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Multipolar quantum electrodynamics of localized charge-current distributions:
Spectral theory and renormalization
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We formulate a nonrelativistic quantum field theory to model interactions between quantized electromagnetic
fields and localized charge-current distributions. The electronic degrees of freedom are encoded in microscopic
polarization and magnetization field operators whose moments are identified with the multipole moments of
the charge-current distribution. The multipolar Hamiltonian is obtained from the minimal coupling Hamiltonian
through a unitary transformation, often referred to as the Power-Zienau-Woolley transformation; we renormalize
this Hamiltonian using perturbation theory, the result of which is used to compute the leading-order radiative
corrections to the electronic energy levels due to interactions between the electrons and quantum vacuum
fluctuations in the electromagnetic field. Our renormalized energy shift constitutes a generalization of the Lamb
shift in atomic hydrogen, valid for general localized assemblies of atoms and molecules, possibly with net charge
but absent a free current. By expanding the fields in a series of multipole moments, our results can be used to
study contributions to this energy shift coming from specific multipole moments of arbitrary order.
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I. INTRODUCTION

While relativistic quantum electrodynamics has been
tremendously successful in describing scattering processes
in high-energy physics, it is cumbersome when applied to
bound-state problems and those with nonrelativistic sources
[1,2]. In part, this is because any process involving matter has
an antimatter counterpart that must be included in calculations
of probability amplitudes, e.g., to preserve unitarity of the S
matrix [3]. However, after taking the nonrelativistic limit the
antimatter degrees of freedom decouple in the path integral
and can be integrated out of the theory [4,5].

The result is an effective field theory, called nonrelativistic
quantum electrodynamics [6], that is particularly well suited
for describing interactions between many-body systems with
a fixed number of particles and quantized radiation fields. It is
obtained from an ultraviolet completion with only one char-
acteristic energy scale (set by the electron mass), implying
that the infinite sum of interaction terms in its Lagrangian
can be ordered in reciprocal powers of this mass [7]; for
applications in quantum optics and condensed matter physics,
it is often sufficient to consider only the leading-order terms.
In this Lagrangian, matter is described by charge and current
densities (ρ, j) that couple to the U(1)-gauge potentials (φ, a)
rather than directly to the electromagnetic field.

In many systems, however, an alternative approach is
possible, provided one can identify specific points in space
around which it is physically permissible to perform multipole
expansions. This approach is based on a formalism called
multipolar electrodynamics [8–11], which was specifically
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designed to study such systems. In this paradigm, the material
degrees of freedom are encoded in polarization and magne-
tization fields (p, m) in place of charge and current densities
(ρ, j), which couple to the “Maxwell fields” (d, b) rather than
the gauge potentials (φ, a). These descriptions are related by

ρ(x, t ) = −∇ · p(x, t ) + ρF (x, t ),

j(x, t ) = ∂ p(x, t )

∂t
+ c∇ × m(x, t ) + jF (x, t ),

allowing for the possibility of free charge and current densities
(ρF , jF ), which would arise if the atom or molecule had a
net charge and was free to move [12]. In its Hamiltonian
formulation, the standard procedure for obtaining the quantum
theory of multipolar electrodynamics involves a unitary trans-
formation of the minimal coupling Hamiltonian [13,14], often
referred to as the Power-Zienau-Woolley (PZW) transforma-
tion after its originators [8,9,15]. Calculations based on the
resulting multipolar Hamiltonian often afford more physical
insight into the dynamics of the system than do those based
on the minimal coupling Hamiltonian, and are free of the arti-
ficial divergences in the determination of response coefficients
that can plague the minimal coupling Hamiltonian [16].

Multipolar electrodynamics was originally formulated in
terms of the many-body wave functions of “first-quantized”
quantum mechanics [17]. While their use simplifies cer-
tain calculations, these wave functions become increasingly
difficult to work with as the number of particles becomes
large, and certainly prohibitively so if one envisions ulti-
mately extending the treatment to condensed matter systems.
Computations are vastly simplified when recast in terms of
second-quantized field operators, which automatically ac-
count for the various combinatorial factors arising from
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particle exchange symmetry and permit the application of
powerful Fock space methods from quantum field theory [18].

Even in second-quantized treatments, the multipolar
Hamiltonian is usually simplified by making the ubiquitious
“electric dipole approximation” [19–23], neglecting higher-
order electric and magnetic multipole moments that become
important when spatial variations of the electromagnetic
field over the atom or molecule are nonnegligible. Indeed,
for larger systems, such as molecules with several distinct
chromophores, spatial variations in optical fields are nonneg-
ligible and the electric dipole approximation is invalid [12].
Cases involving multipole moments beyond the electric dipole
were investigated previously [24], notably in calculations
of intermolecular dispersion interactions [25] and resonance
energy transfer rates [26]; however, the formulation of second-
quantized models of radiation-matter interactions that are also
capable of including electric and magnetic multipole moments
of arbitrary order has not yet been addressed.

In this paper we present such an approach. We reformulate
multipolar electrodynamics within the framework of quantum
field theory (a formalism that we call multipolar quantum
electrodynamics) using a field-theoretic generalization of the
PZW transformation applied to the minimal coupling Hamil-
tonian. The electronic degrees of freedom are encoded in
second-quantized scalar field operators that are used to define
microscopic polarization and magnetization field operators.
These microscopic fields contain the full electric and mag-
netic multipole series and couple directly to the quantized
electromagnetic field through interaction terms of the same
form as their first-quantized counterparts. While an analogous
reformulation was introduced previously [10,27,28], the focus
of those studies was the fields in the vicinity of an atom or
molecule [29] and the impact of the associated local field
corrections on intermolecular interactions [30–32]. Our focus
instead concerns the vacuum structure of the theory, which
is responsible for a vast landscape of phenomena in quantum
electrodynamics including the Lamb shift [33], spontaneous
emission [34], resonance energy transfer rates [26], and the
Casimir [35] and Casimir-Polder interactions [25,36].

In this first communication, we use perturbation the-
ory to calculate the leading-order radiative corrections to
the electronic energy levels resulting from interactions be-
tween the electrons in an isolated atom or molecule and
quantum vacuum fluctuations of the electromagnetic field.
Such perturbative calculations generically yield ultraviolet
divergences, necessitating regularization and renormalization.
We renormalize the multipolar Hamiltonian at leading-order
in Rayleigh-Schrödinger perturbation theory, using standard
techniques from effective field theory [5]. Our renormalized
energy shift constitutes a generalization of Bethe’s original
calculation of the Lamb shift in atomic hydrogen [37], valid
for general localized assemblies of atoms and molecules, with
or without net charge. In its multipolar form, this renormalized
energy shift can be expanded in a sum of contributions coming
from an arbitrary number of electric and magnetic multipole
moments, so that vacuum effects can be studied order-by-
order in the multipole series.

We begin in Sec. II by recalling the essential features
of minimal coupling electrodynamics. The minimal coupling
Lagrangian is obtained directly from the Schrödinger La-

grangian by replacing partial derivatives with U(1)-covariant
derivatives and adding to the result a kinetic term yielding the
free Maxwell equations [38]. To obtain the Hamiltonian field
theory, we employ Dirac’s extended Hamiltonian formalism
[39] since the minimal coupling Lagrangian is degenerate
and the associated Hamiltonian will therefore be subject to
constraints. Briefly summarizing this standard analysis in
Appendix A 1, we obtain the quantized minimal coupling
Hamiltonian, together with the commutation or anticommu-
tation relations for the field operators. Applying the unitary
PZW transformation to the canonical variables and Hamilto-
nian of minimal coupling (summarized in Appendix A 2), the
quantized Hamiltonian theory of multipolar electrodynamics
follows.

In Sec. III we present a sketch of the procedure we follow
to regularize and renormalize the multipolar Hamiltonian, and
in Sec. IV we compute the regularized energy shift of the elec-
tronic energy levels in the electromagnetic vacuum state. We
regularize the divergent integrals with a hard cutoff ‖k‖ � �,
introducing a second energy scale into the theory. However,
this scale is artificial and should not appear in expressions
for measurable quantities; to remove this � dependence from
our energy shift, we renormalize the multipolar Hamiltonian
following the procedure outlined in Sec. III. This is done in
Sec. V, the result of which is a finite and observable shift
of the electronic energy levels. We confirm that, for a single
electron atom, this energy shift reduces to Bethe’s result for
the Lamb shift in the electric dipole approximation [37] and its
generalizations when spatial variations in the electromagnetic
field over the atom are included agrees with the results of other
authors [40,41] who extended Bethe’s result in this direction.
We conclude by expanding this renormalized energy shift in
a sum of contributions coming from the first few electric
and magnetic multipole moments and quote the expressions
for higher-order multipole contributions. We summarize our
results in Sec. VI and some of the details are relegated to the
Appendices.

II. HAMILTONIAN THEORY

A. Minimal coupling

We consider a system of electrons interacting with one
or more point-like ions at fixed positions clustered around a
specific point R ∈ R3. Denoting by qN the charge of the N th
ion located at dN with respect to R, the charge density of the
ions is

ρ ion(x) =
∑

N

qN δ(x − R − dN ). (1)

The ionic charge density ρ ion(x) leads to an electrostatic in-
teraction between the ions that we ignore under the frozen-ion
approximation, together with a fixed background potential
through which the electrons propagate of the form

V(x) = e
∑

N

qN

‖x − R − dN‖ , (2)

where ‖x‖ = √
x · x is the Euclidean 2-norm and e = −|e| is

the charge of an electron. The dynamics of noninteracting
electrons propagating within this background potential are
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described as usual by the Schrödinger equation, which, in the
coordinate representation, can be derived from the Lagrangian
density

LF = ih̄

2
(ψ†(x, t )ψ̇ (x, t ) − ψ̇†(x, t )ψ (x, t ))

− h̄2

2m
∇ψ†(x, t ) · ∇ψ (x, t ) − ψ†(x, t )V(x)ψ (x, t ).

(3)

To couple the electron field ψ (x, t ) to a classical elec-
tromagnetic field, we apply the standard minimal coupling
prescription to the Lagrangian density above [38]. In the four-
vector notation of relativistic mechanics, this amounts to the
replacement

∂μ → ∂μ + ie

h̄c
aμ(x, t ) ≡ Dμ(x, t ), (4)

where the object on the right is a U(1)-covariant derivative
and aμ(x, t ) is the electromagnetic four-potential. To give
dynamics to the electromagnetic field we add to the result a
kinetic term

LB = 1

8π
(e(x, t ) · e(x, t ) − b(x, t ) · b(x, t )) (5)

associated with the free Maxwell equations. The U(1)-gauge
potentials (φ(x, t ), a(x, t )) are related to the electric and mag-
netic fields (e(x, t ), b(x, t )) through the usual relations [42]

e(x, t ) = −∇φ(x, t ) − 1

c

∂a(x, t )

∂t
, (6)

b(x, t ) = ∇ × a(x, t ). (7)

Then the total Lagrangian density for nonrelativistic quantum
electrodynamics in minimal coupling is

L = 1

8π
(e(x, t ) · e(x, t ) − b(x, t ) · b(x, t ))

+ ih̄

2
(ψ†(x, t )ψ̇ (x, t ) − ψ̇†(x, t )ψ (x, t ))

− ψ†(x, t )V(x)ψ (x, t )

− h̄2

2m
(D(x, t )ψ (x, t ))† · (D(x, t )ψ (x, t ))

− ρe(x, t )φ(x, t ), (8)

where Di(x, t ) are the spatial components of the covariant
derivative defined in (4) and we introduced the electronic
charge density

ρe(x, t ) = eψ†(x, t )ψ (x, t ). (9)

Expanding the covariant derivative, we can write the total
Lagrangian associated to L as a sum of three terms

L = LB + LF + Lint, (10)

where LB and LF are integrals over R3 of the Lagrangian
densities given in (5) and (3), and the interaction term is

Lint = −
∫

dx ρe(x, t )φ(x, t ) + h̄e

2mci

∫
dx(ψ†(x, t )∇ψ (x, t )

− ∇ψ†(x, t )ψ (x, t )) · a(x, t )

− e2

2mc2

∫
dx ψ†(x, t )‖a(x, t )‖2ψ (x, t ). (11)

To obtain the Hamiltonian field theory we apply the
Legendre transformation to L, which is summarized in
Appendix A 1. The Hamiltonian operator that we obtain from
L after quantization is given in the Schrödinger picture by

H = HB ⊗ IF + IB ⊗ HF + Hint (12)

generating unitary dynamics in a composite Hilbert space
HB ⊗ HF constructed from Hilbert spaces HB and HF asso-
ciated with the Bose and Fermi sectors, respectively. In terms
of the transverse electric and magnetic field operators, the
Maxwell Hamiltonian is

HB = 1

8π

∫
dx (eT (x) · eT (x) + b(x) · b(x)), (13)

the electronic term is

HF = h̄2

2m

∫
dx ∇ψ†(x) · ∇ψ (x) + 1

2

∫
dx ρe(x)φ(x)

+
∫

dx ψ†(x)V(x)ψ (x), (14)

and the interaction term is

Hint = −1

c

∫
dx jP(x) · a(x) − 1

2c

∫
dx jD(x) · a(x). (15)

Here we introduce the paramagnetic and diamagnetic current
density operators

jP(x) = h̄e

2mi
(ψ†(x)∇ψ (x) − ∇ψ†(x)ψ (x)), (16)

jD(x) = − e2

mc
ψ†(x)a(x)ψ (x), (17)

such that the total current density operator is

j(x) = jP(x) + jD(x), (18)

which satisfies the Heisenberg-picture equation

∂ρe(x, t )

∂t
+ ∇ · j(x, t ) = 0 (19)

associated with local U(1)-charge conservation. The electro-
magnetic field operators satisfy the (equal-time) commutation
relations

[ei
T (x), a j (y)]− = 4π ih̄c δ

i j
T (x − y),

[ai(x), a j (y)]− = [
ei

T (x), e j
T (y)

]
− = 0, (20)

from which follows[
ei

T (x), bj (y)
]
− = 4π ih̄c εi jk ∂

∂yk
δ(x − y), (21)
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while the electron field operator and its adjoint satisfy the
(equal-time) anticommutation relations

[ψ (x), ψ†(y)]+ = δ(x − y),

[ψ (x), ψ (y)]+ = [ψ†(x), ψ†(y)]+ = 0. (22)

In the commutation relations (20) we introduce the transverse
delta function δ

i j
T (x − y), which is used together with the

longitudinal delta function δ
i j
L (x − y) to decompose a given

vector field Oi(x) into its transverse and longitudinal compo-
nents [12]

Oi
T (x) =

∫
dy δ

i j
T (x − y)O j (y), (23)

Oi
L(x) =

∫
dy δ

i j
L (x − y)O j (y). (24)

B. Multipolar quantum electrodynamics

In classical or semiclassical theory, the multipolar Hamil-
tonian is obtained from the minimal coupling Hamiltonian
through a canonical transformation. After the transformation,
the Hamiltonian involves the electric and magnetic fields
rather than the scalar and vector potentials, together with
polarization and magnetization fields that are the microscopic
analogues of the polarization and magnetization fields ap-
pearing in elementary classical electrodynamics [42]. The
moments of the polarization and magnetization fields are
identified with the multipole moments of the charge-current
distribution.

In the fully quantum theory, instead of a canonical transfor-
mation there is a corresponding unitary transformation, called
the PZW transformation [17], that acts on the composite
Hilbert space HB ⊗ HF , generated by

S = 1

c

∫
dx p(x) · a(x), (25)

where p(x) is the polarization field operator, which is related
to the total charge density operator

ρ(x) = ρe(x) + ρ ion(x) (26)

through the identity

ρ(x) = −∇ · p(x) + ρF (x). (27)

The free charge density ρF (x) is nonzero only if the system
has net charge, in which case

ρF (x) = Q δ(x − R) (28)

with net charge

Q =
∫

dx ρe(x) +
∑

N

qN . (29)

We allow Q to be nonzero to include single ions or charged
molecules. A suitable polarization field operator that satisfies
(27) is

p(x) =
∫

dy s(x; y, R)ρ(y), (30)

where we introduce a “relator” s(x; y, R) [6], defined by the
distributional expression

s(x; y, R) =
∫

C(y,R)
dz δ(x − z) (31)

with C(y, R) an arbitrary continuously differentiable curve in
R3 that begins at R and ends at y. If a straight-line path is
chosen between R and y, then the usual multipole expansion
of the polarization field follows.

After applying the PZW transformation, which is sum-
marized in Appendix A 2, the multipolar Hamiltonian that
follows is

H = HB ⊗ IF + IB ⊗ HF + Hint, (32)

where HB is now written in terms of the transverse displace-
ment field instead of the transverse electric field

HB = 1

8π

∫
dx (dT (x) · dT (x) + b(x) · b(x)), (33)

the electronic term is

HF = h̄2

2m

∫
dx ∇ψ†(x) · ∇ψ (x) + 2π

∫
dx ‖pL(x)‖2

−
∫

dx dL(x) ·
(

p(x) − 1

8π
dL(x)

)
, (34)

and the interaction term is

Hint = 2π

∫
dx ‖pT (x)‖2 −

∫
dx p(x) · dT (x)

−
∫

dx mP(x) · b(x) − 1

2

∫
dx mD(x) · b(x). (35)

Importantly, here and henceforth the electron field operator
ψ (x) is the transformed operator (see Appendix A 2). The
longitudinal displacement field, defined through Gauss’s law,
∇ · dL(x) = 4πρF (x), is given by

dL(x) = 1

4π

∫
dy ρF (y)

(
x̂ − ŷ

‖x − y‖2

)
. (36)

In the interaction term (35) mP(x) and mD(x) refer to the
paramagnetic and diamagnetic contributions to the (orbital)
magnetization field operator

m(x) = mP(x) + mD(x). (37)

Explicitly, the field operators mP(x) and mD(x) are

mi
P(x) = 1

c

∫
dy αi j (x; y, R) j j

P(y), (38)

mi
D(x) = 1

c

∫
dy αi j (x; y, R) j j

D(y), (39)

where the paramagnetic and diamagnetic current density op-
erators are

jP(x) = h̄e

2mi
(ψ†(x)∇ψ (x) − ∇ψ†(x)ψ (x)), (40)

jD(x) = − e2

mc
ψ†(x)�R(x)ψ (x), (41)
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and we introduce another “relator” [6]

αi j (x; y, R) = εimn
∫

C(y,R)
dzm ∂zn

∂y j
δ(x − z). (42)

As is the case for the polarization field (30), taking a straight-
line path for C(y, R) yields the multipole expansion of the
magnetization fields (38) and (39). In multipolar electrody-
namics, the diamagnetic current density (41) depends not
on the vector potential, but instead on the magnetic field
through

�i
R(x) =

∫
dy α ji(y; x, R)bj (y). (43)

The charge and current density operators are related to the
polarization and magnetization field operators through the
Heisenberg-picture identities

ρ(x, t ) = −∇ · p(x, t ) + ρF (x), (44)

j(x, t ) = ∂ p(x, t )

∂t
+ c∇ × m(x, t ). (45)

III. RENORMALIZATION STRATEGY

The composite Hilbert space of multipolar quantum elec-
trodynamics is the tensor product HB ⊗ HF of the Hilbert
spaces HB and HF associated with the Bose and Fermi sec-
tors, respectively. Since implicit in the Hamiltonian H is the
assumption that the electron particle number is conserved, we
introduce an ultraviolet (UV) cutoff �, excluding contribu-
tions to Fourier integrals coming from electromagnetic field
modes of ‖k‖ > �. We denote by H� our Hamiltonian H
subject to this cutoff, which we will henceforth refer to as
the regularized Hamiltonian, and using the same superscript
to denote regularized versions of the different contributions
to H . Choosing � to be on the order of the inverse (reduced)
Compton wavelength of the electron, this guarantees that we
restrict ourselves to energies for which the electron-positron
pair production that we neglect would not be present in the
full theory of QED [43].

In the next section we will use Rayleigh-Schrödinger
perturbation theory to compute the leading-order radiative
corrections to the electronic energy levels resulting from
interactions between the electrons and quantum vacuum fluc-
tuations in the electromagnetic field. Were � taken to infinity,
the typical ultraviolet divergences would result. With the
“hard cutoff” imposed each regularized energy shift, denoted
by �E�

n , is finite, albeit explicitly dependent on �. However,
this dependence on � is unphysical and should not appear
in observable quantities; it arises because �E�

n contains an
unobservable, �-dependent contribution coming from free
electrons interacting with the electromagnetic vacuum. Since
this contribution is unobservable, we should subtract it from
�E�

n ; what remains will be the observable correction to the
bound-state electronic energy levels.

This can be implemented by adding one or more local
interactions δH (�), depending explicitly on �, to the regular-
ized Hamiltonian H�, with the purpose of simulating virtual
processes associated with the high energy (‖k‖ > �) degrees
of freedom [44]. In general, δH (�) will be a sum of many

terms, each summand being called a counterterm. A central
tenet of renormalization theory is that it should be possible to
choose the counterterms in δH (�) such that the renormalized
Hamiltonian

HR = H� + δH (�) (46)

accurately represents the full range of energies in the interval
0 � ‖k‖ < ∞ and should not depend on � [45]. The renor-
malized energy shift, denoted by �ER

n and computed using
HR, should be finite in the limit � → ∞ and represents the
observable correction to the electronic energy levels in the
electromagnetic vacuum.

This is the usual strategy we implement here. However, val-
ues of ‖k‖ above the inverse (reduced) Compton wavelength
of the electron are treated improperly by the theory, and so
extensions of � greater than that go beyond the validity of
the Hamiltonian. Indeed, nonrelativistic QED is a nonrenor-
malizable field theory, so we only expect �ER

n to be finite
to the order of perturbation theory at which we renormalized
the Hamiltonian since additional divergences are generated in
nonrenormalizable theories as one moves to higher orders as
well as divergences that are generated by the counterterms
in δH (�) [38]. If we want to compute observables at next-
to-leading-order, for example, we must check if additional
UV divergences are generated. In this paper we will only
renormalize the multipolar Hamiltonian at leading order in the
fine-structure constant.

IV. ENERGY SHIFTS

A. Preliminaries

We begin by identifying the contributions to the energy
shifts arising from the free fields. For the radiation field this
is standard, but we take the opportunity to introduce nota-
tion that we will use later in the paper; for the electrons the
computation is done in terms of fermionic scalar fields rather
than the single or few-electron states that are typically used.
Finally, we identify the two contributions that arise from the
interaction of the radiation and electron fields. They are then
worked out in detail in Secs. IV B and IV C below.

1. Free fields

The dynamical evolution of the transverse Maxwell fields
dT (x, t ) and b(x, t ) is generated by HB through the Heisenberg
equations

∂dT (x, t )

∂t
= 1

ih̄
[dT (x, t ), HB]−, (47)

∂b(x, t )

∂t
= 1

ih̄
[b(x, t ), HB]−, (48)

which, with the explicit form (33) for HB, lead to the familiar
Maxwell equations

∂dT (x, t )

∂t
= +c∇ × b(x, t ), (49)

∂b(x, t )

∂t
= −c∇ × dT (x, t ), (50)
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subject to the constraints

∇ · dT (x, t ) = 0, (51)

∇ · b(x, t ) = 0. (52)

We quantize in a box of volume V = L3, in which case the
allowed wave vectors are

k = 2π

L
(nx, ny, nz ) ∈ 2π

L
Z3, (53)

and expand dT (x, t ) and b(x, t ) in a Fourier series of trans-
verse spatial modes, which can themselves be written as a
sum of C-valued circular polarization vectors eIk (I = L, R)
defined by

eLk = − 1√
2

(ε1k + iε2k),

eRk = + 1√
2

(ε1k − iε2k), (54)

where ε1k and ε2k are the standard Cartesian polarization
vectors [12]. The circular polarization vectors satisfy

eIk · eJ (−k) = δIJ , (55)

ik̂ × eIk = sI eIk, (56)

where sL = +1 and sR = −1 and we choose the convention
eI (−k) = e∗

Ik. Moreover, these vectors satisfy the polarization
sum rule ∑

I

ei
I (−k)e

j
Ik = δi j − kik j

‖k‖2
≡ δ

i j
T (k). (57)

The Maxwell field operators are

dT (x, t ) = i
∑

Ik

(
2π h̄ωk

V

)1/2

eIkaIkei(k·x−ωkt ) + H.c.,

b(x, t ) =
∑

Ik

(
2π h̄ωk

V

)1/2

sI eIkaIkei(k·x−ωkt ) + H.c., (58)

where ωk = c‖k‖. To enforce the commutation relations (20)
and (21), the photonic creation and annihilation operators
a†

Ik and aIk must obey the equal-time canonical commutation
relations

[aIk, a†
Jk′]− = δIJδkk′ , (59)

[aIk, aJk′]− = [a†
Ik, a†

Jk′]− = 0. (60)

After regularization, the Maxwell Hamiltonian HB is given
in the Schrödinger picture by

H�
B =

∑
I

∑
‖k‖��

h̄ωk

(
a†

IkaIk + 1

2

)
. (61)

The second term is the well-known divergence associated
with the zero-point energy in free quantum electrodynamics
[34,38]. Summing over polarization states, the energy of the
vacuum state |vac〉 ∈ HB is exactly equal to this zero-point

energy

E�
0,B ≡

∑
‖k‖��

h̄c‖k‖ → h̄cV

8π2
�4, (62)

where the right side follows in the continuum limit∑
k

→ V

8π3

∫
dk. (63)

Therefore, the regularized Maxwell Hamiltonian is

H�
B =

∑
I

∑
‖k‖��

h̄ωka†
IkaIk + E�

0,B. (64)

Since we are primarily interested in vacuum effects, we take
as our basis for HB the photon number states |{nIk}〉 ∈ HB.
The spectral problem for H�

B in terms of these eigenstates is

H�
B |{nIk}〉 = E�

B |{nIk}〉, (65)

where the energy eigenvalues are

E�
B =

∑
I

∑
‖k‖��

h̄ωknIk + E�
0,B. (66)

Turning to the electron field, time evolution in the elec-
tronic Hilbert space HF is generated by HF through the
Heisenberg equation

∂ψ (x, t )

∂t
= 1

ih̄
[ψ (x, t ), HF ]−, (67)

with HF given by (34). As shown in Appendix B, the regu-
larized electronic Hamiltonian H�

F is given in the Schrödinger
picture by

H�
F = h̄2

2m

∫
dx ∇ψ†(x) · ∇ψ (x)

+ 1

2

∫∫
dxdx′ ψ†(x)ψ†(x′)

e2

‖x − x′‖ψ (x′)ψ (x)

+
∫

dx ψ†(x)V(x)ψ (x) + E�
0,F , (68)

where E�
0,F is a �-dependent term associated with the

‖x − x′‖ → 0 limit of the electrostatic Coulomb potential,
and is given by

E�
0,F = 1

π

[
e2Ne + 2eNe

∑
N

qN +
∑

N

q2
N

]
�, (69)

where Ne is the total number of electrons. We take as our basis
for HF the set {|ψn〉}n of many-body eigenstates of H�

F . The
spectral problem for H�

F in terms of these eigenstates is

H�
F |ψn〉 = E�

n |ψn〉, (70)

where the energy eigenvalues are

E�
n = h̄2

2m

∫
dx〈∇ψ†(x) · ∇ψ (x)〉n

+ 1

2

∫∫
dxdx′

〈
ψ†(x)ψ†(x′)

e2

‖x − x′‖ψ (x′)ψ (x)

〉
n

+
∫

dx
〈
ψ†(x)V(x)ψ (x)

〉
n + E�

0,F , (71)

and where the expectation value is over the state |ψn〉.
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2. Interactions

In the interacting theory the dynamical evolution of the
field operators is generated by the full Hamiltonian H given
in (32) to (35). After regularization, we write this Hamiltonian
as

H� = H�
0 + H�

int, (72)

where

H�
0 = H�

B ⊗ IF + IB ⊗ H�
F , (73)

with H�
B and H�

F given in (64) and (68), while H�
int is given

by (35) with all of the Fourier series (implicit in the mode
expansions (58)) subject to the cutoff ‖k‖ � �.

We take as our basis for the composite Hilbert space
HB ⊗ HF the product states

|{nIk}; ψn〉 ≡ |{nIk}〉 ⊗ |ψn〉. (74)

The spectral problem for the regularized free Hamiltonian H�
0

in terms of these eigenstates is

H�
0 |{nIk}; ψn〉 = (

E�
B + E�

n

)|{nIk}; ψn〉, (75)

with E�
B and E�

n given by (66) and (71), respectively. We
want to compute the regularized energy shift �E�

n of the
electronic energy levels E�

n in the electromagnetic vacuum,
resulting from interactions described by H�

int, and we consider
only bound states |ψn〉 in the Fermi sector. Since we will do
so using perturbation theory at O(α), it is useful to split up the
interaction term

H�
int = H�

int(1) + H�
int(2), (76)

where

H�
int(1) = 2π

∫
dx ‖pT (x)‖2 − 1

2

∫
dx mD(x) · b(x) (77)

are the interactions that are already O(α) and will be com-
puted at the first order, while

H�
int(2) = −

∫
dx p(x) · dT (x) −

∫
dx mP(x) · b(x) (78)

are the interactions that are O(
√

α) and do not contribute to
H�

int(1) since the vacuum expectation values of dT (x) and b(x)
vanish; these will be computed at the second order. We define

|�n〉 ≡ |vac ; ψn〉, (79)

|�δ〉 ≡ |1Ik ; ψm〉. (80)

In terms of these states, the regularized correction to the
electronic energy levels E�

n is

�E�
n = �E�

n(1) + �E�
n(2), (81)

where

�E�
n(1) = 〈�n|H�

int(1)|�n〉 (82)

is the first-order correction, while

�E�
n(2) =

∑
δ =n

|〈�δ|H�
int(2)|�n〉|2

En − Eδ

(83)

is the second-order correction.

B. First-order correction

The first-order correction is

�E�
n(1) = −1

2

∫
dx〈�n|mD(x) · b(x)|�n〉

+ 2π

∫
dx〈�n|‖pT (x)‖2|�n〉, (84)

where we understand that the right-hand side is to be reg-
ularized with a cutoff at ‖k‖ = �. The first term is the
diamagnetic contribution to the regularized energy shift,
which is more commonly written as

+1

2

∫∫
dxdx′ 〈�n|bi(x)Oi j (x, x′)bj (x′)|�n〉, (85)

where the second-quantized diamagnetization field is [6]

Oi j (x, x′) = e

2mc2

∫
dy αik (x; y, R)α jk (x′; y, R)ρe(y). (86)

We show in Appendix C that in the continuum limit (63) the
diamagnetic contribution to the first-order correction is given
by

− 1

2

∫
dx 〈�n|mD(x) · b(x)|�n〉

= α

2π

(
h̄2Ne

m

)
�2 − h̄

mc

∫
dx ρe

nn(x)〈a(x) · ∇�(x, R)〉vac

+ h̄2

2me

∫
dx ρe

nn(x)〈‖∇�(x, R)‖2〉vac, (87)

where the expectation value is taken in the vacuum state of the
radiation field. We will see below that when the full energy
shift is calculated the later two terms on the right-hand side
are canceled by terms in the second-order correction �E�

n(2).
Consider next the second term on the right-hand side of

(84). Inserting a resolution of the identity in HF with respect
to the many-body eigenstates {|ψm〉}m, the expectation value

〈ψn|pi(x′)pj (x)|ψn〉 =
∑

m

pi
nm(x′)pj

mn(x), (88)

where pi
nm(x) ≡ 〈ψn|pi(x)|ψm〉. Using the Fourier integral

representation of the transverse delta function [12]

δ
i j
T (x′ − x) =

∫
dk

(2π )3
δ

i j
T (k)eik·(x′−x) (89)

[recall (57)] we can (after regularization) write

2π

∫
dx ‖pT (x)‖2 = 1

4π2

∑
m

∫
‖k‖��

dk δ
i j
T (k)

×
∫∫

dxdx′ pi
nm(x′)pj

mn(x)eik·(x′−x).

(90)

To proceed, it is convenient to recast the angular part of
the Fourier integral into an expression in coordinate space.
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Explicitly, we write [27]

1

4π

∫
d�k δ

i j
T (k)eik·(x′−x) = 1

‖k‖2
τ i j (k‖x′ − x‖), (91)

where we define

τ i j (k‖x′ − x‖) ≡ (−δi j∂2 + ∂ i∂ j )F (x, x′; k). (92)

We introduce the abbreviated notation d�k = sin θdθdφ and
k = ‖k‖, ∂ i ≡ ∂/∂xi and ∂2 ≡ ∇2, and also define

F (x, x′; k) ≡ sin(k‖x − x′‖)

k‖x − x′‖ . (93)

Relating the polarization field operators to the total charge
density through (44), the contribution to �E�

n(1) coming from
the transverse polarization fields is

2π

∫
dx 〈�n|‖pT (x)‖2|�n〉

= 1

π

∑
m

∫ �

0
dk

∫∫
dxdx′ τ i j (k‖x′ − x‖) pi

nm(x′)pj
mn(x).

(94)

Hence the total first-order correction (84), the sum of (87) and
(94), is

�E�
n(1) = α

2π

(
h̄2Ne

m

)
�2 + 1

π

∑
m

∫ �

0
dk

∫∫
dxdx′ τ i j (k‖x′ − x‖) pi

nm(x′)pj
mn(x)

− h̄

mc

∫
dx ρe

nn(x)〈a(x) · ∇�(x, R)〉vac + h̄2

2me

∫
dx ρe

nn(x)〈‖∇�(x, R)‖2〉vac. (95)

C. Second-order correction

To compute the second-order correction (83), we begin with the matrix element

〈�δ|H�
int(2)|�n〉 = −

∫
dx pj

mn(x)〈1Ik|d j
T (x)|vac〉 −

∫
dx m j

P,mn(x)〈1Ik|bj (x)|vac〉, (96)

where m j
P,mn(x) ≡ 〈ψm|m j

P(x)|ψn〉 denotes the paramagnetic contribution to the magnetization. Inserting the mode expansions
(58) and using that the energy difference between the states |�δ〉 and |�n〉 is Eδ − En = Emn + h̄ωk, where Emn ≡ Em − En, the
regularized sum in expression (83) is ∑

δ

→
∑

m

∑
I

∑
‖k‖��

, (97)

and after taking the continuum limit (63), we find

�E�
n(2) = − h̄c

4π2
p.v.

∑
m

∫
‖k‖��

dk‖k‖
∫∫

dxdx′ eik·(x′−x)

Emn + h̄ωk

{
δ

i j
T (k)

(
pi

nm(x′)pj
mn(x) + mi

P,nm(x′)m j
P,mn(x)

)

−
(

εi j p kp

‖k‖
)(

pi
nm(x′)m j

P,mn(x) + mi
P,nm(x′)pj

mn(x)
)}

, (98)

where p.v.(·) denotes the Cauchy principal value, which must be included for states |ψn〉 with n = 0 since “downward” resonant
transitions for which Enm = h̄ωk are energetically permitted [46]. The simplification of this expression is largely formulaic and
is relegated to Appendix D 2. There we show that it can be written as

�E�
n(2) = − 1

π
p.v.

∑
m

∫ �

0
dk

h̄ck

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖)

(
pi

nm(x′)pj
mn(x) + mi

P,nm(x′)m j
P,mn(x)

)

− i

π
p.v.

∑
m

∫ �

0
dk

h̄ck2

Emn + h̄ck

∫∫
dxdx′ σ i j (k‖x′ − x‖)

(
pi

nm(x′)m j
P,mn(x) + mi

P,nm(x′)pj
mn(x)

)
, (99)

where

σ i j (k‖x′ − x‖) ≡ i

4π

∫
d�k εip jkpeik·(x′−x). (100)

Further simplifications can be made using the relation (44) and the Schrödinger-picture identity

jP,nm(x) = (ih̄)−1Emn pnm(x) + c∇ × mP,nm(x), (101)
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proven in Appendix D 1. After a tedious but straightforward calculation, the total second-order correction is

�E�
n(2) = − h̄

4π2c
p.v.

∑
m

∫
‖k‖��

dk
‖k‖−1

Emn + h̄ωk

∫∫
dxdx′ ji

P,nm(x′) j j
P,mn(x)δi j

T (k)eik·(x′−x)

+ h̄

mc

∫
dx ρe

nn(x)〈a(x) · ∇�(x, R)〉vac − h̄2

2me

∫
dx ρe

nn(x)〈‖∇�(x, R)‖2〉vac

− 1

π

∑
m

∫ �

0
dk

∫∫
dxdx′ τ i j (k‖x′ − x‖) pi

nm(x′)pj
mn(x). (102)

Hence, combining the first-order (95) and second-order (102) corrections, the regularized energy shift is

�E�
n = α

2π

(
h̄2Ne

m

)
�2 − h̄

4π2c
p.v.

∑
m

∫
‖k‖��

dk
‖k‖−1

Emn + h̄ωk

∫∫
dxdx′ ji

P,nm(x′) j j
P,mn(x)δi j

T (k)eik·(x′−x). (103)

We can also write �E�
n in terms of the polarization vectors {eI (k)}I :

�E�
n = α

2π

(
h̄2Ne

m

)
�2 − h̄

4π2c
p.v.

∑
m

∫
‖k‖��

dk
‖k‖−1

Emn + h̄ωk

∑
I

|eI (k) · j̃P,mn(k)|2, (104)

where j̃P(k) is the Fourier transform

j̃P(±k) =
∫

dx jP(x)e∓ik·x. (105)

Existing treatments [37,40,41] differ from ours either be-
cause they are computed within a first-quantized framework
or because they do not include spatial variations of the elec-
tromagnetic field over the molecule. If those variations would
be neglected, the polarization sum in (104) would reduce to∑

I

|eI (k) · Pnm|2, (106)

where

P = h̄

i

∫
dx ψ†(x)∇ψ (x) (107)

is the total (second-quantized) momentum operator. This dis-
tinction highlights the difference between our approach and
existing treatments, which generally only apply to hydrogenic
atoms. If one is interested in many-electron atoms, molecules,
or more general charge-current distributions, then it is neces-
sary to couple the radiation field to the current density rather
than the total momentum. In doing so, our result becomes
valid to all orders in the multipole expansion.

V. RENORMALIZATION

A. Renormalization of H�
0

We first renormalize the free Hamiltonian H�
0 , which

produces the vacuum divergence E�
0,B of free quantum electro-

dynamics given in (62) and the divergence E�
0,F computed in

Appendix B. Since both of these divergences are static, we can
trivially remove them from H�

0 by addition of static countert-
erms δHB(�) and δHF (�) to H�

B and H�
F . The renormalized

free Hamiltonian is

HR
0 = HR

B ⊗ IF + IB ⊗ HR
F , (108)

where the renormalized Maxwell and electronic terms are

HR
B = H�

B + δHB(�), (109)

HR
F = H�

F + δHF (�), (110)

and the counterterms (in minimal subtraction [38]) are

δHB(�) = −
[

h̄cV

8π2
�4

]
IB, (111)

δHF (�) = −
[

1

π

(
e2Ne + 2eNe

∑
N

qN +
∑

N

q2
N

)
�

]
IF .

(112)

The energy eigenvalues computed from HR
B and HR

F are finite
in the limit � → ∞. In particular, the renormalized Maxwell
term is

HR
B =

∑
Ik

h̄ωka†
IkaIk, (113)

while the renormalized electronic term is

HR
F = T + U R, (114)

where the kinetic term is

T = h̄2

2m

∫
dx ∇ψ†(x) · ∇ψ (x), (115)

and the renormalized electrostatic interaction term is

U R = 1

2

∫∫
dxdx′ ψ†(x)ψ†(x′)

(
e2

‖x − x′‖
)

ψ (x′)ψ (x)

+
∫

dx ψ†(x)V(x)ψ (x). (116)

The renormalized electronic energy levels are the expectation
values ER

n = 〈HR
F 〉n. There are a host of techniques in atomic

and molecular physics, and in condensed matter physics, that
were designed to compute expectation values of the operator
given in (116) [47].
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B. Renormalization of H�
int

The renormalized interaction term is defined by

HR
int = H�

int + δHint(�), (117)

where δHint(�) will be determined below. As outlined in
Sec. III, our renormalization scheme is based on the obser-
vation that the �-dependent contribution to the regularized
energy shift (104) coming from free electrons, described by
the Hamiltonian H (0)

F ≡ T [see (115)], is unobservable and
should be subtracted from �E�

n . What remains will be the
observable correction to the bound-state electronic energy
levels.

Thus we must first determine the contribution to �E�
n

coming from free electrons, described by H (0)
F ; denote by

{|ϕn′ 〉}n′ the set of many-body eigenstates thereof. Because
this Hamiltonian commutes with the total momentum oper-
ator P, we can choose each energy eigenstate |ϕn′ 〉 to be an
eigenstate of P. Then for an arbitrary many-body eigenstate
|ϕn′ 〉 we have

�E�
free ≡ 〈ϕn′ |H�

int|ϕn′ 〉, (118)

�ER
free ≡ 〈ϕn′ |HR

int|ϕn′ 〉. (119)

We choose the counterterms in δHint(�) to cancel the �-
dependent terms in �E�

free, so that the renormalized energy
shift �ER

free vanishes for an arbitrary state |ϕn′ 〉, i.e., an arbi-
trary distribution of electron momenta.

To compute �E�
free, it is useful to expand the electron field

operators in a basis of plane waves

ψ (x) = 1√
V

∑
q

eiq·xbq, (120)

where we return to considering a system in volume V and
where the anticommutation relations (22) imply that the elec-

tronic creation and annihilation operators satisfy the canonical
anticommutation relations

[bq, b†
q′]+ = δqq′ ,

[bq, bq′]+ = [b†
q, b†

q′]+ = 0. (121)

In this plane-wave expansion, the Fourier transform of the
paramagnetic current density operator is

j̃ j
P(k) = h̄e

2m

∑
q

(2q j − k j )b†
q−kbq. (122)

We obtain �E�
free by replacing the many-body eigenstates of

HF involved in (104) with those of H (0)
F and replacing Emn

with E (0)
m′n′ , where E (0)

n′ = 〈ϕn′ |H (0)
F |ϕn′ 〉. Thus, for free elec-

trons the regularized energy shift is

�E�
free = α

2π

(
h̄2Ne

m

)
�2 − h̄

4π2c
p.v.

∑
m′

∫
‖k‖��

dk

× ‖k‖−1

E (0)
m′n′ + h̄ωk

∑
I

|eI (k) · j̃P,m′n′ (k)|2. (123)

To simplify the second term, consider the expression

∑
m′

j̃ i
P,n′m′ (−k)

(
1

E (0)
m′n′ + h̄ωk

)
j̃ j
P,m′n′ (k), (124)

which features in the integrand of (123). To proceed, we write
the term in parentheses as

1

E (0)
m′n′ + h̄ωk + iδ

= −i
∫ ∞

0
ds eis(E (0)

m′ −E (0)
n′ +h̄ωk+iδ), (125)

where we have introduced a convergence factor iδ (and the
limit δ → 0+ is understood), with which (124) is

∑
m′

j̃ i
P,n′m′ (−k)

(
1

E (0)
m′n′ + h̄ωk + iδ

)
j̃ j
P,m′n′ (k) = −i

∑
m′

∫ ∞

0
ds eis(h̄ωk+iδ) j̃ i

P,n′m′ (−k)
〈
eisH (0)

F j̃ j
P(k)e−isH (0)

F
〉
m′n′ , (126)

where the subscript m′n′ indicates the matrix element between state |ϕm′ 〉 and state |ϕn′ 〉. The operator in the angular brackets
on the right-hand side is simply the paramagnetic current density operator in the interaction picture with s = t/h̄ (which acts
trivially on HB), and so we have

eisH (0)
F j̃ j

P(k)e−isH (0)
F = h̄e

2m

∑
q

(2q j − k j ) b†
q−kbqeis(Eh̄ωk −h̄k·q/m), (127)

where Eh̄ωk = h̄2ω2
k/2mc2. Therefore, using the identity (125) in reverse (and taking δ → 0+)

∑
m′

j̃ i
P,n′m′ (−k)

(
1

E (0)
m′n′ + h̄ωk

)
j̃ j
P,m′n′ (k) = h̄2e2

4m2

∑
qq′

(2q′i − ki )(2q j − k j )

(
1

Eh̄ωk + h̄ωk − h̄k · q/m

)

×
∑

m′
〈ϕn′ |b†

q′bq′−k|ϕm′ 〉〈ϕm′ |b†
q−kbq|ϕn′ 〉. (128)

Since we are working with electrons that are nonrelativistic, ‖q‖ � mc and we can drop the “h̄k · q/m” term in the denominator.
Recollecting the Fourier transforms of the paramagnetic current density operators using (122) we find

∑
m′

j̃ i
P,n′m′ (−k)

(
1

E (0)
m′n′ + h̄ωk

)
j̃ j
P,m′n′ (k) =

∑
m′

j̃ i
P,n′m′ (−k)

(
1

Eh̄ωk + h̄ωk

)
j̃ j
P,m′n′ (k), (129)
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from which follows

�E�
free = α

2π

(
h̄2Ne

m

)
�2 − h̄

4π2c

∑
m′

∫
‖k‖��

dk
‖k‖−1

Eh̄ωk + h̄ωk

∑
I

∣∣eI (k) · j̃P,m′n′ (k)
∣∣2

, (130)

where we dropped the principal value notation since the integrand has no poles (or infrared divergences).
As discussed in Sec. III, we add to the regularized interaction term a counterterm δHint(�) whose � dependence is chosen so

that the renormalized interaction term (117) is finite in the limit � → ∞. However, instead of setting the counterterm directly,
we proceed by enforcing the condition that �ER

free vanishes. Enforcing this condition requires that 〈δHint(�)〉n′ is the negative of
the right-hand side of (130) for all |ϕn′ 〉 and this can be satisfied by taking

δHint(�) = −
[

α

2π

(
h̄2Ne

m

)
�2

]
IB ⊗ IF + h̄

4π2c

∫
‖k‖��

dk
‖k‖−1

Eh̄ωk + h̄ωk

∑
I

(eI (−k) · j̃
†
P(k))(eI (k) · j̃P(k)). (131)

With this expression, we have collected all of the counterterms necessary to obtain the full renormalized Hamiltonian from

H� = H�
B ⊗ IF + IB ⊗ H�

F + H�
int. (132)

The renormalized Hamiltonian is

HR = H� + δH (�), (133)

where H� is given by (72) and

δH (�) = δHB(�) ⊗ IF + IB ⊗ δHF (�) + δHint(�). (134)

Using (111), (112), and (131), the counterterm δH (�) is

δH (�) = −
[

α

2π

(
h̄2Ne

m

)
�2 + h̄cV

8π2
�4 + 1

π

(
e2Ne + 2eNe

∑
N

qN +
∑

N

q2
N

)
�

]
IB ⊗ IF

+ h̄

4π2c

∫
‖k‖��

dk
‖k‖−1

Eh̄ωk + h̄ωk

∑
I

(eI (−k) · j̃
†
P(k))(eI (k) · j̃P(k)). (135)

C. Renormalized energy shift

We are now in a position to calculate the renormalized energy shift

�ER
n = 〈

vac ; ψn

∣∣HR
int

∣∣vac ; ψn
〉
, (136)

where |ψn〉 is a (bound) eigenstate of the renormalized electronic Hamiltonian HR
F |ψn〉 = ER

n |ψn〉 with eigenvalue ER
n given by

the expectation value of (116). The first counterterm in 〈δHint(�)〉n ≡ 〈ψn|δHint(�)|ψn〉 [cf. the first term in (131)] trivially
cancels the static self-energy in �E�

n and we are left with

�ER
n = − h̄

4π2c
p.v.

∑
m

∫
‖k‖��

dk
‖k‖−1

ER
mn + h̄ωk

∑
I

|eI (k) · j̃P,mn(k)|2

+ h̄

4π2c

∫
‖k‖��

dk
‖k‖−1

Eh̄ωk + h̄ωk

∑
I

〈(eI (−k) · j̃
†
P(k))(eI (k) · j̃P(k))〉n, (137)

the second line being the second counterterm in (131). Introducing a resolution of the identity in HF with respect to the states
{|ψm〉}m, we can collect these terms together

�ER
n = − h̄

4π2c
p.v.

∑
m

∫
‖k‖��

dk
( ‖k‖−1

ER
mn + h̄ωk

− ‖k‖−1

Eh̄ωk + h̄ωk

)∑
I

|eI (k) · j̃P,mn(k)|2. (138)

To simplify the expression in the parentheses, we use the following identity, which we prove in Appendix F:

∑
m

j̃i
P,nm(−k)

1

ER
mn + h̄ωk

j̃ j
P,mn(k) =

∑
m

(
j̃ i
P,nm(−k) j̃ j

P,mn(k)

Eh̄ωk + h̄ωk
− j̃ i

P,nm(−k)
〈[

U R, j̃ j
P(k)

]
−
〉
mn

(Eh̄ωk + h̄ωk)
(
ER

mn + h̄ωk
)
)

. (139)

The first term on the right of the above equality exactly cancels the second term in the parentheses of (138) and so the
renormalized energy shift is

�ER
n = h̄

4π2c
p.v.

∑
m

∫
dk‖k‖−1 δ

i j
T (k)

(Eh̄ωk + h̄ωk)
(
ER

mn + h̄ωk
)(

j̃ i
P,nm(−k)

〈[
U R, j̃ j

P(k)
]
−
〉
mn

)
, (140)
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where we removed the regulator since this expression is finite
in the limit � → ∞. Here and henceforth we replace the
“bare” electron mass m with the renormalized electron mass
mR.

Before returning to the multipole formalism to study con-
tributions to �ER

n order-by-order in the multipole expansions,
we first quote the result that one obtains by directly calculating
this expression in terms of the paramagnetic current density;
the details can be found in Appendix G 1. Replacing ER

mn by
a “reference” or average value ĒR

n [12,37], the result of this
calculation is

�ER
n = − 4αh̄2

3m2
Rc2

∑
N

qN
〈ρe(R + dN )〉n

1 − ĒR
n /2mRc2

ln

(
2mRc2∣∣ĒR

n

∣∣
)

. (141)

To compare with existing results, we consider the case of
a single hydrogenic atom at R. We can thereby replace
qN 〈ρe(R + dN )〉n with −e2Z|φn00(R)|2, where φn�m(x) are the
usual hydrogen wave functions. Moreover, using |φn00(R)|2 =
Z3/n3πa3

0 we have [40,48]

�ER
n = 4α5Z4

3πn3

(
mRc2

1 − ĒR
n /2mRc2

)
ln

(
2mRc2∣∣ĒR

n

∣∣
)

. (142)

For a hydrogen atom (Z = 1) we take the average excitation
energy for the 2s level to be |ĒR

2s| = 16.64 Ryd, from which

we find the energy shift to be �ER
2s ≈ 1051 MHz, which is

in good agreement with the experimental value of 1054 MHz
[12,33]. To make the electric dipole approximation, we re-
place the denominator with unity and thereby obtain the
standard result [12,37,49]

�ER
n = 4α5

3π
mRc2 ln

(
2mRc2∣∣ĒR

n

∣∣
)

. (143)

D. Multipole expansion

A primary advantage of using the multipole formalism over
minimal coupling is the ability to perform localized multipole
expansions of the polarization and magnetization fields. While
renormalization is better done with the minimal coupling
form of �ER

n as above, we now rewrite it in terms of these
polarization and magnetization fields. As we discuss below,
the multipole expansions are only valid for small ‖k‖ and in
particular for ‖k‖ < �. This means that we can drop the factor
of Eh̄ωk in the denominator of (138) and use a modified form
of the identity in the parentheses of (139), namely,

1

ER
mn + h̄ωk

− 1

h̄ωk
= − ER

mn

(h̄ωk)
(
ER

mn + h̄ωk
) , (144)

to write the renormalized energy shift as

�ER
n = 1

4π2c2
p.v.

∑
m

∫
dk‖k‖−2 ER

mn

ER
mn + h̄ωk

∑
I

|eI (k) · j̃P,mn(k)|2. (145)

Then to rewrite �ER
n in terms of the polarization and magnetization fields, we use the identity (101) to write the renormalized

energy shift as

�ER
n = 1

4π2
p.v.

∑
m

∫
dk

(
ER

mn

ER
mn + h̄ωk

) ∑
I

[(
ER

mn

h̄ωk

)2

|eI (k) · p̃mn(k)|2 + |eI (k) · m̃P,mn(k)|2
]

+ 1

2π2
p.v.

∑
m

∫
dk

(
ER

mn

ER
mn + h̄ωk

)(
ER

mn

h̄ωk

)∑
I

sI�[(eI (−k) · p̃nm(−k))(eI (k) · m̃P,mn(k))]. (146)

This is our general expression for the renormalized energy
shift in the multipole formalism. As we discuss at the end
of this section, making the electric dipole approximation for
the ground state n = 0 of atomic hydrogen yields the usual
Bethe result [37]. However, our result above holds for ground
and excited states of a general localized charge-current dis-
tribution and includes contributions from the full electric and
magnetic multipole series. And it accounts for spatial varia-
tions in the electromagnetic field, which are usually neglected
by replacing the polarization and magnetization fields with the
electric and magnetic dipole moments. Of course, in dropping
the factors of Eh̄ωk above we reintroduce the “Bethe log” di-
vergences, but in any case the multipole expansions introduce
stronger ultraviolet divergences that must be regularized, as
discussed below.

To obtain the multipole expansions, we take as the defining
curve for the “relators” si(x; y, R) and αi j (x; y, R) a straight-
line path

z(λ) = R + λ(y − R) (147)

with unit parametrization λ ∈ [0, 1], in which case [6]

si(x; y, R) = (yi − Ri )
∫ 1

0
dλδ(x − R − λ(y − R)),

αi j (x; y, R) = εi jk (yk − Rk )
∫ 1

0
dλλδ(x − R − λ(y − R)).

(148)

We then expand these expressions in a formal Taylor series
with appropriate radius of convergence. Inserting the result
back into the polarization and magnetization fields, the full
electric and paramagnetic multipole expansions are then given
by

pi(x) =
∞∑

n=0

(−1)nμi1...ini∂ i1 . . . ∂ inδ(x − R),

mi
P(x) =

∞∑
n=0

(−1)nν i1...ini∂ i1 . . . ∂ inδ(x − R), (149)
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where the nth-order electric and paramagnetic multipole moment operators are

μi1...ini = 1

n!

∫
dr (ri1 − Ri1 ) . . . (rin − Rin )(ri − Ri )ρ(r),

ν i1...ini = 1

c

n

(n + 1)!

∫
dr (ri1 − Ri1 ) . . . (rin − Rin ) εiab(ra − Ra) jb

P(r). (150)

We can write (with k = ‖k‖)

�ER
n = h̄c

π
p.v.

∑
m

ER
mn

(
ER

mn

h̄c

)2 ∞∑
a,b=0

(+i)a(−i)b

(∫ ∞

0
dk

ka+b

ER
mn + h̄ck

)[(
μi1...iai

nm I i1...iai j1... jb j
(1) μ j1... jb j

mn

)

+ (
ν i1...iai

nm I i1...iai j1... jb j
(1) ν j1... jb j

mn

) + 2�(
μi1...iai

nm I i1...iai j1... jb j
(2) ν j1... jb j

mn

)]
. (151)

Here we define the isotropic Cartesian tensors

I i1...iai j1... jb j
(1) =

∫
d�k

4π
(δi j − k̂ik̂ j )k̂i1 . . . k̂ia k̂ j1 . . . k̂ jb,

I i1...iai j1... jb j
(2) =

∫
d�k

4π
(εi j pk̂ p)k̂i1 . . . k̂ia k̂ j1 . . . k̂ jb . (152)

The tensor I(1) vanishes unless a + b = 2n for some n ∈
N, while the tensor I(2) vanishes unless a + b = 2n + 1 for
some n ∈ N. These conditions preclude a number of electric,
magnetic, and magnetoelectric terms, such as the product of
the electric dipole and quadrupole moments, while allowing
others like the product of the electric dipole and octopole
moments.

Unless a = 0 and b = 0 the integrals above diverge as
‖k‖ → ∞, even though the same expression written in terms
of the current density was finite. This particular ultraviolet
divergence is an artifact of our extrapolation of the Fourier
transforms of the multipole expansions (149) to all values of
‖k‖. Indeed, for the straight-line paths considered above we
can explicitly compute the Fourier transforms p̃(k) and m̃P(k),

after which we find that they vanish in the limit ‖k‖ → ∞
[13]. However, the Fourier transforms of the multipole ex-
pansions (149) clearly diverge in the ultraviolet limit for all
n ∈ N, and so the resulting power series expansions in k must
have a finite radius of convergence ‖k‖ � �′ (not equal to the
ultraviolet cutoff � = (h̄/mRc)−1 used in previous sections).
The exact value of �′ depends on the charge-current distri-
bution and it is therefore undesirable to regulate the Fourier
integrals with a hard cutoff. We instead make these integrals
well behaved by introducing a “heat kernel regulator” [12,38],
which in the continuum limit amounts to evaluating the inte-
gral

∫ ∞

0
dk

ka+b

ER
mn + h̄ck

e−k/�′
, (153)

where we take the limit �′ → ∞ to remove the regulator
at the end of the calculation. This integral is evaluated in
Appendix G 2. After removing the regulator, we find the gen-
eral expression

�ER
n = 1

h̄πc

∑
m

ER
mn

(
ER

mn

h̄c

)2

ln

(
2mRc2

|ER
mn|

) ∞∑
a,b=0

(+i)a(−i)b(−1)a+b

(
ER

mn

h̄c

)a+b[(
μi1...iai

nm I i1...iai j1... jb j
(1) μ j1... jb j

mn

)

+ (
ν i1...iai

nm I i1...iai j1... jb j
(1) ν j1... jb j

mn

) + 2�(
μi1...iai

nm I i1...iai j1... jb j
(2) ν j1... jb j

mn

)]
. (154)

The first several contributions to �ER
n are given by

�ER
n = 2

3h̄πc

∑
m

ER
mn

(
ER

mn

h̄c

)2

ln

(
2mRc2∣∣ER

mn

∣∣
)[

‖μnm‖2 + ‖νnm‖2 + 1

10

(
ER

mn

h̄c

)2(
3qab

nmqab
mn − qaa

nmqbb
mn

)

− 1

5

(
ER

mn

h̄c

)2(
μa

nmoabb
mn + oabb

nm μa
mn

) + . . .

]
, (155)

where μi, qi j , and oi jk are the electric dipole, quadrupole, and
octopole moment operators, ν i is the magnetic dipole moment
operator and the ellipses denote the higher-order multipole
contributions. To check the validity of this result, consider
only the electric dipole term

�ER
n = 2

3h̄πc

∑
m

ER
mn

(
ER

mn

h̄c

)2

ln

(
2mRc2∣∣ER

mn

∣∣
)

‖μnm‖2. (156)

To recover Bethe’s result in the electric dipole approximation,
we first replace |ER

mn| in the logarithm with an average value
|ĒR

n |, in which case

�ER
n = 2α

3π

1

m2
Rc2

ln

(
2mRc2∣∣ĒR

n

∣∣
)∑

m

(
ER

mn

)3‖μnm‖2. (157)
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In a first-quantized treatment this is precisely Bethe’s result
for the Lamb shift in the electric dipole approximation [37].
To compare with our previous result (143), we use the identity
[12]

(
ER

mn

)2‖μnm‖2 = −∥∥ER
mnμnm

∥∥2 =
(

h̄e

mR

)2

‖Pnm‖2, (158)

from which follows

�ER
n = 2α

3π

1

m2
Rc2

ln

(
2mRc2∣∣ĒR

n

∣∣
) ∑

m

ER
mn‖Pnm‖2. (159)

We recover the expression (143) by evaluating the sum over
states |ψm〉 using an expression analogous to (G2).

VI. CONCLUSION

We introduced a field-theoretic reformulation of multipo-
lar electrodynamics to model interactions between quantized
electromagnetic fields and localized charge-current distribu-
tions. The electronic degrees of freedom are encoded in
microscopic polarization and magnetization field operators
(defined through second-quantized scalar field operators) with
moments that are identified with the multipole moments of
the charge-current distribution. These field operators cou-
ple to the quantized electromagnetic field in the multipolar
Hamiltonian, obtained from the minimal coupling Hamilto-
nian through a unitary transformation, often referred to as the
PZW transformation. Our reformulation generalizes existing
work [15,28] in that a field-theoretic model allows us to treat
very general charge-current distributions (provided they are
sufficiently localized) including those of large assemblies of
atoms and molecules and those in which the number of charge
carriers may change over time. Restricting oneself to the elec-
tric dipole approximation is not required.

Following a reformulation of multipolar electrodynamics
from minimal coupling electrodynamics, our focus there-
after concerned the vacuum structure of the theory. Using
Rayleigh-Schrödinger perturbation theory we computed the
regularized shift �E�

n of the electronic energy levels in the
electromagnetic vacuum state, described by the regularized
interaction term H�

int. This energy shift depends explicitly on
the ultraviolet cutoff �, an artifact of our choice of a “hard
cutoff” regulator. To remove this � dependence, we renor-
malized the regularized Hamiltonian H� at leading order in
the fine-structure constant by addition of appropriate countert-
erms. We could then use the renormalized Hamiltonian that
followed to compute the finite and observable correction �ER

n
to the (renormalized) electronic energy levels ER

n .
We obtain a closed form expression for the renormalized

energy shift �ER
n when written in terms of the matrix ele-

ments of the current density operator. For hydrogenic atoms,
our expression reproduces existing results, including Bethe’s
calculation [37] of the Lamb shift in the electric dipole ap-
proximation, and extensions thereof [40,41] to include spatial
variations in the electromagnetic field. However, our expres-
sion (141) is valid for more general assemblies of atoms and
molecules (possibly with net charge), consisting of a sum of
contributions centered on each ion in the assembly, each of
which is weighted by the expectation value of the electronic
charge density evaluated at that location. To compute these

expectation values, we could expand the electron field oper-
ators in terms of an appropriate set of single-particle wave
functions that transform in an irreducible representation of the
symmetry group of the system [50]. Because of how compli-
cated this symmetry group may be, we would no longer expect
the contributions to �ER

n to be restricted to wave functions
with full SO(3) symmetry like the s-type hydrogen orbitals;
instead, we expect that these expectation values will depend
in a complicated way on the electronic structure of the sys-
tem. Numerically evaluating these expectation values and the
expression for �ER

n is an interesting direction for future work.
We then rewrote the renormalized energy shift in terms

of the polarization and magnetization fields, permitting us to
expand �ER

n in a sum of contributions coming from prod-
ucts of specific electric and magnetic multipole moments of
the molecule. We derived the general form of such expres-
sions and then identified the contributions coming from the
first several mulitipole moments, namely the electric dipole,
quadrupole, and magnetic dipole moments. Existing treat-
ments of the vacuum energy shift focused on hydrogenic
atoms and therefore include only the electric dipole term.

This work lays the foundation for a broader research pro-
gram involving microscopic polarization and magnetization
fields in the quantum regime. Recent work indicated that
a description of crystalline solids using multipolar quantum
electrodynamics should be possible [51–56]; there the authors
introduced a semi-classical formalism based on microscopic
polarization and magnetization fields that could be associated
with individual lattice sites, together with itinerant contribu-
tions due to the presence of free charge and current. The
extension of this into the fully quantum regime, by generaliz-
ing the work presented here to crystal lattices, should provide
a microscopic underpinning for the study of quantum optical
effects in crystals.
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APPENDIX A: TRANSFORMATIONS IN SEC. II

1. Legendre transformation in minimal coupling

We begin with the minimal coupling Lagrangian L given
in (10). The canonical momentum density conjugate to the
electron field ψ (x, t ) is

πψ (x, t ) = δL

δψ̇ (x, t )
= ih̄

2
ψ†(x, t ), (A1)

while the canonical momentum density conjugate to the vec-
tor potential a(x, t ) is

πa(x, t ) = δL

δȧ(x, t )
= − 1

4πc
e(x, t ). (A2)

However, the canonical momentum density πφ (x, t ) conjugate
to the scalar potential φ(x, t ) vanishes. Thus the Lagrangian
is degenerate and the standard method for constructing the
corresponding Hamiltonian theory involves the identification
and classification of first- and second-class constraints using
the Poisson bracket, elimination of the first by fixing a gauge,
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and enforcing the second by replacing the Poisson bracket
by a suitable generalization called the Dirac bracket [57].
The solution in the case of electrodynamics is well known,
and so we only summarize the main results [11,58]. There
are two constraints: The vanishing of πφ (x, t ) and Gauss’s
law ∇ · e(x, t ) = 4πρe(x, t ). After fixing the transverse
gauge

∇ · a(x, t ) = 0, (A3)

the scalar potential is obtained from the electronic charge
density through Poisson’s equation

∇2φ(x, t ) = 4πρe(x, t ), (A4)

and the canonical variable πφ (x, t ) can be discarded. The
gauge-fixed Maxwell Lagrangian L′

B is

L′
B = 1

8π

∫
dx

(
1

c2
‖ȧ(x, t )‖2 − ‖∇ × a(x, t )‖2

)
, (A5)

while the gauge-fixed interaction term is

L′
int = Lint + 1

2

∫
dx ρe(x, t )φ(x, t ). (A6)

Using Poisson’s equation, the contribution to the Maxwell
Lagrangian LB coming from the longitudinal electric field
(absent in the gauge-fixed L′

B) is rewritten in terms of the
electronic charge density and scalar potential; this is the origin
of the factor 1/2 in the second term above. After gauge-
fixing, Gauss’s law becomes a second-class constraint and
is enforced upon quantization by replacing Dirac brackets of
the remaining canonical variables with (anti)commutators, the
result being the equal-time commutation relations (20) for the
electromagnetic field operators and the equal-time anticom-
mutation relations (22) for the electron field operators. Then
the minimal coupling Hamiltonian (12) follows.

2. PZW transformation

We begin with the minimal coupling Hamiltonian (12),
which can be written as a functional of the canonical variables

H = F [a,πa, ψ, πψ ], (A7)

where πa(x) and πψ (x) are the canonical momentum densities
defined in (A2) and (A1), respectively. Under the unitary
transformation U ≡ exp(iS/h̄), the new canonical variables
(indicated by a breve) are

ă(x) = Ua(x)U †,

π̆a(x) = Uπa(x)U †,

ψ̆ (x) = Uψ (x)U †,

π̆ψ (x) = Uπψ (x)U †. (A8)

The strategy then [6] is to write the Hamiltonian as a func-
tional of the transformed fields

H = G [ă, π̆a, ψ̆, π̆ψ ]. (A9)

Equating (A7) and (A9) and using the general form of the
transformations (A8), the new functional G is obtained from
the old one F through

G [a,πa, ψ, πψ ] = U †F [a,πa, ψ, πψ ]U, (A10)

where on both sides we use the nontransformed fields. Once
the new functional G is identified, the multipolar Hamiltonian
is obtained by substituting the transformed field operators into
this new functional. The explicit transformations of the field
operators are

ă(x) = a(x),

π̆a(x) = πa(x) − 1

c
pT (x),

ψ̆ (x) = e−i�(x,R)ψ (x),

π̆ψ (x) = e+i�(x,R)πψ (x), (A11)

where

�(x, R) = e

h̄c

∫
dw si(w; x, R)ai(w). (A12)

In semi-classical theory the quantity �(x, R) is a generalized
Peierls phase [52]; in the fully quantum theory, the expo-
nential of this quantity in (A11) is the Wilson line operator
of Abelian gauge theory [13]. The original gauge freedom
involving the scalar and vector potentials has been replaced
[13] by a freedom in choosing the relators ((31) and (42));
here this involves a choice of the paths C(y, R), although other
classes of relators are possible [59].

With the canonical momentum density conjugate to the
vector potential given in (A2), the transformed transverse
electric field is ĕT (x) = eT (x) + 4π pT (x), which we iden-
tify with the transverse part of the displacement field
dT (x), while the magnetic field is unchanged, b̆(x) = b(x).
Then, after dropping the breve accent on the transformed
electron field operators, the multipolar Hamiltonian (32)
follows.

APPENDIX B: ELECTROSTATIC INTERACTIONS
IN THE MULTIPOLAR HAMILTONIAN

We demonstrate the equivalence between the regularized
form of (34) and (68). To begin, we use [12]

δ
i j
L (x − x′) =

∫
dk

(2π )3
k̂ik̂ jeik·(x−x′ )

= − 1

2π2

∫ ∞

0
dk ∂ i∂ jF (x, x′; k), (B1)

where F (x, x′; k) is given by (93). After regulariz-
ing the Fourier integrals in the representation (B1) of
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the longitudinal delta functions, the second term on the first line of (34) is

2π

∫
dx ‖pL(x)‖2 = 1

π

∫ �

0
dk

∫∫
dxdx′ (ρ(x′) − ρF (x′))F (x, x′; k)(ρ(x) − ρF (x)),

= 1

π

∫ �

0
dk

∫∫
dxdx′ ρ(x′)F (x, x′; k)ρ(x) − 2Q

π

∫ �

0
dk

∫
dx ρ(x)F (x, R; k) + Q2

π

∫ �

0
dk. (B2)

Meanwhile, using Gauss’s law ∇ · dL(x) = 4πρF (x), a straightforward calculation leads to

−
∫

dx dL(x) ·
(

p(x) − 1

8π
dL(x)

)
= −Q2

π

∫ �

0
dk + 2Q

π

∫ �

0
dk

∫
dxρ(x)F (x, R; k), (B3)

and therefore

HF = h̄2

2m

∫
dx ∇ψ†(x) · ∇ψ (x) + 1

π

∫ �

0
dk

∫∫
dxdx′ρ(x′)F (x, x′; k)ρ(x). (B4)

Next, using ρ(x) = ρe(x) + ρ ion(x),

1

π

∫ �

0
dk

∫∫
dxdx′ρ(x′)F (x, x′; k)ρ(x) = 1

π

∫ �

0
dk

∫∫
dxdx′ρe(x′)F (x, x′; k)ρe(x)

+ 2

π

∑
N

qN

∫ �

0
dk

∫
dx F (x, R + dN ; k)ρe(x) +

∑
NM

qN qM

π

∫ �

0
dk F (dN , dM ; k),

(B5)

and so, isolating the divergences in E�
0,F , we have

1

π

∫ �

0
dk

∫∫
dxdx′ρ(x′)F (x, x′; k)ρ(x) = 1

π

∫ �

0
dk

∫∫
dxdx′ψ†(x)ψ†(x′)F (x, x′; k)ψ (x′)ψ (x)

+ 2

π

∑
N

qN

∫ �

0
dk

∫
dx F (x, R + dN ; k)ρe(x) +

∑
N =M

qN qM

π

∫ �

0
dk F (dN , dM ; k)

+ E�
0,F , (B6)

where in the integral in the second term on the right side of
the above equality it should be understood that a small sphere
centered at x = R + dN is excluded; the �-dependent term is
given by

E�
0,F = 1

π

[
e2Ne + 2eNe

∑
N

qN +
∑

N

q2
N

]
�, (B7)

and the second term on the right-hand side of this expression
comes from the integration over that small sphere. Since we
isolate the �-dependent terms in E�

0,F , we can take the limit
� → ∞ in the remaining terms and use∫ ∞

0
dk F (x, x′; k) = π

2

1

‖x − x′‖ , (B8)

which is valid for x = x′. Dropping the ion-ion interaction as
in Sec. II, we obtain the desired result (68).

APPENDIX C: FIRST-ORDER DIAMAGNETIC
CONTRIBUTION

Here we simplify the diamagnetic contribution to �E�
n(1).

The diamagnetic term is

HD ≡ −1

2

∫
dx mD(x) · b(x). (C1)

As noted in the main text, we can rewrite HD explicitly as (85);
using (7) we write this as

HD = 1

2

∫∫
dxdx′ aa(x)Ŏab(x, x′)ab(x′), (C2)

where

Ŏab(x, x′) = εapiεb� j ∂

∂xp

∂

∂x′� Oi j (x, x′), (C3)

and where Oi j (x, x′) is defined in (86). With [52]

εabc ∂

∂xb
αcd (x; y, R) = − ∂

∂ya
sd (x; y, R) + δadδ(x − y) (C4)

we have

Ŏab(x, x′) = e

2mc2

∫
dy

(
δabδ(x − y)δ(x′ − y) − δiaδ(x − y)

× ∂

∂yb
si(x′; y, R) − δibδ(x′ − y)

∂

∂ya
si(x; y, R)

+
[

∂

∂ya
si(x; y, R)

][
∂

∂yb
si(x′; y, R)

])
ρe(y).

(C5)
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Substituting this expression back into (C2), the diamagnetic
term is

HD = e

2mc2

∫
dx ρe(x)‖a(x)‖2

− h̄

mc

∫
dx ρe(x)a(x) · ∇�(x, R)

+ h̄2

2me

∫
dx ρe(x)‖∇�(x, R)‖2. (C6)

Define

�E�
D ≡ 〈�n|H�

D |�n〉, (C7)

with |�n〉 given by (79). The regularized mode expansion for
the vector potential a(x) that leads to the mode expansion (58)
for b(x) is

a(x) =
∑

I

∑
‖k‖��

(
2π h̄c

V ‖k‖
)1/2

eIkaIkeik·x + H.c. (C8)

A straightforward calculation of the vacuum expectation value
of ‖a(x)‖2 leads to

e

2mc2

∫
dx ρe

nn(x)〈‖a(x)‖2〉vac = α

2π

(
h̄2Ne

m

)
�2. (C9)

Focusing on the latter two terms of (C6), the expectation value
of the first is

− h̄

mc

∫
dx ρe

nn(x)〈a(x) · ∇�(x, R)〉vac, (C10)

while the expectation value of the second is

+ h̄2

2me

∫
dx ρe

nn(x)
〈‖∇�(x, R)‖2〉

vac. (C11)

With the regularized mode expansion for a(x), in the contin-
uum limit we have

〈aa(x)ab(x′)〉vac = h̄c

4π2

∫
‖k‖��

dk ‖k‖−1δab
T (k)eik·(x′−x).

(C12)
Thus, the vacuum expectation value in (C10) is

− h̄e

4π2mc

∫
‖k‖��

dk‖k‖−1δ
i j
T (k)

∫∫
dxdx′ eik·(x′−x)ρe

nn(x)

×
[

∂

∂xi
s j (x′; x, R)

]
, (C13)

while the vacuum expectation value in (C11) is

h̄e

8π2mc

∫
‖k‖��

dk‖k‖−1δ
i j
T (k)

∫∫
dxdx′ eik·(x′−x)

∫
dy ρe

nn(y)

×
[

∂

∂yk
si(x; y, R)

][
∂

∂yk
s j (x′; y, R)

]
, (C14)

so that the expectation values of the latter two terms of (C6)
are

− h̄

mc

∫
dx ρe

nn(x)〈a(x) · ∇�(x, R)〉vac + h̄2

2me

∫
dx ρe

nn(x)〈‖∇�(x, R)‖2〉vac = − h̄e

4π2mc

∫
‖k‖��

dk‖k‖−1δ
i j
T (k)

×
∫∫

dxdx′ eik·(x′−x)

(
ρe

nn(x)

[
∂

∂xi
s j (x′; x, R)

]
− 1

2

∫
dy ρe

nn(y)

[
∂

∂yk
si(x; y, R)

][
∂

∂yk
s j (x′; y, R)

])
. (C15)

In total, the diamagnetic contribution to the first-order correction is then (87).

APPENDIX D: SECOND-ORDER CORRECTION

1. Useful identity

We first prove a useful identity concerning matrix ele-
ments of field operators. Let O(x) denote a field operator
in the Schrödinger picture which acts trivially on the Hilbert
space HB of the Bose sector. Separating the free and inter-
action terms of the multipolar Hamiltonian as in (72), we
define an interaction picture representation by taking the time-
dependence of the field operator in the interaction picture to
be

OI (x, t ) = eiH0t/h̄O(x)e−iH0t/h̄, (D1)

where

H0 = HB ⊗ IF + IB ⊗ HF , (D2)

with HB and HF given by (33) and (34), while an interaction
picture state |�n〉I is related to the corresponding Schrödinger
picture state |�n〉S through

|�n〉I = eiH0t/h̄|�n〉S. (D3)

The expression (D1) is equivalent to

∂OI (x, t )

∂t
= 1

ih̄
[OI (x, t ), H0]−. (D4)

Since O(x) acts nontrivially only on HF by assumption, it
follows that the commutator above also acts nontrivially only
on HF , so that

∂OI,nm(x, t )

∂t
= 1

ih̄
〈ψn|[OI (x, t ), H0]−|ψm〉

= (ih̄)−1EmnOI,nm(x, t ), (D5)

where the subscript “nm” denotes the matrix element between
the eigenstates |ψn,m〉 of HF , and Emn = Em − En with En,m

being the eigenvalues of HF corresponding to the eigenstates
|ψn,m〉. Taking O(x) to be the paramagnetic current density
operator jP(x) we have

jP,nm(x) = 〈ψn| jP(x)|ψm〉S = 〈ψn| jP,I (x, t )|ψm〉I . (D6)
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In the interaction picture we can split the Heisenberg-picture
equation (45) into a pair of equations

jP,I (x, t ) = ∂ pI (x, t )

∂t
+ c∇ × mP,I (x, t ), (D7)

jD,I (x, t ) = c∇ × mD,I (x, t ). (D8)

Through the expressions (D5) to (D7) we thereby obtain the
Schrödinger-picture identity

jP,nm(x) = (ih̄)−1Emn pnm(x) + c∇ × mP,nm(x), (D9)

which is used in the main text and below.

2. Simplifications

Begin with the full expression for the second-order correction (98). We can simplify the second line using [12]

1

4π

∫
d�k εip j kp

‖k‖eik·(x′−x) = i

‖k‖εip j∂ ′pF (x, x′; k), (D10)

where F (x, x′; k) is given by (93). Together with the identity (91), we have

�E�
n(2) = − 1

π
p.v.

∑
m

∫ �

0
dk

h̄ck

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖)

(
pi

nm(x′)pj
mn(x) + mi

P,nm(x′)m j
P,mn(x)

)

− i

π
p.v.

∑
m

∫ �

0
dk

h̄ck2

Emn + h̄ck

∫∫
dxdx′ σ i j (k‖x′ − x‖)

(
pi

nm(x′)m j
P,mn(x) + mi

P,nm(x′)pj
mn(x)

)
. (D11)

To simplify �E�
n(2), we break up its summands and process them in turn. We denote by �E�

pp the first term involving the product
of polarization fields, by �E�

mm the second term involving the product of the magnetization fields, and by �E�
pm the second line

above. Using twice the algebraic identity

1

Emn + h̄ck
= 1

h̄ck
− 1

h̄ck

Emn

Emn + h̄ck
, (D12)

we have

�E�
pp ≡ − 1

π
p.v.

∑
m

∫ �

0
dk

h̄ck

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖)pi

nm(x′)pj
mn(x)

= − 1

π

∑
m

∫ �

0
dk

∫∫
dxdx′ τ i j (k‖x′ − x‖)pi

nm(x′)pj
mn(x)

+ 1

h̄πc

∑
m

∫ �

0
dkk−1 Emn

∫∫
dxdx′ τ i j (k‖x′ − x‖)pi

nm(x′)pj
mn(x)

− 1

h̄πc
p.v.

∑
m

∫ �

0
dkk−1 (Emn)2

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖)pi

nm(x′)pj
mn(x). (D13)

Using our identity (D9) this can be written as

�E�
pp = − 1

π

∑
m

∫ �

0
dk

∫∫
dxdx′ τ i j (k‖x′ − x‖)pi

nm(x′)pj
mn(x)

+ 1

h̄πc

∑
m

∫ �

0
dkk−1

∫∫
dxdx′ τ i j (k‖x′ − x‖)Emn pi

nm(x′)pj
mn(x)

− 1

π
p.v.

∑
m

∫ �

0
dk

h̄ck

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖)mi

P,nm(x′)m j
P,mn(x)

− h̄

πc
p.v.

∑
m

∫ �

0
dk

k−1

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖) ji

P,nm(x′) j j
P,mn(x)

+ h̄

π
p.v.

∑
m

∫ �

0
dk

k

Emn + h̄ck

∫∫
dxdx′ σ i j (k‖x′ − x‖)

(
ji
P,nm(x′)m j

P,mn(x) + mi
P,nm(x′) j j

P,mn(x)
)
. (D14)

032820-18



MULTIPOLAR QUANTUM ELECTRODYNAMICS OF … PHYSICAL REVIEW A 107, 032820 (2023)

We can combine the third line above with the contribution

�E�
mm = − 1

π
p.v.

∑
m

∫ �

0
dk

h̄ck

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖)mi

nm(x′)m j
mn(x). (D15)

Consider the last line of (D11). Using the algebraic identity (D12) along with the identity (D9), that term can be written

�E�
pm ≡ − i

π
p.v.

∑
m

∫ �

0
dk

h̄ck2

Emn + h̄ck

∫∫
dxdx′ σ i j (k‖x′ − x‖)

(
pi

nm(x′)m j
P,mn(x) + mi

P,nm(x′)pj
mn(x)

)

= − i

π

∫ �

0
dkk

∫∫
dxdx′ σ i j (k‖x′ − x‖)

〈
pi(x′)m j

P(x) − mi
P(x′)pj (x)

〉
n

+ 2

π
p.v.

∑
m

∫ �

0
dk

h̄ck

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖)mi

P,nm(x′)m j
P,mn(x)

− h̄

π
p.v.

∑
m

∫ �

0
dk

k

Emn + h̄ck

∫∫
dxdx′ σ i j (k‖x′ − x‖)

(
ji
P,nm(x′)m j

P,mn(x) + m j
P,nm(x′) ji

P,mn(x)
)
. (D16)

Then, through a trivial relabelling

�E�
pm = − i

π

∫ �

0
dkk

∫∫
dxdx′ σ jk (k‖x′ − x‖)

〈
[mk

P(x′), pj (x)]−
〉
n

+ 2

π
p.v.

∑
m

∫ �

0
dk

h̄ck

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖)mi

P,nm(x′)m j
P,mn(x)

− h̄

π
p.v.

∑
m

∫ �

0
dk

k

Emn + h̄ck

∫∫
dxdx′ σ i j (k‖x′ − x‖)

(
ji
P,nm(x′)m j

P,mn(x) + m j
P,nm(x′) ji

P,mn(x)
)
. (D17)

With the expressions (D14) for �E�
pp, (D15) for �E�

mm, and (D17) for �E�
pm, the total second-order correction is

�E�
n(2) = − 1

π

∑
m

∫ �

0
dk

∫∫
dxdx′ τ i j (k‖x′ − x‖)pi

nm(x′)pj
mn(x)

+ 1

h̄πc

∑
m

∫ �

0
dkk−1

∫∫
dxdx′ τ i j (k‖x′ − x‖)Emn pi

nm(x′)pj
mn(x)

− h̄

πc
p.v.

∑
m

∫ �

0
dk

k−1

Emn + h̄ck

∫∫
dxdx′ τ i j (k‖x′ − x‖) ji

P,nm(x′) j j
P,mn(x)

− i

π

∫ �

0
dkk

∫∫
dxdx′ σ jk (k‖x′ − x‖)

〈[
mk

P(x′), pj (x)
]
−
〉
n
. (D18)

Using that the curl of a gradient vanishes, through some index manipulations we can show that

(−δi j∂2 + ∂ i∂ j )εipk∂ ′pF (x, x′; k)
〈[

mk
P(x′), pj (x)

]
−
〉
n = k2ε j pk∂ ′pF (x, x′; k)

〈[
mk

P(x′), pj (x)
]
−
〉
n (D19)

and ∑
m

Emn pi
nm(x′)pj

mn(x) = ih̄

2

〈[
ji
P(x′), pj (x)

]
− − cεipk∂ ′p[mk

P(x′), pj (x)
]
−
〉
n, (D20)

we can collect the second and fourth lines together. Restoring the angular parts of the Fourier integrals, the second-order
correction is

�E�
n(2) = i

8π2c

∑
m

∫
‖k‖��

dk ‖k‖−1
∫∫

dxdx′ δi j
T (k) eik·(x′−x)

〈[
ji
P(x′), pj (x)

]
− + cεipk∂ ′p[mk

P(x′), pj (x)
]
−
〉
n

− h̄

4π2c
p.v.

∑
m

∫
‖k‖��

dk
‖k‖−1

Emn + h̄ωk

∫∫
dxdx′ ji

P,nm(x′) j j
P,mn(x)δi j

T (k)eik·(x′−x)

− 1

π

∑
m

∫ �

0
dk

∫∫
dxdx′ τ i j (k‖x′ − x‖)pi

nm(x′)pj
mn(x). (D21)
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Working out the commutators in the first line, we find

1

2

〈[
ji
P(x′), pj (x)

]
− + cεipk∂ ′p[mk

P(x′), pj (x)
]
−
〉
n

= h̄e

mi

([
∂

∂xi
s j (x; x′, R)

]
ρe

nn(x) − 1

2

∫
dy ρe

nn(y)

[
∂

∂yk
si(x; y, R)

][
∂

∂yk
s j (x′; y, R)

])
, (D22)

and so, comparing to (C15), the second-order correction is (102).

APPENDIX E: ENERGY SHIFT IN MINIMAL COUPLING

For comparison with the regularized energy shift (104)
computed with the multipolar Hamiltonian, we work out the
same energy shift in minimal coupling. The minimal coupling
Hamiltonian is given in the Schrödinger picture by equa-
tions (12) to (15). Split up the Hamiltonian into free and
interaction terms

H = H0 + Hint, (E1)

where the free term is

H0 = HB ⊗ IF + IB ⊗ HF (E2)

and the interaction term is

Hint = −1

c

∫
dx jP(x) · a(x) − 1

2c

∫
dx jD(x) · a(x). (E3)

The paramagnetic and diamagnetic current densities are de-
fined in (16) and (17), respectively. As in Sec. IV, we split up
the interaction term

Hint = Hint(1) + Hint(2), (E4)

where now

Hint(1) = − 1

2c

∫
dx jD(x) · a(x) (E5)

is already O(α) and is treated at the first order, while

Hint(2) = −1

c

∫
dx jP(x) · a(x) (E6)

is O(
√

α) and is treated at the second order. The first-order
correction is

�E�
n(1) = e2

2mc2

∫
dx 〈�n|ψ†(x)‖a(x)‖2ψ (x)|�n〉, (E7)

with the initial state (79). In terms of the mode expansion (C8)
for the vector potential

�E�
n(1) = h̄2αNe

πm

∫ �

0
dkk = α

2π

(
h̄2Ne

m

)
�2. (E8)

To obtain the second-order correction, begin with

〈�δ|Hint(2)|�n〉 = −1

c

∫
dx 〈�δ| jP(x) · a(x)|�n〉. (E9)

Again using the mode expansion (C8), we have

|〈�δ|Hint(2)|�n〉|2 =
(

2π h̄

V ωk

)
|eIk · j̃P,nm(k)|2, (E10)

where j j
P,mn(x) ≡ [ j j

P(x)]mn. Introducing the sums (97) and
taking the continuum limit, the regularized second-order cor-
rection is

�E�
n(2) = − h̄

4π2c
p.v.

∑
m

∫
‖k‖��

dk
‖k‖−1

Emn + h̄ωk

×
∑

I

|eI (k) · j̃P,mn(k)|2. (E11)

Collecting the first-order (E8) and second-order (E11) correc-
tions together, the regularized energy shift at O(α) in minimal
coupling is exactly the result (104).

APPENDIX F: PROOF OF IDENTITIY (139)

We prove the identity (139). To begin, consider the operator
expression

1

HR
F − ER

n + h̄ωk
= 1

H (0)
F − ER

n + h̄ωk

− 1

HR
F − ER

n + h̄ωk
U R 1

H (0)
F − ER

n + h̄ωk
,

(F1)

from which follows

1

HR
F − ER

n + h̄ωk
j̃ j
P(k) = 1

H (0)
F − ER

n + h̄ωk
j̃ j
P(k)

− 1

HR
F − ER

n + h̄ωk
U R

× 1

H (0)
F − ER

n + h̄ωk
j̃ j
P(k). (F2)

To simplify, we will use the identity (127). Introducing a
convergence factor “+iδ” (which will be removed below),
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we use an identity analogous to (125), namely,

1

H (0)
F − ER

n + h̄ωk + iδ
j̃ j
P(k) = −i

∫ ∞

0
ds eis(h̄ωk−ER

n +H (0)
F +iδ) j̃ j

P(k)

= −i
∫ ∞

0
ds eis(h̄ωk−ER

n +iδ)eisH (0)
F j̃ j

P(k)e−isH (0)
F eisH (0)

F

= j̃ j
P(k)

1

H (0)
F − ER

n + Eh̄ωk + h̄ωk + iδ
, (F3)

where we dropped the ‖q‖ � mc terms as before. We can trivially take the limit δ → 0+ since upon forming matrix elements
there will never be poles in this denominator. Therefore we have

1

HR
F − ER

n + h̄ωk
j̃ j
P(k) = j̃ j

P(k)
1

H (0)
F − ER

n + Eh̄ωk + h̄ωk

− 1

HR
F − ER

n + h̄ωk
U R j̃ j

P(k)
1

H (0)
F − ER

n + Eh̄ωk + h̄ωk

= j̃ j
P(k)

1

H (0)
F − ER

n + Eh̄ωk + h̄ωk

− 1

HR
F − ER

n + h̄ωk
[U R, j̃ j

P(k)]−
1

H (0)
F − ER

n + Eh̄ωk + h̄ωk

− 1

HR
F − ER

n + h̄ωk
j̃ j
P(k)U R 1

H (0)
F − ER

n + Eh̄ωk + h̄ωk
, (F4)

and so bringing the last term to the left side

1

HR
F − ER

n + h̄ωk
j̃ j
P(k)

(
HR

F − ER
n + Eh̄ωk + h̄ωk

) 1

H (0)
F − ER

n + Eh̄ωk + h̄ωk

= j̃ j
P(k)

1

H (0)
F − ER

n + Eh̄ωk + h̄ωk
− 1

HR
F − ER

n + h̄ωk

[
U R, j̃ j

P(k)
]
−

1

H (0)
F − ER

n + Eh̄ωk + h̄ωk
. (F5)

Therefore, canceling the factor (H (0)
F − ER

n + Eh̄ωk + h̄ωk)−1 that features on both sides and multiplying the result by (HR
F −

ER
n + Eh̄ωk + h̄ωk)−1 on the right, we end up with

1

HR
F − ER

n + h̄ωk
j̃ j
P(k) = j̃ j

P(k)
1

HR
F − ER

n + Eh̄ωk + h̄ωk
− 1

HR
F − ER

n + h̄ωk

[
U R, j̃ j

P(k)
]
−

1

HR
F − ER

n + Eh̄ωk + h̄ωk
. (F6)

Taking matrix elements in the states |ψn,m〉 and using that HR
F |ψn,m〉 = ER

n,m|ψn,m〉, the desired result (139) follows.

APPENDIX G: COMPUTATION IN SEC. V

1. Direct calculation of �ER
n

To begin, we replace ER
mn in the denominator of (140) by

a “reference” or average value ER
mn → ĒR

n [12,37]. Through a
short calculation we have〈[

U R, j̃ j
P(x)

]
−
〉
mn = h̄e

mRi

〈
ψ†(x)∂ iφ(x)ψ (x)

〉
mn

+ h̄e

mRi

〈
ψ†(x)∂ iV(x)ψ (x)

〉
mn. (G1)

Since we replaced ER
mn in the denominator of (140) by the

reference value ĒR
n , we can evaluate the sum using the identity

[12] ∑
m

ji
P,nm(x)

〈[
U R, j j

P(x′)
]
−
〉
mn

= 1

2

〈[[
ji
P(x),U R

]
−, j j

P(x′)
]
−
〉
n. (G2)

Evaluating this expression directly is cumbersome. It is easier
to evaluate the complete expression

1

4π

∫
d�k δ

i j
T (k)

∑
m

j̃i
P,nm(−k)

〈[
U R, j̃ j

P(k)
]
−
〉
mn. (G3)

The angular integral yields (2/3)δi j , and after a lengthy cal-
culation we find

1

4π

∫
d�k δ

i j
T (k)

∑
m

j̃i
P,nm(−k)

〈[
U R, j̃ j

P(k)
]
−
〉
mn

= − h̄2e2

3m2
R

∫
dx 〈ψ†(x)∇2V(x)ψ (x)〉n. (G4)

To arrive at this equality we use the fact that ψ (x)2 = 0
and ψ†(x)2 = 0. Using the definition (2) of the background
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ionic potential

1

4π

∫
d�k δ

i j
T (k)

∑
m

j̃i
P,nm(−k)

〈[
U R, j̃ j

P(k)
]
−
〉
mn

= −4π h̄2e2

3m2
R

∑
N

qN 〈ρe(R + dN )〉n, (G5)

where R + dN is the location of the N th ion. Inserting this
back into �ER

n , we find that our “generalized Lamb shift” is
given by

�ER
n = − 4αh̄3

3m2
Rc

∑
N

qN 〈ρe(R + dN )〉n

×
∫ ∞

0
dk

1

h̄k/2mRc + 1

(
1

ĒR
n + h̄ck

)
. (G6)

Notice that this expression is finite and so the integral can be
evaluated. The “h̄k/2mRc” term in the denominator accounts
for spatial variations in the electromagnetic field. We can
compute this integral using techniques from complex analysis.
Define β̄R

n ≡ ĒR
n /2mRc2 and consider the change of variables

x = h̄k/2mRc. Then

∫ ∞

0
dk

1

h̄k/2mRc + 1

(
1

ĒR
n + h̄ck

)

=
(

1

h̄c

)2 ∫ ∞

0
dx

1

(x + 1)
(
x + β̄R

n

) . (G7)

Consider the contour integral

∮
C

dz
log(z)

(z + 1)
(
z + β̄R

n

) , (G8)

where log(z) = ln(|z|) + i arg(z) is the complex logarithm
and C is the standard “keyhole” contour that avoids the branch
cut (at θ = 0) of log(z) on the positive real axis. The contour
integrals over the circular arcs vanish by application of the
“estimation lemma” method for complex integration [60]. The
other two integrals yield the identity

∮
C

dz
log(z)

(z + 1)(z + β̄n)
= −2π i

∫ ∞

0
dx

1

(x + 1)(x + β̄n)
.

(G9)

Evaluating the contour integral on the left using the calculus
of residues, we obtain∫ ∞

0
dx

1

(x + 1)
(
x + β̄R

n

) =
(

1

1 − ĒR
n /2mRc2

)
ln

(
2mRc2∣∣ĒR

n

∣∣
)

,

(G10)

and the result follows.

2. Calculation of the integral (153)

We calculate the integral∫ ∞

0
dk

ka+b

ER
mn + h̄ck

e−k/�′
(G11)

using techniques from complex analysis. Introducing a change
of variables x ≡ h̄k/2mRc, we have(

1

h̄c

)2(2mRc

h̄

)a+b ∫ ∞

0
dx

xa+b

x + βR
mn

e−x/�′
, (G12)

where βR
mn = ER

mn/2mRc2. To evaluate this integral, consider
the related contour integral∮

C
dz

za+be−|z|/�′

z + βR
mn

log(z), (G13)

where C is the standard “keyhole” contour. The integrals over
the circular arcs z = Reiφ and z = εeiφ vanish in the respective
limits R → ∞ and ε → 0+, by the “estimation lemma” for
complex integration [60]. Meanwhile, the remaining contour
integrals, with the contours parametrized by z = x ± iε, can
be combined together in the limit ε → 0+ and thereby yield
the identity∫ ∞

0
dx

xa+be−x/�′

x + βR
mn

= − 1

2π i

∮
C

dz
za+be−|z|/�′

z + βR
mn

log(z).

(G14)
We evaluate the integral on the right-hand side using the
calculus of residues: The pole is located at z = −βR

mn in the
complex plane and with the identity above we end up with∫ ∞

0
dx

xa+be−x/�′

x + βR
mn

= −(−βR
mn

)a+b
e−|βR

mn|/�′
ln

(∣∣βR
mn

∣∣),
(G15)

and so the integral (G12) is(
1

h̄c

)2

(−1)a+b

(
ER

mn

h̄c

)a+b

ln

(
2mRc2∣∣ER

mn

∣∣
)

, (G16)

where we removed the regulator (�′ → ∞). With this result
the desired expression (154) for the renormalized energy shift
in its multipolar form follows.
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