incoherent
sum [see Fig. 3(b)]. In the bulk, the different single-electron

FIG. 4. (a) High-order harmonic spectrum as a function of A0 for
N = 1000 normalized to the yield at the minimal band gap Eg,min.
The vertical lines indicate the minimal (Eg,min) and maximal (Eg,max)
band gap. The black dotted line Eg(− π

a + A0) indicates the maximal
band gap that can be reached if an electron tunnels at the minimal
band gap when A(t ) = 0 [shown in (b)]. The white dashed line
E ∗

g (− π

a + 2A0) indicates the maximal band gap that can be reached
if the electron tunnels at the minimal band gap when the vector
potential is minimal [shown in (c)]. The red line Eg(− π

a + 1.7A0)
corresponds to a value in between; the tunneling occurs when A(t ) =
−0.3A0. (b) and (c) Sketches of the process within the band structure
leading to interband harmonics.

currents originate from different k points within the first BZ.
The emissions from those interfere destructively.

The study of the dependence of the HHG spectra on the
sampling appears to be a convergence test and, as such, rather
technical. However, a discrete sampling of the BZ corresponds
to a finite system in position space with periodic boundary
conditions. Further, in the previous section we investigated,
explicitly in position space, finite chains with different sizes.
This is not a convergence test, as real physical systems are
finite and can have different sizes. The observed spectroscopic
dip in the interband harmonics appears in both finite-size posi-
tion space and BZ bulk results. It is thus not only a numerical
effect. In the following we investigate converged spectra for
the bulk system. The bulk system has the advantage that its
band structure is known analytically.

C. Dependence on the amplitude

Figure 4(a) shows high-order harmonic spectra as a func-
tion of the amplitude of the vector potential A0 for the bulk
and N = 1000 sampling points in the first BZ. The spectra are
normalized to the intensity of the harmonic corresponding to
the minimal band gap. A plateau can be observed for energies
larger than the minimal band gap. The cutoff of the plateau
depends on the laser intensity and shifts to larger harmonic
orders as the intensity increases. A dependence of the cutoff
on the amplitude of the laser was expected, as shown, for
example, in Refs. [24–27]. Around the maximal band gap
(� 75ω0), a local maximum is observed. However, this yield
is much smaller than the yield in the region of the plateau (see
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also Fig. 3) and hence is not visible in this contour plot for
0.25 < A0 < 0.3.

For a given k, the probability for electrons to be excited
from the valence into the conduction band depends on the
energy gap and the respective transition-matrix element. Ex-
citation is typically more likely if the energy gap is small.
Therefore, most electrons tunnel into the conduction band
at the minimal band gap [20]. In the presence of the laser
field, the electrons move inside the bands according to k(t ) =
k0 + A(t ), where k0 is the k value for A(t ) = 0.

If the electron tunnels into the conduction band when the
vector potential is zero, the electron can move at most A0 to
the left or to the right [see Fig. 4(b)]. The minimal band gap
is located at k = −π

a . As shown in Ref. [35], the electron and
hole do not necessarily have to recollide in position space in
order to recombine and emit light. Assuming that the electron
might recombine with the hole in the valence band at any time,
the highest possible transition energy is Eg(−π

a + A0). Here,
Eg(k) is the band gap at momentum k [see (5)]. If the electron
is displaced too far from the minimal band gap, it might reach
the maximal band gap (at either k = −2 π

a or k = 0). Hence,
if A0 > π

a , the electron-hole pair will be shifted beyond the
maximal band gap, and the maximal transition energy is given
by the maximal band gap. The black dotted line in Fig. 4(a)
shows the function Eg(−π

a + A0). This line does not agree
well with the cutoff frequency.

Alternatively, the electron might also tunnel at a different
phase of the vector potential. The most extreme case would be
when the absolute value of the vector potential is maximum.
Figure 4(c) shows the case for tunneling at the minimum of the
vector potential. In this case, the electron is initially located at
a k value given by k0 = −π

a + A0. This electron is driven to
the minimal band gap (at k = −π

a ) when A(t ) = −A0. After
the electron has tunneled, it is driven back to its original
position in k space when the vector potential is zero. At the
maximum vector potential, the electron-hole pair is 2A0 away
from the minimal band gap. Hence, the highest transition
energy for this scenario is given by Eg(−π

a + 2A0) (unless
2A0 > π

a , in which case the maximal band gap is the largest
transition energy possible). The dashed white line in Fig. 4(a)
indicates the value of the function

E∗
g

(
−π

a
+ 2A0

)
=

{
Eg

(−π
a + 2A0

)
if 2 A0 < π

a ,

Eg(0) otherwise,
(20)

where Eg(0) is the maximal band gap Eg,max. This function
agrees better with the cutoff, although not precisely as the har-
monic yield at this energy is already several orders below the
yield in the plateau. The given examples for certain tunneling
instants are only the extreme cases. The electron might also
tunnel at any other phase of the vector potential. However,
the maximal displacement of the electron from the minimal
band gap is given by cA0, with the parameter c restricted to
values 1 � c � 2. The red solid line in Fig. 4(a) indicates
the energy difference for c = 1.7 [Eg(−π/a + 1.7 A0)], which
appears to be a good fit to describe the cutoff as a function of
A0. Previously found cutoff laws show a linear dependence
for various materials [24–27]. This linear scaling is different
from ours because of the almost linear dispersion relation in
the relevant part of the BZ for these materials.

FIG. 5. Solution of the semianalytical approximation of the total
current for weak fields (here, A0 = 0.01) normalized to their maxi-
mum harmonic yield. The dashed vertical lines indicate the minimal
and maximal band-gap energy.

We also found that the position of the cutoff is not depen-
dent on the number of laser cycles ncyc, which was tested for
A0 = 0.2 up to ncyc = 20 laser cycles (not shown).

D. Semianalytical approximation for low intensities

We have seen already that the cutoff energy of the har-
monic spectrum depends on the vector potential and is due to
destructive interference of the emission due to single-electron
currents from different k values. In this section, the occurrence
of the destructive interference is investigated mathematically.
To that end, a small laser intensity is considered.

The analytical expression for the interband current in the
bulk SSH model is given in [33]. This expression is still not
solvable analytically. However, if we consider a weak laser
field (A0 � 0), we can approximate k(t ) = k + A(t ) � k. In
Appendix C, the calculation for this approximation is per-
formed. The final result is

j(k, t ) ∝ (w2 − v2)2

4E3+(k)
{2 A0 cos(ω0t ) − A0 cos[Eg(k)t]}.

(21)

The total current is given by integration over the first BZ,

J (t ) =
∫

BZ
j(k, t ) dk. (22)

This integral is solved numerically using N sampling points
within the first BZ. Figure 5 shows the results for different
N . For a small number of sampling points (N = 100), a peak
at the fundamental harmonic and a plateau at higher energies
can be observed. For a larger number of points (N = 1000),
(22) gives only three peaks, one at the fundamental harmonic
and two at the minimal and maximal band gap. The current in
(21) obviously generates the fundamental harmonic ω0 due
to the term with cos(ω0t ) and harmonics between minimal
and maximal band gap because of the term cos[Eg(k)t]. In the
integrated current, however, only the fundamental harmonic
and peaks around the minimal and maximal band gap survive.
This result agrees with the simulation presented in Fig. 4(a)
when the amplitude of the vector potential A0 is small.

For larger vector potentials, this approximation is not ap-
plicable anymore, and the equations become too complicated
if higher-order terms in the Taylor expansion of E+(k(t )) are
included. As the result in Fig. 4(a) shows, the peak around the
minimal band gap expands towards higher energies. The peak
at the maximal band gap expands slightly towards smaller
energies, but this expansion is hardly visible. Harmonics
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FIG. 6. Time-frequency analysis for different laser intensities:
(a) A0 = 0.2 and (b) A0 = 0.3 for a sampling of N = 1000. The color
bar is in logarithmic scale (with basis 10); each plot is normalized
to its maximum value. The red dashed line indicates the shape of
the vector potential (units on the y axis suppressed). The horizontal
dashed lines indicate the maximal and minimal band-gap energy. The
solid and dotted white lines indicate different trajectories.

between those energies still interfere destructively. The semi-
analytical calculation clarifies the origin of the decreased
harmonic yield between the minimal and maximal band gap
but does not predict the development of the spectrum with
increasing laser intensity.

E. Time-frequency analysis

A time-frequency analysis is performed to gain insight into
the dynamical processes underlying the harmonic spectra and,
finally, the cutoff law that was found empirically in Sec. III C.

Figure 6 shows the result of the time-frequency analysis
for different field amplitudes for a sampling rate of N = 1000
(converged results). The spectra shown are the integrated
spectra over the whole BZ. Arclike structures are visible for
energies between the minimal and maximal band gap (black
dashed horizontal lines).

The clear signatures in the time-frequency analysis that
correlate certain harmonics with certain emission times indi-
cate that an explanation in terms of semiclassical orbits must
exist [15,17,24,36–39]. In the following, we try to identify
those semiclassical orbits.

The dashed red line indicates the shape of the vector poten-
tial. As discussed in Sec. III C, the electrons move inside the
conduction band with the vector potential k(t ) = k0 + A(t ).
Assuming vertical transitions, the electrons in the conduction
band can recombine with the holes in the valence band and
emit a photon with the respective energy difference between
both bands at the given k(t ). The white lines indicate the
transition energy Eg(k(t )) at the respective k(t ) over time.
The two solid white lines are for electrons that start at either
the maximum or minimum band gap at the beginning of the
laser pulse. The dotted white line indicates the case where the
electron tunnels into the conduction band at the minimal band
gap when the vector potential is close to its maximum.

Around the maximal band gap, an oscillating pattern is
observed, best seen for the smaller amplitude in Fig. 6(a).
The white solid line agrees well with these oscillations. This
line indicates the case where the tunneling process happens at
the maximal band gap when the vector potential A(t ) is zero.
This is expected, as tunneling processes are more likely when
the electric field −∂t A(t ) is large, i.e., A(t ) � 0.

Around the minimal band gap, more and stronger oscilla-
tions and arches are observed. The solid white line close to the
minimal band gap in Figs. 6(a) and 6(b) shows the transition
energies over time if the electron tunnels into the conduction
band at the minimal band gap when the vector potential A(t )
is zero. Parts of the emission spectrum can be explained by
this pathway, but not all. The dotted white line indicates the
transition energy when the tunneling process occurs close to
the maximum of the vector potential (but still at the minimal
band gap). These electrons can explore more of the band
structure, which leads to higher possible transition energies,
as discussed in Sec. III C [see also Fig. 4(c)]. Therefore, these
pathways contribute to the higher harmonics.

Not all features around the minimal band gap can be
explained by those two trajectories alone. The agreement be-
tween the semiclassical trajectories and the time-frequency
analysis may be improved by performing a more detailed
calculation using the saddle-point approximation [24,36].

These findings suggest that for the converged results only
electrons which tunnel into the conduction band around either
the minimal or maximal band gap contribute to the emission
spectrum. The harmonics in between cancel out due to de-
structive interference if the sampling of the BZ is fine enough.
Around the maximal band gap, the tunneling process requires
a high electric field, i.e., a vector potential close to zero.
Around the minimal band gap, however, tunneling is much
more likely and can also occur for much smaller values of
the electric field [larger A(t )]. Hence, trajectories of electrons
which tunnel when the vector potential is large also contribute
to the overall spectrum and are responsible for high-energy
photons.

Comparing the results for different laser intensities shows
the development of the cutoff law. Only certain trajectories
contribute to the overall spectrum, and other harmonics cancel
out due to destructive interference. In particular, harmonics
that can be explained by semiclassical trajectories do not
cancel out if the electrons are excited into the conduction band
around the minimal band gap. When the intensity is small,
the electrons cannot move away from the minimal band gap
much, leading to a cutoff at a rather low energy. When the
intensities increase, the electrons can move farther away from
the minimal band gap. This leads to a larger possible transition
energy in this semiclassical picture. Hence, the cutoff shifts to
larger energies.

IV. SUMMARY AND CONCLUSION

In this work, we found a laser-intensity-dependent cutoff
in the high-order harmonic spectra from the SSH chain. In
addition, a local maximum around the maximal band gap
was observed. This cutoff in the harmonic yield was ob-
served only in the total harmonic spectrum taking into account
the emission by all electrons. Instead, the cutoff was absent
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in single-electron or incoherently added harmonic spectra.
Hence, the cutoff forms due to the destructive interference of
single-electron emission from different k values. This effect
was observed in both finite and periodic SSH chains. How-
ever, the chains have to be very long (or the sampling of the
BZ has to be very high) to see this effect. With a too coarse
sampling of the BZ or too short finite chains, the cutoff is not
obtained, and the plateau harmonics range from the minimal
to the maximal band gap without formation of a cutoff in
between.

One may object that a tight-binding model with just two
bands is too simplistic to be of practical relevance. However,
a cutoff that depends on the laser intensity was confirmed
experimentally [3] and also found in many other theoretical
works (e.g., [24–27]). Further, the simple modeling also has
advantages. Note, for instance, that our results are strictly
gauge invariant with respect to the coupling to the laser field
[40] and the choice of a basis (e.g., field free or adiabatically
following). This is different from the case where the number
of bands is restricted after the Bloch ansatz for the (contin-
uous) Schrödinger equation is made and a basis is chosen
[41]. Only the somewhat counterintuitive local maximum in
the harmonic yield around the maximum band gap might be
due to the limitation to only two bands.

Another critical issue is that decoherence due to coupling
to other degrees of freedom (e.g., phonons or environment)
might spoil the delicate destructive-interference effect ob-
served in this work. In fact, studies showed that the decreased
harmonic yield for intraband harmonics, found, for exam-
ple, in Refs. [29,31], is not observed or less prominent if
a finite, ad hoc dephasing time is introduced [32,41] in the
Lindblad or semiconductor Bloch equations for the density
matrix. Whether the decrease in the interband harmonic yield
found in our present study survives dephasing will be ex-
amined in future work. Due to numerous other works that
show an amplitude-dependent cutoff in HHG from solids
(e.g., [24–27]), we assume the effect can still be observed
to a certain extent if dephasing is included. Additionally,
the above-mentioned local maximum in the harmonic yield
around the maximal band gap may be destroyed or weak-
ened if dephasing is included. Anyhow, it is useful to first
understand the relatively simple and “clean” time-dependent
Schrödinger results before introducing relaxation times.

Finally, we note that we also found a drop in the harmonic
yield at certain energies for the two-dimensional Haldane
model [42] if the sampling of the BZ was sufficiently high.
It thus appears that the effect is rather general and is not
restricted to the one-dimensional SSH model.
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APPENDIX A: METHODS FOR THE FINITE SSH CHAIN

This section briefly summarizes the methods used for
calculating harmonic spectra for finite SSH chains. The equa-

tions are similar to those in Ref. [31]. However, note that
in that reference a denotes the distance between neighboring
sites. In this paper, a is the lattice constant.

1. Static system

The Hamiltonian of the unperturbed system (without exter-
nal field) for an even number of atoms Na in the chain reads

Ĥfinite =
Na/2∑
m=1

(v |m, 2〉 〈m, 1|)

+
Na/2−1∑

m=1

(w |m + 1, 1〉 〈m, 2|) + H.c. (A1)

The TISE

Ĥfinite
i = En
i (A2)

is solved numerically. Here, the eigenstate 
i has the
form 
i = (
1,1

i , 
1,2
i , . . . , 
m,α

i , . . . , 

Na/2,1
i , 


Na/2,2
i )�.

The vector component 
m,α
i is the value of the wave

function of state 
i at sublattice site α in unit cell m
(see Fig. 1). There are Na eigenstates of the TISE (i.e.,
i = 0, 1, 2, . . . , Na − 1), which can be sorted according to
their energies, E0 � E1 � E2 � · · · � ENa−1.

The absolute positions of the sites are chosen to be

xm,α = m a + (a/2 − 2δ)δα,2, m = 1, 2, . . . , Na/2, (A3)

with δα,2 being the Kronecker delta. With this convention, the
position of the first site (see Fig. 1) is set to xm=1,α=1 = 0.

2. Coupling to an external field

For the coupling to an external field, the velocity gauge
is used. In that gauge the hopping elements become time
dependent (Peierls substitution) [40]:

v(t ) = v exp[−i(a/2 − 2δ)A(t )]

= − exp{−(a/2 − 2δ)[1 + iA(t )]}, (A4)

w(t ) = w exp[−i(a/2 + 2δ)A(t )]

= − exp{−(a/2 + 2δ)[1 + iA(t )]}. (A5)

The time-dependent Hamiltonian has a structure similar to
the time-independent one (A1) but with the time-dependent
hopping amplitudes:

Ĥfinite(t ) =
Na/2∑
m=1

[v(t ) |m, 2〉 〈m, 1| + v∗(t ) |m, 1〉 〈m, 2|]

+
Na/2−1∑

m=1

[w(t ) |m + 1, 1〉 〈m, 2|

+ w∗(t ) |m, 2〉 〈m + 1, 1|]. (A6)

The TDSE

i∂t
i(t ) = Ĥfinite(t )
i(t ) (A7)

is solved numerically using the Crank-Nicolson approxi-
mation with the initial value given by the eigenstates of
the unperturbed Hamiltonian 
i(t = 0) = 
i. The TDSE is
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solved for all states i = 0, 1, 2, . . . , Na/2 − 1 corresponding
to the valence band. The other states correspond to the initially
unpopulated conduction band.

Instead of the current, the dipole acceleration is used to
calculate the harmonic spectrum for finite chains. References
[43,44] showed that the harmonic spectrum can be calculated
using either the dipole, the current, or the dipole acceleration.
For sufficiently long pulses, the results differ by prefactors ω2.
The total dipole is given by

X (t ) =
Na/2−1∑

i=0

Na/2∑
m=1


m∗
i (t )xm
m

i (t ). (A8)

The harmonic spectra shown in Figs. 2(a) and 2(b) were calcu-
lated as the absolute value squared of the Fourier-transformed
dipole acceleration Ẍ (t ). We chose the dipole acceleration
here to increase the dynamic range compared to Fourier trans-
forms of the current or the dipole itself.

APPENDIX B: BLOCH ANSATZ
FOR THE BULK HAMILTONIAN

The starting point for the derivation of the Hamiltonian of
the bulk system (2) is the tight-binding Hamiltonian of the
periodic system with Na atomic sites in position space:

Ĥbulk =
Na/2∑
m=1

(v |m, 2〉 〈m, 1| + w |m + 1, 1〉 〈m, 2|) + H.c.,

(B1)
with the periodic boundary condition |Na/2 + 1, α〉 = |1, α〉.
In order to solve the TISE

Ĥbulk |
n〉 = En |
n〉, (B2)

we make the Bloch ansatz

|
n(k)〉 = 1√
Na

Na/2∑
m=1

exp(imak) |m〉

×
∑

α=1,2

exp{i(a/2 − 2δ)kδα,2}gα
n (k) |α〉, (B3)

in which the positions of all sites are considered [see (A3)].
This is important to ensure physically meaningful currents
when using (10).

We obtain

Ĥbulk |
n(k)〉

= 1√
Na

Na/2∑
m=1

g2
n exp(imak)

× exp{i(a/2 − 2δ)k}[v |m, 1〉 + w |m + 1, 1〉]
+ g1

n exp(imak)[v |m, 2〉 + w exp(iak) |m, 2〉] (B4)

and
√

Na 〈m′| Ĥbulk |
n(k)〉
= g2

n exp(im′ak)

× exp{i(a/2 − 2δ)k}[v + w exp(−iak)] |1〉
+ g1

n exp(im′ak)[v + w exp(iak)] |2〉 . (B5)

Analogously,

√
Na 〈m′| En(k) |
n(k)〉
= En exp(im′ak)

× [
g1

n(k) |1〉 + exp{i(a/2 − 2δ)k}g2
n(k) |2〉]. (B6)

Hence, from the TISE (B2) follows

√
Na 〈m′| Ĥbulk |
n(k)〉 = √

Na 〈m′| En(k) |
n(k)〉 , (B7)

and in matrix form

En(k)

(
g1

n(k)

g2
n(k)

)
=

(
0 s∗(k)

s(k) 0

)(
g1

n(k)

g2
n(k)

)
, (B8)

with

s(k) = v exp[−i(a/2 − 2δ)k] + w exp[i(a/2 + 2δ)k]. (B9)

This gives the Hamiltonian for the bulk (2). A similar cal-
culation can be performed to derive the time-dependent
Hamiltonian in (6).

APPENDIX C: SEMIANALYTICAL SOLUTION
FOR SMALL VECTOR POTENTIALS

An analytical approximation for the interband harmonics is
given by the real part of Eq. (66) in Ref. [33]:

v−+(k, t ) � (w2 − v2)2

8E+[k + A(t )]

∫ t

dt ′ Ȧ(t ′)
E2+[k + A(t ′)]

× e−i
∫ t

t ′ 2E+[k+A(t ′′ )] dt ′′
, (C1)

where E+ is the dispersion relation for the conduction band.
For a weak field A(t ), the time-dependent momentum is

approximated as k(t ) = k + A(t ) � k; that is, it is time in-
dependent. Further, the expression E+[k + A(t )] → E+(k) is
now time independent as well. As a consequence,

v−+(k, t ) � (w2 − v2)2

8E3+(k)

∫ t

dt ′ Ȧ(t ′)e−2iE+(k)
∫ t

t ′ 1 dt ′′

= (w2 − v2)2

8E3+(k)

∫ t

dt ′ Ȧ(t ′)e−2iE+(k) (t−t ′ ), (C2)

which can be solved with integration by parts,

∫ t

dt ′ Ȧ(t ′) e−2iE+(k) (t−t ′ )

= [A(t ′) e−2iE+(k) (t−t ′ )]t
t ′=0

−
∫ t

dt ′ A(t ′) e−2iE+(k) (t−t ′ )2iE+(k). (C3)

The first term on the right-hand side gives A(t ) [because we
assume that the vector potential is zero in the beginning,
A(t ′ = 0) = 0] such that it contributes to only the fundamental
harmonic ω0.

033111-8



FORMATION OF THE SOLID-STATE HIGH-ORDER … PHYSICAL REVIEW A 107, 033111 (2023)

The interband current is proportional to

j(k, t ) ∝ 2Re[v−+(k, t )] � 2Re

[
(w2 − v2)2

8E3+(k)

(
A(t ) −

∫ t

dt ′ A(t ′) e−2iE+(k) (t−t ′ )2iE+(k)

)]

= (w2 − v2)2

4E2+(k)

(
A(t )

E+(k)
− 2

∫ t

dt ′ A(t ′) sin[2E+(k) (t − t ′)]
)

. (C4)

We assume that the intensity of the laser pulse is slowly ramped up so that the pulse envelope can be neglected. Considering
A(t ) = A0 cos(ω0 t ), we obtain

j(k, t ) ∝ (w2 − v2)2

4E2+(k)

(
A(t )

E+(k)
− 2A0

∫ t

dt ′ cos(ω0 t ) sin[2E+(k) (t − t ′)]
)

= (w2 − v2)2

4E2+(k)

(
A(t )

E+(k)
+ A0

[
cos{[2E+(k) − ω0]t ′ − 2E+(k)t}

2E+(k) − ω0
+ cos{[2E+(k) + ω0]t ′ − 2E+(k)t}

2E+(k) + ω0

]t

t ′=0

)

= (w2 − v2)2

4E2+(k)

(
A(t )

E+(k)
+ A0

[
cos(−ω0t ) − cos[−2E+(k)t]

2E+(k) − ω0
+ cos(ω0t ) − cos[−2E+(k)t]

2E+(k) + ω0

])

� (w2 − v2)2

4E3+(k)
[A(t ) + A0{cos(ω0t ) − cos[2E+(k)t]}] = (w2 − v2)2

4E3+(k)
{2 A(t ) − A0 cos[2E+(k)t]}. (C5)

In the last line, we assumed that the driver frequency is much smaller than the band gap ω0 � 2E+(k) = Eg(k), which is usually
the case in HHG. The total current follows by integration over the first BZ,

J (t ) =
∫

BZ
j(k, t ) dk, (C6)

which we performed numerically.
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