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We study carrier-envelope-phase- (CEP-) dependent photoelectron momentum distributions (PEMDs) of
Kr atoms and randomly oriented CO2 molecules exposed to sub-two-cycle intense infrared fields with linear
polarization. The adiabatic theory predicts that, at fixed laser parameters (intensity, pulse duration, and CEP),
the PEMDs for targets with equal ionization potentials considered across a backward rescattering caustic have
identical shapes and only their absolute values depend on the target. We choose Kr and CO2 as targets with
almost identical ionization potentials (approximately 14 eV) to explore this behavior of PEMDs. We find that the
measured PEMDs for Kr and CO2 have cutoff structures, which are associated with the caustics, with identical
decaying profiles. We also reveal that CEP-dependent PEMDs around the cutoff exhibit target dependence,
reflecting the differences in the differential cross sections (DCSs) of elastic rescattering and tunneling ionization
rates. Furthermore, we extract the DCSs from the measured PEMDs around the cutoffs at different CEPs based
on the adiabatic theory. The extracted DCSs agree with ones calculated by using the single-active-electron
(SAE) scattering model, which includes all multiple-scattering processes, with orientation averaging for CO2.
In contrast, the independent-atom model, which only considers single-scattering processes, cannot reproduce
the extracted DCSs of CO2 at low scattering momenta. This finding indicates that multiple scattering is not
negligible in the momentum range of 1.5–2.5 a.u. The extracted DCSs also show interference features assigned
to multicenter scattering of O-O and C-O. These results confirm that the signature of electron interference is
retained after orientation averaging, indicating that the internuclear distances of the constituent atoms can be
retrieved from the CEP-dependent PEMDs for randomly oriented molecules using the SAE model.

DOI: 10.1103/PhysRevA.107.033101

I. INTRODUCTION

Strong-field ionization is a fundamental process in atomic
and molecular physics and has various applications in at-
tosecond science. According to the three-step model [1,2], an
electron wave packet produced by the tunnel ionization of an
atom or molecule is accelerated by an optical field and subse-
quently recollides with the parent ion. This recollision leads
to recombination or electron rescattering. Recombination in-
duces the emission of high-energy photons or high-order
harmonic generation (HHG), whereas elastic rescattering in
the presence of strong optical fields induces the emission of
high-energy photoelectrons, which contain information about
elastic electron-ion scattering [3]. The cutoff structure of a
photoelectron momentum distribution (PEMD) was investi-
gated by a classical model [4]. Furthermore, it was reported
that in the vicinity of a backward rescattering cutoff, a PEMD
can be factorized into a differential cross section (DCS) for
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elastic electron-ion scattering and a returning photoelectron
wave packet [5–13], thereby allowing the extraction of DCS
from the PEMD [14–30].

In the adiabatic theory [10,13], the cutoff of PEMDs can be
further elaborated using the concept of caustics; caustics are
defined by the degenerated singularity of the action described
by the Hamiltonian formulation [31–37]. The adiabatic theory
introduces a quantum caustic that is derived from the classical
action as well as another quantum term stemming from the
evolution of the Siegert state describing ionization by the field.
It has been shown that a sliced PEMD in a direction normal
to the caustics exhibits the characteristic shape described by
the Airy function. The PEMD beyond the quantum caustic
exhibits exponential decay because the argument of the Airy
function becomes zero at its location [13]. A PEMD contains
several caustics, corresponding to each half cycle in the laser
pulses. Every half cycle, the electric field produces one back-
ward rescattering half cycle cutoff (HCO) in the PEMD. Then
each caustic corresponds to one specific HCO. Therefore, the
quantum caustic can be used to define the exact position of
the HCO. The factorization formula based on the adiabatic
theory holds in the limited region around the caustic [13]. It
predicts that the shape of the PEMD around the caustic is
completely determined by the laser pulse, regardless of the
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target species, whereas the position of the caustic depends on
the laser pulse and targets. This is the theoretical basis of the
carrier-envelope-phase (CEP) mapping to determine the DCSs
from the measured PEMDs around the caustics [29].

Experimentally, errors in the DCSs extracted from mea-
sured PEMDs arise because of two factors. First, the typical
multicycle laser pulses contain several half cycles with the
same field direction and nearly identical field strengths, caus-
ing overlapping of the HCOs in the PEMD. In this study we
use sub-two-cycle pulses to extract the HCOs at the high-
est and second-highest momenta, resolving the rescattering
events at different times and excluding the ambiguity of the
field amplitude associated with multicycle pulses. In addition,
we can control the positions of the HCOs by varying the CEP;
this corresponds to changing the momentum at the instance
of rescattering [24]. Second, the measured PEMDs originate
from different positions within the focal volume. Generally,
the intensity of a laser beam is not spatially uniform; thus,
the measured PEMDs reflect the atomic responses at dif-
ferent intensities. However, we experimentally confirm that
CEP-dependent PEMDs around the HCOs for Xe atoms are
reproduced by the factorization formula based on the adiabatic
theory at a single laser intensity, resulting in the successful
extraction of the elastic scattering DCSs [29]. We also find
that measured PEMDs in the plateau region are remarkably
influenced by the focal volume effects. Thus we conclude
that only the decay profile of the measured PEMDs beyond
the caustics can be analyzed using the factorization formula
without considering the volume effects.

The DCS extraction of rare-gas atoms is well estab-
lished and the atomic DCSs reflect the effective one-center
atomic potentials [20,38]. However, molecular DCSs are more
complicated because of their multicenter potentials [18,39].
Molecular DCSs, in particular, their dependence on the
scattering angle, are extracted from angle-resolved PEMDs
around the cutoffs [19,26,28,40]. The extraction of DCSs that
depend on the scattering momentum has not been established
yet because in most of the previous experiments, PEMDs in
the plateau regions [18,41–44] were used; in these regions,
the PEMDs are heavily influenced by the focal volume ef-
fects [29], resulting in difficulties in accurately extracting the
DCSs. Another approach to extracting momentum-dependent
DCSs is to measure PEMDs at different laser intensities
[21,22]. However, this approach also leads to inaccurate ex-
traction because of the volume effect. It is technically difficult
to control laser intensity without changing other conditions.
To solve this problem, we control the CEP of few-cycle laser
pulses to change the rescattering momentum effectively while
maintaining the same focusing conditions [24], thereby en-
abling us to accurately extract the molecular DCSs.

In this study we investigate the HCO structure of PEMDs
produced by ionizing Kr atoms and randomly oriented CO2

molecules with linearly polarized two-cycle infrared pulses.
At fixed laser parameters, the measured PEMDs of Kr
and CO2 have similar distributions around the caustic. This
means that the argument of the Airy function describing
the shape of a PEMD around the caustic is independent of
the targets, while the absolute electron yields and their CEP
dependence are different, reflecting the target dependence
of the DCSs and tunneling ionization rates. We find that

the CEP-dependent PEMDs of Kr and CO2 can be quan-
titatively reproduced by the adiabatic theory. Furthermore,
the extracted DCSs of CO2 agree with the calculated DCSs
within the single-active-electron (SAE) approximation, in-
cluding all multiple-scattering contributions. In contrast, the
independent-atom model (IAM), which considers only the
single-scattering contribution, is inaccurate. The quantitative
agreement between the extracted DCSs and the SAE calcula-
tions indicates that the structures in the orientation-dependent
DCSs arise because of electron interference during multicen-
ter scattering by molecules. In addition, the large discrepancy
between the SAE and the IAM calculations indicates that
the multiple scattering contributes remarkably to backward
elastic scattering in the low-scattering-momentum range of
1.5–2.5 a.u.

The paper is organized as follows. In Sec. II we present
a factorization formula in the adiabatic theory. This formula
describes PEMDs near backward rescattering caustics [13]. In
Sec. III we outline the experimental setup and procedures to
analyze the measured PEMDs [24,29]. In Sec. IV we compare
the experimental and theoretical results and discuss the roles
of multicenter and multiple scattering. Section V summarizes
this study.

II. ADIABATIC THEORY FOR RESCATTERING
PROCESSES AROUND THE CAUSTIC

In this section the structure of strong-field PEMDs near
a backward rescattering caustic is analyzed using the fac-
torization formula derived in Ref. [13] within the adiabatic
theory [10]. We briefly introduce the theoretical framework
for atomic and molecular targets. Further, we show that the
PEMDs in the polarization direction around caustics have a
universal shape that can be described by the Airy function
due to the degenerate singularity [31–37]. We also present
how the CEP dependence of the photoelectron yields around
the caustic depends on the targets and this target dependence
can be employed to extract scattering momentum-dependent
DCSs [24,29].

A. Basic parameters of a laser field

We assume that the ionizing laser field is linearly polarized
along the laboratory z axis, i.e., F(t ) = F (t )ez. To model the
experimental results, we set

F (t ) = F0 exp[−(
√

2 ln 2t/T )2] cos(ωt − φ). (1)

Here we assume a Gaussian envelope, in which the laser field
is characterized by its amplitude F0, duration (full width at
half maximum of intensity) T , carrier frequency ω, and CEP
φ. In the present experiment, we use 1600-nm pulses with
typical amplitude F0 ∼ 0.0492 a.u. (intensity I = cF 2

0 /8π ∼
8.5 × 1013 W/cm2, where c is the speed of light), duration
T ∼ 14 fs, and CEP φ varied continuously.

The photoelectron momentum is defined as k = (k⊥, kz ).
Photoelectron momentum distributions for atoms and ran-
domly oriented molecules for linearly polarized pulses are
axially symmetric about kz. In our experiment, only the one-
dimensional cut of a PEMD along the polarization direction
P(kz ) is measured. In the vicinity of a caustic, the function
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P(kz ) is determined by the photoelectrons that rescattered
exactly in the backward direction. Therefore, we present the
rescattering amplitude for this particular case only; the general
case of rescattering at an arbitrary angle is treated in Ref. [13].

B. Siegert state of Kr and CO2 for static fields

In the adiabatic regime, strong-field ionization proceeds
as if the ionizing field were static and equal to the instan-
taneous laser field [10]. The unperturbed initial state of a
target in the presence of a static electric field F = Fez turns
into the corresponding Siegert state [45]. Then all ionization
observables can be described in terms of the properties of the
Siegert state. We need the complex Siegert eigenvalue E (F ) =
E (F ) − i

2�(F ) that defines the Stark-shifted energy E (F ) and
ionization rate �(F ) of the state and the amplitude A(k⊥; F )
of the transverse momentum distribution (TMD) of outgoing
electrons in the asymptotic part of a Siegert eigenfunction.
We define the TMD amplitude as A0(F ) = A(k⊥ = 0; F ). The
field-free energy of the initial state is E0 = E (0). Only elec-
trons that tunnel with zero transverse momentum return for
rescattering; thus we set k⊥ = 0. By substituting F → F (t ),
we obtain the instantaneous properties of the Siegert state that
characterizes the target.

To explore the structure of PEMDs, we choose Kr and CO2

as the target media, whose binding energies E0 are almost the
same (approximately 14 eV). As will be shown, the shapes and
locations of the PEMDs around the caustics for those targets
for the same pulses are nearly identical. The orientation of
CO2 is described by the Euler angles (α, β, γ ) defining a ro-
tation from the laboratory frame to the molecular frame. Here
β is defined as the angle between the polarization vector ez

and molecular axis; α determines the rotation of the molecular
axis relative to the polarization axis; γ is set to zero.

We calculate the corresponding Siegert states within the
SAE approximation, where the potential parameters are ad-
justed to obtain their binding energies. For Kr we numerically
solve the time-independent Schrödinger equation in the same
manner as in Ref. [13] using the method proposed in Ref. [45].
For CO2, we describe the Siegert state using the leading-order
approximation of the weak-field asymptotic theory (WFAT)
[46], using the model potential described in Ref. [28]. In this
approximation, the Siegert energy is given by the first-order
perturbation theory. Thus, the β-dependent Siegert energy
Eβ (F (t )) of CO2 is approximated by the binding energy E0 of
the unperturbed highest occupied molecular orbital (HOMO)
because of the absence of linear Stark shift in the case of
nonpolar molecules. In the WFAT [46,47], the β-dependent
ionization rate �β (F (t )) and the TMD amplitude A0β (F (t ))
for CO2 are given by

�β (F (t )) =
(

|G00(β )|2 + F

2κ
2
|G01(β )|2

)
W00(F ) (2)

and

|A0β (F (t ))|2 = 4πκ

F
|G00(β )|2W00(F ), (3)

where F = |F (t )|, κ = √−2E0, G00(β ) and G01(β ) denote
the structure factors for the dominant and next-to-the-
dominant ionization channels, respectively, defined in terms

FIG. 1. Calculated squared structure factor |G00(β )|2 of CO2.

of the unperturbed ionizing orbital, and W00 denotes the field
factor, whose explicit form is written as

W00(F ) = κ

2

(
4κ

2

F

)2/κ−1

exp

(
−2κ

3

3F

)
. (4)

Equation (3) shows the analytical representation of the TMD
within the WFAT [46,47], where its field dependence is
given by the term W00/F . Moreover, the molecular orienta-
tion dependence of the TMD amplitude is characterized by
the structure factor of G00(β ). The squared structure factor
|G00(β )|2 of CO2 is shown in Fig. 1, where the cloverlike
structure reflects the πg orbital of the HOMO.

C. Elastic scattering amplitude

An electron released from a target atom by tunneling may
return to the parent ion within one optical cycle and undergo
elastic rescattering. A rescattering event is characterized by
spherical scattering angles 	 = (θ, ϕ) measured relative to
the direction of the incident momentum. The rescattering
event for an atomic target is described by the scattering am-
plitude f (k, θ ) defining the DCS dσ/d	 = | f (k, θ )|2, where
k > 0 is the incident momentum and θ is the scattering an-
gle [48]. For a molecule, the scattering amplitude fβ (k,	)
defines the DCS dσβ/d	 = | fβ (k,	)|2 at the fixed-space
molecule characterized by α = 0 and β. Herein we consider
only the backward rescattering event, corresponding to θ = π .
Accordingly, the DCSs are obtained using the same SAE
potentials for the Siegert state calculations for both Kr and
CO2.

D. Classical and quantum caustics in the backward
rescattering process

After rescattering, the electron flies away with asymptotic
momentum k. In the general case, each half cycle of the laser
field F (t ) produces a pair of long and short classical rescat-
tering trajectories contributing to the PEMD at the same final
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k in a certain region of the photoelectron momentum space.
The two trajectories coalesce at the high-energy boundary
of the region, which is called the classical caustic generated by
the given half cycle. From the singularity perspective, the clas-
sical caustic is a surface on which the saddle-point equation of
the classical action has a doubly degenerate root. The two
classical trajectories contribute to the PEMD on the lower-
energy side of the caustic and none on the higher-energy side.
The caustic is a surface of revolution about the kz axis. Let kc

denote the point at which it crosses the kz axis. Let ti and tr be
the moments of ionization and rescattering, respectively, and
u f = u f ez be the incident momentum of rescattering for coa-
lesced trajectories contributing to the PEMD P(kz ) at kz = kc.
The values of kc, ti, tr , and u f are completely determined based
on classical mechanics and laser field F (t ). The explicit equa-
tions defining these kinematic characteristics of rescattering
are given in Ref. [13].

In the present experiment, we measure the PEMDs P(kz )
only at kz > 0. So we are interested in only positive caustics
kc > 0 with a negative momentum of rescattering u f < 0
generated by negative half cycles of the pulse F (t ) < 0. As φ

varies, the half cycle shifts to the left (φ < 0) or right (φ > 0)
along the time axis and the value of kc changes continuously.
In addition to the outermost caustics, there are inner caustics
generated by half cycles with different amplitudes. Note that
the set of all caustics generated by the pulse defined in Eq. (1)
is transformed into itself as φ varies by 2π while the other
pulse parameters are kept fixed, but each individual caustic is
generally not a periodic function of φ (see Ref. [29]).

Next we discuss the corresponding quantum caustic. Ac-
cordingly to the adiabatic theory, the time integral defining
the PEMD, which is presented later, in the vicinity of a given
classical caustic has two saddle points associated with the long
and short rescattering trajectories [13]. However, in addition
to the classical term, describing propagation along the trajec-
tories, the action Sr (t ; kz ) in the integrand contains a quantum
term − ∫ t E (F (t ′))dt ′ that accounts for the evolution of the
ionizing Siegert state [10]. The surface in the photoelectron
momentum space where the two saddle points of the action
Sr (t ; kz ) including this term coalesce is called the quantum
caustic, which is assigned to the A2 singularity due to the
degeneracy of n = 2. The action Sr (t ; kz ) was Taylor expanded
up to the third order around the moment of rescattering tr at
the caustic, as described in Ref. [13]. We expand the action
in the third-order Taylor series around t̃r = tr − S′′

r (tr ; kz )/S′′′
r ,

instead of tr , at the backward rescattering of θ = π , expressed
as

Sr (t ; kz ) � Sr (t̃r ; kz ) + |u f |(kz − kq)(t − t̃r ) + S′′′
r

6
(t − t̃r )3,

(5)

where kq represents the quantum caustic corresponding to
θ = π and S′′′

r represents the third-order derivative of the
classical action at tr and independent of kz. The prime denotes
the derivative with respect to time t . Indeed, Eq. (5) is the
normal form of the A2 singularity [34,35]. (The normal form is
given in Appendix A.) Thus, the action Sr (t ; kz ) has the doubly
degenerate singular point that is t̃r at the quantum caustic.

The quantum caustic is shifted with respect to the classical
caustic toward higher energies; its position for an arbitrary

scattering angle θ is defined in Ref. [13]. The quantum caustic
is also a surface of revolution about the kz axis. As defined, kq

denotes the point at which it crosses the kz axis, corresponding
to θ = π . The value of kq is related to kc as

kq = kc + q, (6)

where the quantum shift q is given by

q = −E (F (ti ))
(tr − ti )|F (ti )| . (7)

Notably, the shift depends on the pulse (defining ti and tr) as
well as the target. Furthermore, the shift is generally complex
because the Siegert eigenvalue E (F ) is complex. However, for
the present targets and pulses, the imaginary part of kq is small
and, for simplicity, we disregard it in the current discussion.
Then the shift is defined by the instantaneous value of the
Stark-shifted energy E (F (ti )) of the initial state at the moment
of ionization. In the case of an adequately small Stark shift,
E (F (ti )) ∼ E0 and q can be approximately given by

q � −E0

(tr − ti )|F (ti )| , (8)

wherein the theory predicts that q is target dependent only via
the value of the energy E0. Therefore, at any orientation angle,
Kr and CO2 would exhibit the same value of q for the same
laser pulses.

E. Universality of the PEMD around a caustic

We present the rescattering amplitude based on the adia-
batic theory, as detailed in Ref. [13]. First, we explain the case
of an atomic target; that of a molecular target is discussed
later. The amplitude from a given half cycle in the vicinity
of the corresponding classical and quantum caustics can be
expressed as

I (kz ) =
∫ ∞

−∞

A0(F (ti )) f (|u f |, π )

|(t − ti )3F (ti )|1/2
exp[iSr (t ; kz )]dt . (9)

As discussed earlier, the action Sr (t ; kz ) contains a quantum
caustic associated with the A2 singularity. Substituting the
expansion in Eq. (5) into Eq. (9) and performing integration
using the steepest-decent method, the rescattering amplitude
of the photoelectron around a quantum caustic can be approx-
imately given by

I (kz ) � Ai[C(kz − kq)]

×
(

2

S′′′
r

)1/3 2πA0(F (ti)) f (|u f |, π )

|(tr − ti )3F (ti)|1/2

× exp[iSr (t̃r, kz )], (10)

where Ai(z) represents the Airy function. The coefficient C is
given by

C =
(

2

S′′′
r

)1/3

|u f |. (11)

Moreover, the PEMD Pc(kz ) around a caustic can be obtained
as Pc(kz ) = |I (kz )|2, given by the factorization formula used
for extracting the DCS | f (|u f |, π )|2 as

Pc(kz ) = | f (|u f |, π )|2W (kz ), (12)
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where W (kz ) represents the returning electron wave packet
(RWP) around the caustic for an atom (and a fixed-space
molecule), defined in Ref. [13] as

W (kz ) = |Ai[C(kz − kq)]|2
∣∣∣∣ 2

S′′′
r

∣∣∣∣
2/3 4π2|A0(F (ti ))|2

(tr − ti )3|F (ti )|

× exp

(
−

∫ ti

−∞
�(F (t ))dt

)
. (13)

Note that the Airy function Ai(z) represents the universal
distribution for various phenomena associated with the A2

singularity class of a caustic [31–33,36,37], as detailed in
Appendix A. The Airy function in W (kz ) describes the de-
pendence of Pc(kz ) on kz. All other factors in Pc(kz ) do not
depend on kz and they merely influence the absolute yield.
The argument of the Airy function becomes zero at the quan-
tum caustic kz = kq, beyond which Pc(kz ) decays rapidly. The
quantum caustic quantitatively specifies the meaning of a
vague experimental concept of the HCO. As the coefficient
C is determined only by the laser pulse, the shape of Pc(kz )
around kq is identical under the condition of fixed laser pa-
rameters, independently of the target, whereas the shift of kq

and the absolute yield of Pc(kz ) depend on the target.
For a fixed-space molecule, the factorization formula has

the same form as Eq. (12), with additional dependence of the
molecular orientation angles of β in fβ (|u f |, π ) and Wβ (kz )
through A0β and �β (F (t )), namely,

Pcβ (kz ) = | fβ (|u f |, π )|2Wβ (kz ) (14)

and

Wβ (kz ) = |Ai[C(kz − kq)]|2

×
∣∣∣∣ 2

S′′′
r

∣∣∣∣
2/3 16π3

κ|G00(β )|2W00(F (ti ))
(tr − ti )3|F (ti )|2

× exp

(
−

∫ ti

−∞
�β (F (t ))dt

)
, (15)

where Eq. (3) is used within the WFAT. Thus, the PEMD
from a fixed-space molecule also exhibits the characteristic
distribution described by the Airy function due to the doubly
degenerate singularity of the rescattering action, as expressed
in Eq. (14).

F. Orientation-averaged PEMD from randomly
oriented nonpolar molecules

In order to compare our theory with the experimental
PEMD measured for randomly oriented molecules, we should
average Eq. (14) over the orientation angles. The orientation-
averaged PEMD P̄c(kz ) can be written in the form

P̄c(kz ) = 1

4π

∫ 2π

0

∫ π

0
Pcβ (kz ) sin β dβ dα

= σ̄W̄ (kz ), (16)

where

σ̄ =
∫ π

0
|G00(β ) fβ (|u f |, π )|2

× exp

(
−

∫ ti

−∞
�β (F (t ))dt

)
sin β dβ (17)

FIG. 2. PEMDs calculated around the outermost caustic of Kr
(black dashed curve) and randomly oriented CO2 (red solid curve) for
pulses defined by Eq. (1) with a wavelength of 1600 nm, amplitude
F0 = 0.0492 a.u., and duration T = 14 fs at a CEP of zero using
Eqs. (12) and (16).

represents the orientation-averaged DCS weighted with the
structure factor and

W̄ (kz ) = |Ai[C(kz − kq)]|2
∣∣∣∣ 2

S′′′
r

∣∣∣∣
2/3

× 8π3
κW00(F (ti ))

(tr − ti )3|F (ti )|2 (18)

is the orientation-averaged RWP. In this definition,
the structure factor G00(β ) and the depletion factor
exp[− ∫ ti

−∞ �β (F (t ))dt] are separated from the RWP and
incorporated into the DCS. As the Stark shift for a nonpolar
molecule is small for the present laser parameters, the β

dependence of the quantum shift is negligible as shown in
Eq. (8). In this case, the kz dependence described by the Airy
function remains the same as those for atoms and fixed-space
molecules.

Figure 2 shows Pc(kz ) in Eq. (12) for Kr and P̄c(kz ) in
Eq. (16) for randomly oriented CO2 for the outermost caustic
at the wavelength of 1600 nm, amplitude F0 = 0.0492 a.u.,
and duration T = 14.0 fs at the CEP φ of zero. As discussed,
these targets exhibit almost the same E0 of 14 eV and their
Stark shifts are negligibly small. Evidently, both PEMDs ex-
hibit almost identical relative shapes at the same position,
described by the Airy function with almost the same argu-
ment. Notably, their absolute electron yields differ because of
the target-dependent ionization rate and DCS. Here we also
mention that the depletion factor is almost unity (greater than
0.99) and thus it is neglected in the following discussion.

III. EXPERIMENT

We measure the photoelectron momenta using a time-of-
flight (TOF) spectrometer of 760 mm length. The experimen-
tal method and apparatus were described in Ref. [29]; only
a brief outline is provided herein. The polarization direction
of the ionizing pulses is set to the z axis, which is parallel
to the TOF axis. The detection angle with respect to the TOF
axis (z axis) is limited to approximately 1.5◦, corresponding to
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FIG. 3. PEMD of CO2 measured as a function of the CEP φ at
a pulse energy of 355 μJ. The three calculated caustic curves (thin
blue solid, thick magenta solid, and thin green dashed) correspond to
three different HCOs defined as HCO(−1), HCO(0), and HCO(1) at
a peak field of F0 = 0.0460 a.u. and pulse duration of 14 fs.

2 × 10−3 srad. The linearly polarized few-cycle infrared
pulses at the center wavelength of 1600 nm are provided
by an optical parametric chirped-pulse amplification system
described in [49]. Thereafter, these pulses are focused into
a target gas using a concave mirror with a focal length of
375 mm (f-number of approximately 75). In this experiment,
the pulse is compressed to durations of approximately 14 fs.
We use the targets of Kr and CO2 gases, which have almost
the same ionization potentials of 14 eV. The experimental
conditions for the two gas targets are set almost identical to
(i) confirm the target-independent coefficient C in the Airy
function, which describes the PEMD around a caustic, and
(ii) clarify the features of electron interferences based on
multicenter rescattering and multiple scattering in the molec-
ular case. The target gas is introduced into the TOF chamber
with an effusive source. The CEP is controlled with an
acousto-optic programmable dispersive filter (Fastlite, Daz-
zler HR45-1100-2200 T1). This method ensures the control
of CEP without affecting the focusing condition and field
envelope. The CEP is scanned in steps of 0.1π rad from 0 to
2π rad. In this study, we obtain a PEMD generated in tunnel
ionization followed by rescattering, which is given in only one
dimension along the kz axis at kz > 0.

The PEMDs of CO2 measured as a function of CEP φ

at a pulse energy of 355 μJ are illustrated in Fig. 3, which
exhibits the CEP-dependent HCO structure in the PEMDs.
At the fixed CEP, several caustics exist corresponding to the
negative half cycles, which have already been discussed in
a previous study [29]. In this study we define HCO(n) as
the HCO generated by the half cycle of F (t ), which oc-
cupies the time interval −3π/2 + 2nπ < ωt < −π/2 + 2nπ

(n is an integer number) at φ = 0. The HCO(−1), HCO(0),
and HCO(1) caustic curves calculated for the peak intensity
I = 7.4 × 1013 W/cm2 (F0 = 0.0460 a.u.) and the pulse du-
ration of 14 fs are plotted in Fig. 3.

To determine the peak intensity, pulse duration, and ab-
solute CEP, we fit the measured PEMDs and their CEP
dependences around the caustic to the calculated PEMDs
originating from the tunneling in a specific half-cycle field

using a limited CEP range of −0.3π � φ � 0.7π . The lim-
ited CEP range corresponds to the CEP range of 0 � φ �
0.7π and 1.7π � φ � 2.0π because of the 2π periodicity of
PEMDs. The integration of the measured PEMDs in the entire
momentum space is simply the total electron count, which
corresponds to the relative probability. This indicates that the
normalization factor of the measured PEMDs is an unknown
parameter for determining the absolute ionization probability.
The fitting procedure for determining the field parameters and
the normalization factor of the measured photoelectron yields
is described in Ref. [29].

IV. RESULTS AND DISCUSSION

The target-independent decay profile of a PEMD around
an HCO is experimentally verified by comparing the results
for Kr and CO2. The results demonstrate that the momentum-
dependent DCSs can be extracted from the CEP-dependent
PEMDs around the HCOs. Furthermore, we observe that the
electron interference by multicenter potential and the multiple
scattering are imprinted in the PEMDs of CO2 even in the case
of randomly oriented ensembles.

A. Target-independent decay profile of
a PEMD around an HCO

In this section we quantitatively compare the experimen-
tal and theoretical results. The measured PEMDs and those
calculated using Eqs. (12) and (16) for Kr and randomly
oriented CO2, respectively, are displayed in Fig. 4 with CEPs
φ of 0.0, 0.8π , and 1.6π at an estimated intensity I of
8.5 × 1013 W/cm2 (F0 = 0.0492 a.u.) and pulse durations of
14.1 and 14.0 fs. Using the estimated field parameters, we cal-
culate three PEMDs from different half cycles of HCO(−1),
HCO(0), and HCO(1), as depicted by blue, magenta, and
green curves, respectively. The half cycles corresponding to
three dominant HCOs are presented in the insets of Fig. 4.
For HCO(0), the measured PEMDs beyond the quantum caus-
tic are consistent with the theoretical results. Moreover, the
existence of two other HCOs [HCO(−1) and HCO(1)] is con-
sistent as well. Furthermore, as depicted in Figs. 4(c) and 4(f),
the measured PEMDs agree with the calculations associated
with HCO(−1) and HCO(0) in terms of their positions and
relative yields.

As discussed in Sec. II, the PEMDs around a caustic cal-
culated for Kr and randomly oriented CO2 at the fixed laser
parameters have the same relative distributions expressed by
the squared Airy function. In Fig. 4 the PEMDs calculated for
both targets are almost identical for similar laser parameters.
To discuss the universal structure in the measured PEMDs
around the caustic, the PEMDs of Kr and CO2 at a CEP of
0.8π are normalized at the quantum caustics kq ∼ 3.7 a.u.
to be equal to Ai(0)2 � 0.126, as shown in Fig. 5. Figure 5
clearly shows that the cutoff structures are identical and target
independent. In addition, the squared Airy function (magenta
dashed curve in Fig. 5) is consistent with the cutoff structure
of the normalized PEMDs. These results are due to the fact
that the coefficient C in Eq. (11) is independent of the target
species and is determined using the laser parameters. The con-
sistency between the calculated and measured PEMDs around
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FIG. 4. PEMDs P(kz ) of Kr and randomly oriented CO2 (thin black curves) measured at selected CEPs φ of (a) and (d) 0, (b) and (e) 0.8π ,
and (c) and (f) 1.6π at an estimated effective intensity of 8.5 × 1013 W/cm2 (F0 = 0.0492 a.u.), and pulse durations of 14.1 and 14.0 fs. In the
figures on top, thick magenta solid, thin blue solid, and thin green dashed curves show calculated PEMDs corresponding to a half cycle of the
electric field. All calculated PEMDs are normalized using only one normalization factor N to match the measured PEMDs P(kz ). Note that we
set a common range on the vertical axis for a more comprehensive comparison, which makes the blue solid and green dashed curves progress
out of the range in certain cases.

the caustic demonstrates the universal distribution described
by the Airy function around the caustic due to the degenerate
singularity of the action [31–33,36,37,50]. However, more

FIG. 5. Normalized PEMDs of Kr (thin black curve) and ran-
domly oriented CO2 (thick gray curve) at a CEP φ of 0.8π , which are
identical to the black curves shown in Figs. 4(b) and 4(e), but these
curves are normalized to Ai(0)2 � 0.126 at the quantum caustic. The
calculated relative PEMDs (magenta dashed curve) is at an intensity
of 8.5 × 1013 W/cm2 (F0 = 0.0492 a.u.) and a pulse duration of
14 fs, which is expressed by the squared Airy function. The position
of the quantum caustic for the Airy function is located at that of a
CO2 molecule, and those of CO2 and Kr are almost the same.

detailed discussions of the shape of the PEMDs are difficult
in this study due to the low and noisy signals around the
cutoff.

On the lower-energy side of the caustic, including the
plateau region, certain discrepancies are observed between the
measured and calculated PEMDs. Specifically, the PEMDs
Pc(kz ) calculated below the caustic show a continuous and
gradually diminishing trend with oscillations, while the
PEMDs P(kz ) measured for CO2 do not decline. Funda-
mentally, these findings are attributable to three reasons. As
discussed in our previous study [29], the focal volume effect
strongly affects a PEMD below the caustic and smears out
the oscillating behavior. The second reason is the coherent
sum of contributions from various half cycles in the PEMD,
which appears below the caustic at the second-highest mo-
menta. Third, the asymptotic form of the oscillatory integral,
presenting the universal distribution described by the Airy
function based on the singularity theory [31–33], is invalid
in this region and holds only in a limited region, encompass-
ing the classical and quantum caustics. In the plateau region
located below the caustic, the two saddle points of action,
corresponding to long and short trajectories, are almost inde-
pendent. Thus, the usual-saddle-point method, the so-called
semiclassical approximation, given in Eq. (A6) is adequate
[10,51–53]. As observed in Fig. 4, a significant difference
exists between the plateaus of the PEMDs measured for Kr
and CO2. The target dependence in the plateau region has
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been reported in several theoretical [7,8,17] and experimental
studies [20,23,25,27].

In addition, we measure the orientation-averaged PEMDs
of CO2, at estimated amplitudes of F0 = 0.0434, 0.0460, and
0.0571 a.u. for pulse durations of 14.05, 14, and 13.85 fs,
respectively. The above-mentioned characteristic distributions
and features are also obtained, yielding the target-independent
exponential decay of the orientation-averaged PEMDs of non-
polar molecules beyond the caustic.

B. Extraction of DCSs from CEP-dependent
PEMDs beyond caustics

The laser parameters, elastic scattering DCSs, and tunnel-
ing ionization rate of a target are encoded in the PEMDs near
HCOs. In this section we demonstrate the extraction of the
momentum dependence of DCSs from the CEP-dependent
PEMDs using the factorization formula. We follow the ex-
traction scheme of the backscattering DCS, given in [29].
The first step involves the pulse characterization from the
CEP-dependent PEMDs measured near HCOs by comparing
the calculated PEMDs. The laser parameters are determined
using the fitting procedure described in the Appendix of
Ref. [29]. This procedure enables the accurate determination
of the laser parameters (intensity, pulse duration, and abso-
lute CEP), resulting in precise calculations of the position
of the quantum caustic kq. Subsequently, we divide the mea-
sured PEMD P(kz ) by the calculated RWP W (kz ) in Eq. (13)
for Kr and W̄ (kz ) in Eq. (18) for CO2 with the estimated
laser parameters. To avoid the errors caused by the volume
effects, we use the exponentially decaying components of
the PEMDs beyond the quantum caustics. To obtain an ex-
tracted DCS, we average P(kz )/W (kz ) or P(kz )/W̄ (kz ) over
kz above the quantum caustic kq, because the corresponding
DCS at the scattering momentum u f is derived from the equa-
tion Pc(kz ) = | f (|u f |, π )|2W (kz ) for Kr or P̄c(kz ) = σ̄W̄ (kz )
for randomly oriented CO2. Note that one data point of the
extracted DCSs corresponds to the PEMD around the caustic
at a specific CEP. Compared to the previous scheme [24], the
proposed scheme yields more better statistics because it uses
the PEMD P(kz ) beyond the quantum caustic, not only the
electron yield P(kz ) at kc. This extraction scheme of the DCS
presumes that the calculated RWP is correct. Thus, we assume
that the discrepancy between the measured and calculated
PEMDs originates from an error related to the DCS. We use
the PEMDs around HCO(0) only in the CEP range of φ = 0 to
1.9π because the PEMDs around HCO(±1) yield large errors
due to poor statistics.

In Figs. 6 and 7 the extracted results for Kr+ and CO2
+

ions are compared with the DCSs obtained by solving the
time-independent Schrödinger equation with the same SAE
potentials used in the factorization formula. The extracted
DCSs agree with the calculated DCSs, thereby confirming the
extraction procedure for both atomic and molecular targets. In
the case of CO2 at an estimated field amplitude F0 of 0.0571
a.u. and on the low-scattering-momentum side, corresponding
to CEPs of 1.8π and 1.9π , we observe a certain discrep-
ancy between the extracted and calculated DCSs. One of the
primary reasons is distortion by the non-negligible contri-
butions from the outer caustic HCO(−1). Notably, a similar

FIG. 6. Extracted DCSs | f (|uf |, π )|2 of Kr+ for estimated field
amplitudes F0 of 0.0560 (circles) and 0.0492 a.u. (squares) with
pulse durations T of 13.9 and 14.1 fs, respectively, as a function
of the rescattering momentum uf . The black curve represents DCSs
| f (|uf |, π )|2 calculated by the SAE approximation.

discrepancy was observed in the Xe atom in our previous
study [24]. Within the SAE approximation, the target depen-
dence of the DCS is reflected by the effective one-electron
potential or the effective charge of the parent ion. For the
atomic targets, the effective charges determined from the
experimental PEMDs are detailed in Refs. [20,38]. For the
molecular targets, the interference effects from scattering by
multicenter potential can be expected. Thus, we discuss the
interference effects of three-center scattering of CO2 in the
following section.

C. Role of interference by multicenter rescattering
in orientation-averaged DCSs of CO2

In this section we discuss the interference effects of mul-
ticenter scattering in DCSs of CO2

+. First, we consider the
DCS | fβ (|u f |, π )|2 without the weight of the structure factor.

FIG. 7. Extracted orientation-averaged DCSs σ̄ of CO2
+ for es-

timated field amplitudes F0 of 0.0571 (circles), 0.0492 (squares),
0.0460 (triangles), and 0.0434 a.u. (inverted triangles) with pulse
durations T of 13.85, 14, 14, and 14.05 fs, respectively, as a func-
tion of the rescattering momentum uf . The black curve represents
orientation-averaged DCSs σ̄ calculated by the SAE approximation,
assuming that the depletion factor is unity.
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FIG. 8. Calculated DCSs | fβ (|uf |, π )|2 of CO2
+ as a function of orientation angle β and scattering momentum uf using (a) the SAE

approximation, (b) the IAM with the ELSEPA code [54], and (c) the IAM with simple Yukawa potentials.

As is mentioned above, DCSs at θ = π are dependent on
β and u f , whereas they are independent of α. To deeply
understand the backward elastic scattering process, we use
three approaches to calculate the DCS for electron-ion elastic
scattering: (i) SAE scattering calculations with the effective
molecular potential implemented in Ref. [28], (ii) IAM cal-
culations in which the scattering amplitude for a molecule
is approximated by the sum of the scattering amplitudes of
each atom, wherein the atomic scattering amplitudes are cal-
culated using the program code ELSEPA [54], and (iii) IAM
calculations approximating the atomic scattering amplitudes
using the simple Yukawa screening potentials proposed by Xu
et al. [40]. These approaches are referred to as SAE, IAM1,
and IAM2 respectively. The calculated DCSs | fβ (|u f |, π )|2

are presented in Fig. 8 as a function of β and u f . All calcula-
tions exhibit alternatively strong- and weak-interference stripe
patterns. Within the IAM, the interference term between the
ith and jth atoms with the same scattering amplitudes can be
expressed as cos[2u f Ri j cos(β )] at θ = π , where Ri j repre-
sents the interatomic distance. Based on the IAM interference
term assuming the same scattering amplitudes for C and O,
the strong stripes are identified as both constructive C-O and
O-O interferences, whereas the weak ones come from only the
constructive O-O interference. One can see clearly that the
two IAM calculations are extremely similar, implying that a
backward elastic scattering DCS is not sensitive to the atomic
scattering amplitudes used in the calculations. We also see
that the peak positions for the SAE approximation are slightly
shifted from those for the IAM and the SAE result exhibits
a richer structure than the IAM results. These are because
the IAM considers only single-scattering events and neglect

multiple scattering, while the SAE approximation includes all
multiple-scattering processes.

Furthermore, we observe the DCS with the weight of
the structure factor |G00(β )|2, referring to the integrand in
Eq. (17) and neglecting the depletion factor. The calculated
results of the weighted DCSs of CO2 are depicted in Fig. 9
as a function of β and u f . As obtained, the rescattering pro-
cesses at the molecular orientation in the vicinities of β = 0◦
and 90◦ barely contribute to the orientation averaged DCSs,
because of the nodal structure of G00(β ) of CO2, reflecting
the πg orbital. The rescattering process at the orientation angle
of β = 40◦ primarily contributes to the orientation-averaged
DCSs. As indicated in Fig. 10, the interference effects per-
sisted in the orientation-averaged DCSs. The fundamental
peak at u f = 1.5 a.u. can be assigned to the constructive C-O
interference. In addition, the protuberance at u f = 2.8 a.u is
attributable to the constructive C-O interference. The O-O
interference around u f = 2.0 a.u forms a small shoulder struc-
ture in the orientation-averaged DCSs. Due to the tunneling
ionization weight, these interference effects predominantly
originate from the orientation angles between 10◦ and 40◦.
Thus, we conclude that the momentum dependence of the
orientation-averaged DCS continues to display the interfer-
ence patterns. As noted from Fig. 10, the DCSs calculated
by the two IAM calculations are not inconsistent with those
obtained by the SAE. At a lower-scattering-momentum range
less than 2.5 a.u., significant discrepancies are found between
SAE and IAM calculations. As the IAM considers only sin-
gle scattering by constituent atoms, the model calculation is
valid only at a higher-momentum region. Overall, the SAE
approximation is still valid in the scattering momentum range

FIG. 9. Calculated DCSs |G00(β ) fβ (|uf |, π )|2 weighted by the structure factor of CO2.
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FIG. 10. Calculated orientation-averaged DCSs σ̄ of CO2
+. Blue

solid curve represents the SAE approximation, which is identical to
the black curve in Fig. 7. The red dotted curve and green dashed
curve denote IAM1 and IAM2, respectively.

between 1.5 and 2.5 a.u. and it accurately reproduces the ex-
tracted DCSs, as depicted in Fig. 7. Therefore, we suggest that
the adiabatic theory and SAE approximation can accurately
analyze the DCSs, including the structure information in the
lower-scattering-momentum region, where the IAM fails to
yield accurate results due to the lack of multiple scattering
[40]. Notably that there is a shape resonance at u f ∼ 1.3 a.u.
[22], which is not discussed herein.

To quantitatively discuss the interference effects, we intro-
duce a molecular contrast factor (MCF) F , given as

F = σ̄ − ∫ |G00(β )|2σA sin β dβ∫ |G00(β )|2σA sin β dβ
, (19)

where σA = ∑
i | fi|2 and fi represents the atomic scattering

amplitude of the atom labeled by i. Here σA is an incoherent
sum of the scattering cross sections from all the atoms in the
molecule. To determine the experimental MCFs based on the
extracted DCSs and those calculated by the SAE approxima-
tion, we use the calculated σA by the ELSEPA code [54], which
is identical to the NIST database [55]. Within the IAM, the
MCF can be expressed as

F =
∑

i 
= j

∫ |G00(β )|2 fi f jei2u f cos(β )·Ri j sin β dβ∫ |G00(β )|2σA sin β dβ
. (20)

The MCF shows an oscillatory behavior due to the interfer-
ence term.

The experimental and calculated MCFs are illustrated in
Fig. 11. The SAE calculations are in good agreement with the
measured MCFs. Specifically, two points of the experimental
MCFs at an estimated field amplitude F = 0.0571 a.u. and
CEPs of 1.8π and 1.9π vary from the SAE calculations,
similar to the DCS results. All MCFs predominantly exhibit
an oscillatory behavior, corresponding to the molecular bond
lengths. The experimental MCFs and those calculated by the
SAE clearly show constructive interference by the C-O scat-
tering at u f = 1.5 and 2.8 a.u. Since the O-O bond length
is twice that of the C-O bond, a weak oscillatory component
with twice the frequency of C-O scattering is superimposed,
resulting in a slight enhancement of the large peaks at 1.5

FIG. 11. Experimental and calculated MCFs of CO2
+. The blue

solid curve represents the SAE approximation, whereas the red dot-
ted and green dashed curves represent IAM1 and IAM2, respectively.
Symbols represent experimental MCFs from the extracted cross sec-
tions, similar to that in Fig. 7.

and 2.8 a.u. and the appearance of small peaks at u f = 2.2
and 3.5 a.u. Although the MCFs calculated by the two IAMs
show a similar behavior, they completely differ from the ex-
perimental MCFs even in the high-momentum range up to
2.5 a.u. The phases of the oscillations of the MCFs calculated
by the IAMs vary from the experimental and calculated MCFs
by the SAE approximation, while the frequencies of the in-
terference patterns are almost identical for all MCFs. These
features highlight that the multiple-scattering processes are
non-negligible in the molecular rescattering in the measured
momentum range. Overall, the present findings demonstrate
that the SAE approximation can be used to determine the
molecular structures from the extracted DCSs in the low-
momentum ranges, where IAMs are invalid.

V. CONCLUSION

We experimentally and theoretically explored the rescat-
tering PEMDs at the polarization direction for Kr atoms and
randomly oriented CO2 molecules near HCOs using the CEP-
stable few-cycle infrared pulses. The cutoff structure of the
PEMDs is associated with a caustic, corresponding to the
doubly degenerate saddle point of the action. The adiabatic
theory predicted that the shape of the PEMDs around the
caustics is determined using only the laser pulse, which was
confirmed by comparing the decay profile of the normalized
PEMDs beyond the quantum caustic for Kr and CO2 at fixed
laser parameters. The CEP-dependent PEMDs displayed the
target dependence originated from the target-dependent DCSs
and tunneling ionization rates. Based on the factorization
formula expressed by the product of the DCS and RWP,
we extracted the DCSs from the measured PEMDs beyond
the caustics using calculated RWPs. For both Kr and CO2,
the extracted DCSs agree with those calculated by the SAE
approximation. We also found that the extracted DCSs of
CO2 do not agree with the IAM, as it considers only the
single-scattering processes. The orientation-averaged DCSs
of CO2 still exhibited the interference signal scattered by the
multicenter potential. Although the experimental MCFs are
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also in good agreement with the SAE, the MCFs between
the SAE approximation and the IAM vary completely up
to 4 a.u. of the incident electron momentum. This indicates
that the multiple scattering in molecules is non-negligible in
the present momentum range of 1.5–2.5 a.u. Conclusively,
the adiabatic theory and SAE approximation also hold for
lower scattering momentum. Moreover, these theoretical and
calculation methods are highly beneficial in analyzing the
molecular structure using the rescattering processes, even
in randomly oriented molecules. The CEP mapping method
[24,29] combined with the adiabatic theory [10,13] enables
the extraction of the well-defined elastic scattering processes
for atoms as well as randomly oriented molecules from rescat-
tered PEMDs beyond caustics.

ACKNOWLEDGMENTS

This research was partly supported by Grant-in-Aid for
Scientific Research (S) Grant No. 18H05250 and Scientific
Research (C) Grant No. 20K05358 of the Japan Society for the
Promotion of Science. O.I.T. was supported by the Ministry of
Science and Higher Education of the Russian Federation (No.
FSMG-2021-0005).

APPENDIX A: DEGENERATE SINGULARITY AND ITS
UNIVERSALITY IN THE HAMILTONIAN FORMULATION

The basic concepts of the singularity theory are briefly
introduced herein [31–37]. In particular, we provide a short
description of a well-known type of simple degenerate sin-
gularity in an action, referred to as the caustic in optics
[56,57], classical [58] and quantum mechanics [50,59], and
catastrophe theory [60]. In principle, the singularity theory
can provide the classification [31–33] and explain the stability
[36,37] of a caustic. Moreover, it is guaranteed that the univer-
sal asymptotic form of oscillatory integrals around a caustic
appears [31,33,50]. It usually emerges in Fourier transform
and scattering amplitudes. The universal distribution of the
oscillatory integrals around a caustic is characterized only by
the class of a caustic [34,35].

1. General concept of degenerate singular points and caustics

Singularities of an action appear in various fields in optics
[56,57], condensed-matter physics [59,61,62], scattering the-
ory [50], and dynamical systems [58]. In particular, a caustic,
which corresponds to a degenerate singularity of an action
described by the Hamilton formulation [31–33], is one of the
essential singularities. Interestingly, universal behaviors, such
as rainbow arcs and cusp structures described by the Airy and
Pearcey functions, appear around the caustic. The singularity
theory can explain the underlying universality and scaling law
of such a behavior and classify them using the equivalence
class [31–33]. Notably, the caustics belonging to the same
equivalence class can be transformed into the same normal
form by diffeomorphic mapping in all cases [31–37,63].

Generally, the singular point t0 of an action S(t ; k) is de-
fined as

∂S(t0; k0)/∂t = 0, (A1)

where t denotes time and k represents parameters such as
the final photoelectron momentum or the k vector of HHG.
The singular point t0 of S(t ; k) is called a saddle point or
a critical point in physics. Thus, Eq. (A1) is also called the
saddle-point equation. If the root is degenerate, it is called a
degenerate singular point and the corresponding degenerate
singular condition can be given by

∂S(t0; k0)/∂t = ∂2S(t0; k0)/∂t2 = 0. (A2)

In this case, k0 is the caustic corresponding to the degenerate
singularity. The degenerate singular point and caustic appear
in many distinct phenomena such as quantum phase transi-
tions [59], atomic collisions [50], and strong-field phenomena
[6,11–13,29,64–74]. The simple degenerate singularities of an
action described by the Hamiltonian formulation have been
completely elucidated in mathematics [31–37]. The caustic is
located at a position in which two or more classical trajec-
tories or rays of light coalesce in k space. Thus, a caustic is
a generalized concept of a focal point in optics and exhibits
universal behaviors.

2. Classification of caustics

We assume that an action S(t ) is approximated as a poly-
nomial. Notably, the polynomials are a subclass of the C∞
functions and do not include the exponential function and
trigonometric functions, which exhibit an infinite-order Tay-
lor series. The analytic functions can be expanded by the
infinite-order Taylor series, meaning that the polynomials can
approximate the analytic functions with arbitrary accuracy.
This assumption guarantees that the action can be Taylor
expanded up to finite order. Moreover, in the case of a one-
variable polynomial, it allows only the simple singularities
that have already been classified in mathematics [31–35]. The
singular points of the one-variable polynomial action can be
classified as

∂S(t0)/∂t = ∂2S(t0)/∂t2 = · · · = ∂nS(t0)/∂t n = 0,

∂n+1S(t0)/∂t n+1 
= 0. (A3)

This equation is equivalent to the condition that the saddle
point of S(t ) is an n-degenerate root, which defines the An

singularity. Furthermore, the An singular points are all in
a one-variable polynomial S(t ). In contrast, a multivariable
polynomial exhibits different classes of simple singularities
such as Dn, En, . . . [31–37], which have been excluded from
the scope of this research.

The degeneracy n completely characterizes the singu-
larities of a one-variable polynomial action. From the
Hamiltonian system perspective, the n-classical trajectories
coalesce at the caustic associated with the An singularity. No-
tably, as the A1 singular point is not degenerate, it is unrelated
to a caustic and corresponds to only one classical trajectory.

The action S(t ; k) depends smoothly on the one-variable of
time t as well as other parameters k (i.e., final emitted photo-
electron momentum and k vector of HHG). The normal form
of the action with the An singularity is defined in [31,32,34,35]
and is given by

Sn(t ; k) = t n+1 + kn−1t n−1 + kn−2t n−2 + · · · + k2t2 + k1t,
(A4)
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where the parameter k is an (n − 1)-dimensional vector
(k1, k2, . . . , kn−1). In all instances, an action around an An

singular point can be transformed into the normal form by
diffeomorphic mapping, meaning that the singularities are
topologically invariant for diffeomorphic mapping. Thus, con-
sidering only the normal form is sufficient in the equivalent
class of a caustic. When the dimension of parameter space
k is m, the An singularity is stable under the condition
of n � m + 1 [31–33,36,37,63]. Thus, such a singularity is
stable in a parameter space under small perturbations of
the Hamiltonian and the initial wave front. In contrast, the
higher-order An singularity (n > m + 1) is unstable in an m-
dimensional parameter space and the unstable singularities
can be converted into the other class of singularity by small
perturbations. Therefore, the universality of the singularity
is guaranteed only for the stable singularity. Generally, in
a finite-dimensional variable and parameter space, the sta-
ble singularities are limited to the finite equivalent classes
[31–37]. For instance, in the case of a four-dimensional sys-
tem, the stable classes of the caustics are limited to seven.

3. Asymptotic form of oscillatory integrals
around the An singularity

The general form of oscillatory integrals [31,33], typically
appearing in optics and scattering theory, can be expressed as

f (k) =
∫ ∞

−∞
g(t ) exp[iS(t ; k)]dt, (A5)

where a smooth function S(t ; k) denotes the action as a func-
tion of variable t and a set of parameters k. Generally, S(t ; k)
represents a phase of the electromagnetic fields in optics or
the wave function in quantum mechanics and the function g
denotes the amplitude. In addition, we assume that the ac-
tion S(t ; k) is a complex function with a significantly small
imaginary component. In case the part of exp[iS(t ; k)] rapidly
oscillates in comparison to g(t ), the saddle-point method
can evaluate the integral [10,51–53]. In this approximation,
the major contribution to the oscillatory integral arises from
the saddle points (singular points), defined in Eq. (A1). The
asymptotic form of the oscillatory integral is given as

f (k) ∼
∑

t0

ei/4

(
2π

∂2S(t0; k)/∂t2

)1/2

g(t0) exp[iS(t0; k)],

(A6)

where t0 represents a set of the saddle points. The evalua-
tion is performed by adding the contributions from all saddle
points. In fact, this approximation is one of the most use-
ful methods in strong-field physics [10,51–53]. However, it
fails at the caustic and shows divergence due to the factor of
∂2S(t0; k)/∂t2 = 0. The saddle-point method is valid at only
the A1 singularity and far from the caustic. Thus, an alternative
approach is required to evaluate the oscillatory integral in the
vicinity of the caustic.

Even at the caustic, the steepest-descent method is still
valid if exp[iS(t ; k)] rapidly oscillates compared with g(t ).
Furthermore, S(t ; k) should be Taylor expanded around the An

singular point up to (n + 1)th order. As mentioned above, the
action around the An singular point can always be transformed
into the normal form Sn(t ; k) by diffeomorphic mapping;

thus, considering only the normal form Sn(t ; k) defined by
Eq. (A4) is sufficient. The details of the method are reported
in Refs. [31,33]; only the asymptotic form is presented as

f (k) =
∫ ∞

−∞
g(t ) exp[iSn(t ; k)]dt

∼ g(0)
∫ ∞

−∞
exp[iSn(t ; k)]dt

∼ g(0)�n(k),

�n(k) =
∫ ∞

−∞
exp[iSn(t ; k)]dt, (A7)

where the caustic is located at the origin of k = 0 and at
t = 0 in the normal form. The primary contribution to the
oscillatory integral is also from the vicinity of the caustic, be-
cause the caustic corresponds to the degenerate saddle point.
The universal distribution �n(k) is completely determined
only by the class of singularity of the action S(t ; k). If the
action has An singularity, the oscillatory integral around the
caustic yields the universal distribution, which is deformed by
diffeomorphic mapping. Moreover, the universal distributions
associated with the A2 and A3 singularities exhibit the Airy
function and Pearcey functions, respectively.

Around the cutoff region of HHG and a backward rescat-
tered photoelectron momentum distribution, the A2 singular
point exists and the spectra exhibit the Airy functionlike uni-
versal distribution [6,11–13,29,64–67]. The same universal
structures, such as the Airy and Pearcey functions, appear
in various fields of optics [56,57], quenched spin chains
[59], atomic collisions [50], and strong-field physics [6,11–
13,29,64–73]. This universality originates from the topolog-
ical invariant property of the caustic and is stable by small
perturbations. In Ref. [74] a treatment of oscillatory integrals
around the cutoff for the rescattering process was given.

APPENDIX B: AIRY FUNCTION AND PEARCEY
FUNCTION AT THE A2 AND A3 SINGULARITIES

The Airy function Ai(k) is related to the A2 singularity and
is defined as

Ai(k) ≡ 1

2π

∫ ∞

−∞
exp[i(z3/3 + kz)]dz =

3
√

3

2π
�2( 3

√
3k).

(B1)

Therefore, the Airy function Ai(k) is related to the universal
function �2(k), defined in Eq. (A7), i.e., the Airy function
always appears around the A2 singular point. Here we present
a more practical form, assuming that a function S(t, k) can be
approximately Taylor expanded to third order around t0, such
as in

S(t, k) � S(t0, k) + S′(t0, k)(t − t0) + S′′(t0, k)(t − t0)2/2

+ S′′′(t0)(t − t0)3/6. (B2)

Indeed, any third-order polynomials can be transformed into
the form

S(t, k) � S(t̃0, k) + S′(t̃0, k)[t − t̃0(k)]

+ S′′′(t0)[t − t̃0(k)]3/6, (B3)

where t̃0 = t0 − S′′(t0, k)/S′′′(t0) and the term (t − t̃0)2 van-
ishes in Eq. (B3). Generally, t̃0 is not a degenerate singular
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point, but it becomes the doubly degenerate singular point
of the action only if the action has the doubly degenerate
singular point. This is based on the transformability of the
action associated with the doubly degenerate singularity into
the normal form [Eq. (A4)]. Without loss of generality, the
asymptotic form of the oscillatory integral is presented around
the A2 singularity, given as∫ ∞

−∞
exp[iS(t )]dt = exp[iS(t̃0, k)]

∣∣∣∣ 2

S′′′(t0)

∣∣∣∣
2/3

× Ai

(
S′(t̃0, k)

∣∣∣∣ 2

S′′′(t0)

∣∣∣∣
1/3

)
. (B4)

Overall, this asymptotic form of the integrals is more prac-
tical, because the action of the considered system is usually
derived as the Taylor expansion and not the normal form.

For the A3 singularity, the Pearcey function Pe(k1, k2) is
related to �3(k1, k2) and given as

Pe(k1, k2) ≡ 1

2π

∫ ∞

−∞
exp[i(z4/4 + k2z2/2 + k1z)]dz. (B5)

Therefore, the Pearcey function represents the universal dis-
tribution around the A3 singularity.
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[44] S.-J. Wang, J. Daněk, C. Blaga, L. F. DiMauro, J. Biegert,
and C. D. Lin, Two-dimensional retrieval methods for ultrafast
imaging of molecular structure using laser-induced electron
diffraction, J. Chem. Phys. 155, 164104 (2021).

[45] P. A. Batishchev, O. I. Tolstikhin, and T. Morishita, Atomic
Siegert states in an electric field: Transverse momentum dis-
tribution of the ionized electrons, Phys. Rev. A 82, 023416
(2010).

[46] O. I. Tolstikhin, T. Morishita, and L. B. Madsen, Theory of
tunneling ionization of molecules: Weak-field asymptotics in-
cluding dipole effects, Phys. Rev. A 84, 053423 (2011).

[47] L. B. Madsen, O. I. Tolstikhin, and T. Morishita, Application
of the weak-field asymptotic theory to the analysis of tunneling
ionization of linear molecules, Phys. Rev. A 85, 053404 (2012).

[48] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-
Relativistic Theory (Pergamon, Oxford, 1977).

[49] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and
J. Itatani, Sub-two-cycle, carrier-envelope phase-stable, intense
optical pulses at 1.6 μm from a BiB3O6 optical parametric
chirped-pulse amplifier, Opt. Lett. 37, 4182 (2012).

[50] J. N. L. Connor, Catastrophes and molecular collisions, Mol.
Phys. 31, 33 (1976).

[51] P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. G. Paulus, H.
Walther, R. Kopold, W. Becker, D. B. Milošević, A. Sanpera,
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