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Suppressed electric quadrupole moment of thulium atomic clock states
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A method for highly accurate calculations of atomic electric quadrupole moments (EQM) is presented, using
relativistic general-excitation-rank configuration interaction wave functions based on Dirac spinors. Application
to the clock transition states of the thulium atom employing up to full Quadruple excitations for the atomic wave
function yields a final value of Qzz(2F 7/2) = 0.07+0.07

−0.00 a.u., establishing that the thulium electronic ground state
has an exceptionally small EQM. A detailed analysis of this result is presented which has implications for EQMs
of other atoms with unpaired f electrons.

DOI: 10.1103/PhysRevA.107.032816

I. INTRODUCTION

In atomic systems electric quadrupole moments of the
electron shells are of importance in the quest for setting new
standards of time measurement. In fact, they are often one of
the limiting quantities in optical atomic clock’s fractional fre-
quency uncertainty [1]. The reason for this type of uncertainty
is that, in many implementations of atomic clocks an environ-
mental perturbation, a residual external electric-field gradient
interacts with the electric quadrupole moments (EQM) of the
(atomic) charge distribution in the relevant clock-transition
states, giving rise to the so-called “quadrupole shifts” [2] of
atomic energy levels.

Lanthanide atoms have electronic valence shells 4 f k where
the k f electrons are partially shielded from external electric
fields by the electrons occupying the 6s shell. This makes f – f
transitions in lanthanides less susceptible to EQM interactions
with the gradients of an external electric field [3]. Indeed,
great progress has very recently been made in devising a
transportable optical clock using the hyperfine levels of the
ground-state f – f transition in thulium atoms [4–7]. The EQM
interaction is nevertheless one of the sources of uncertainty
in this type of atomic clock. However, electronic proper-
ties of lanthanide atoms are notoriously difficult to calculate
accurately.

The method of calculating EQMs presented in this paper
is based on relativistic configuration interaction (CI) wave
functions of general excitation rank, up to the level of Full
CI [8]. The implementation is highly efficient, allowing for
CI expansions with up to 1010 (10 billion) linear expansion
terms and thus for very accurate calculation of electron corre-
lation effects. This will be demonstrated in the present paper.
Moreover, the present approach is particularly advantageous
when atomic states with complicated shell structure, such
as with several unpaired d and/or f electrons, have to be
addressed [9]. The present approach is also directly applicable
to molecules.
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The article is structured as follows. In Sec. II the theory
of the atomic electric quadrupole moment is briefly reviewed
and the present implementation using relativistic configura-
tion interaction (CI) wave functions for electronic ground and
excited states is described. The same method is in the present
also applied in the calculation of the magnetic hyperfine inter-
action constant. Section III contains the applications, first to
the beryllium (Be) atom as a test system for verification of the
present implementation, then to the radium monocation (Ra+)
as a more complex system where relativistic effects are strong.
Finally, predictions are made for EQMs of ground and excited
states of the thulium (Tm) atom. In the final section, Sec. IV,
conclusions from the present findings are drawn.

II. THEORY

A. Interaction energy

An arbitrary charge distribution immersed in an external
electric field E gives rise to an electrostatic interaction energy
[10], the second-order term of which is written out as

W2 = −1

6

∑
i, j

Qi j
∂Ej (x)

∂xi

∣∣∣∣
x=x0

, (1)

where x0 is an appropriately chosen expansion point, Q is
the rank-2 electric quadrupole moment tensor of the charge
distribution, and ∂Ej (x)

∂xi
is a component of the electric-field

gradient. In the present case, the charge distribution is rep-
resented by the electron shells of the atomic systems under
consideration. The atomic nucleus is described by a spherical
Gaussian charge distribution and thus does not contribute to
the EQM of the atom.

B. Atomic electric quadrupole moment

The relevant element of the rank-2 tensor Q of the atomic
electric quadrupole moment has been defined as [2,11,12], in
a.u.,

Qzz := 〈�| −
n∑

i=1

√
4π

5
r2(i)Y2,0(ϑ, ϕ)|�〉, (2)
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with � the atomic wave function, n the number of electrons, r
the radial electron coordinate, and Y�,m�

a spherical harmonic.
In the Condon-Shortley convention we have

Y2,0(ϑ, ϕ) = 1

4

√
5

π
(3 cos2(ϑ ) − 1). (3)

Therefore,

Qzz = −1

2
〈�|

n∑
i=1

r2(i) (3 cos2(ϑ ) − 1)|�〉. (4)

An elementary coordinate transformation yields

r2 (3 cos2(ϑ ) − 1) = 2z2 − x2 − y2, (5)

in terms of cartesian coordinates, and so

Qzz = −1

2
〈�|

n∑
i=1

(2z2(i) − x2(i) − y2(i))|�〉

= −1

2

{
〈�|
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2z2(i)|�〉 − 〈�|
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x2(i)|�〉

−〈�|
n∑

i=1

y2(i)|�〉
}

. (6)

The tensor element is evaluated by calculating the three
resulting matrix elements over cartesian one-electron oper-
ators, the “second moments.” In the present case, however,
|�〉 ≡ |α J MJ〉 is a relativistic atomic wave function where
α represents quantum numbers other than the total angular
momentum J . Since a linear symmetry double group (in the
present case D∗

32h, which is an abelian subgroup of D∗
∞h)

is used instead of full rotational atomic symmetry the wave
functions are obtained for individual MJ states. In practice, J
for a given eigenvector is inferred by calculating a sufficient
number of degenerate eigenvectors in the different relevant MJ

subspaces. The individual states are represented by relativistic
configuration interaction wave functions

|α J MJ〉 ≡
dimF t (M,n)∑

I=1

c(α,J,MJ ),I (ST )I |〉, (7)

where F t (M, n) is the symmetry-restricted sector of Fock
space with n electrons in M four-spinors, S = a†

i a†
j a

†
k . . . is a

string of spinor creation operators, T = a†
l
a†

ma†
n . . . is a string

of creation operators of time-reversal transformed spinors.
The determinant expansion coefficients c(α,J,MJ ),I are gener-
ally obtained as described in Refs. [13,14] by diagonalizing
the Dirac-Coulomb Hamiltonian (in a.u.)

ĤDirac-Coulomb =
n∑
j

[
c α jp j + β jc

2 − Z

r j
114

]

+
n∑

j,k> j

1

r jk
114 (8)

in the basis of the states (ST )I | 〉, where the indices j, k run
over electrons, Z is the proton number, and α, β are standard
Dirac matrices. Reference states and spinors for correlated
many-body calculations are obtained in the independent-
particle picture using the Dirac-Coulomb Hamiltonian and
are abbreviated Dirac-Coulomb Hartree-Fock (DCHF). The
framework for the present implementation is the relativistic
electronic-structure program package DIRAC [15] where a lo-
cally modified version of the code is used.

In the present paper the electric quadrupole tensor compo-
nent is evaluated for the microstate with MJ = J , i.e.,

Qzz = −1

2
〈α J J|

n∑
i=1

(2z2(i) − x2(i) − y2(i))|α J J〉, (9)

based on the evaluation of properties using relativistic CI
wave functions as described in Refs. [8,16]. From the EQM
expectation value for a given eigenvector with defined MJ the
EQM for the other MJ components of the associated state
J can be calculated via the reduced matrix element (RME)
evaluated through the adapted form of the Wigner-Eckhart
theorem

RME = 〈α J||Q̂zz||α J〉 = 〈α J MJ |Q̂zz|α J MJ〉
√

2J + 1

〈J 2 MJ 0|J 2 J MJ〉 ,

(10)

where Q̂zz = − 1
2

∑n
i=1 [2z2(i) − x2(i) − y2(i)] and α denotes

quantum numbers other than those of total electronic angular
momentum J . The Clebsch-Gordan coefficients (CGC) in the
denominator of Eq. (10) are calculated according to Wigner’s
(1959) general definition [17] as given in Ref. [18]

〈 j1 j2mj1 mj2 | j1 j2 jm j〉

= δ(mj, mj1 + mj2 )

√
( j1 + j2 − j)!( j + j1 − j2)!( j + j2 − j1)!(2 j + 1)

( j + j1 + j2 + 1)!

×
∑

k

(−1)k
√

( j1 + mj1 )!( j1 − mj1 )!( j2 + mj2 )!( j2 − mj2 )!( j + mj )!( j − mj )!

k!( j1 + j2 − j − k)!( j1 − mj1 − k)!( j2 + mj2 − k)!( j − j2 + mj1 + k)!( j − j1 − mj2 + k)!
. (11)

C. Magnetic hyperfine interaction

The magnetic hyperfine interaction constant was im-
plemented in the present electronic-structure methods as
described in Refs. [19,20]. For n electrons in the field of the

atomic nucleus it is defined in a.u. as

A = − μ[μN ]

2cImpMJ
〈J MJ |

n∑
i=1

(
αi × ri

r3
i

)
z

|J MJ〉, (12)
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where μ is the nuclear magnetic moment, 1
2cmp

is the nuclear
magneton in a.u., mp is the proton rest mass, I is the nuclear
spin quantum number, and r is the electron position operator.

III. APPLICATIONS AND RESULTS

A. Be

1. Technical details

The Gaussian basis set for Be is cc-pV6Z with added
diffuse functions from the set aug-cc-pV5Z [21], amounting to
{17s, 10p, 6d, 5 f , 4g, 3h, 1i} uncontracted functions. Spinors
are optimized for the closed-shell ground state (1s22s2). A
cutoff energy of 100 a.u. is used for the virtual spinor set.
A full CI expansion is used which includes the entire set of
triple and quadruple excitations, amounting to ≈29 million
Slater determinants.

2. Results and discussion

The above-defined model yields Qzz(2s12p1; 3P2) =
2.2721 a.u. for this Be-excited state. For comparison, the
four-electron limit result from Ref. [11] is Qzz(2s12p1; 3P2) =
2.265 a.u. This differs from the present result by only roughly
0.3% confirming the reliability of the present implementation.
The small difference is not explained by relativistic effects
which were found to be smaller than 0.01%, but rather by
the fact that in Ref. [11] a finite-element method was used
whereas, in the present case, a finite Gaussian basis set is
employed.

As a further consistency test Qzz(2s12p1; 3P2, MJ = 1) =
−1.136 a.u. is calculated explicitly from the relevant MJ

eigenvector. The value for Qzz(2s12p1; 3P2, MJ = 1) but cal-
culated from Qzz(2s12p1; 3P2, MJ = 2) and RME(2s12p1; 3P2)
obtained from Eq. (10) is indeed identical.

B. Ra+

1. Technical details

For Ra+ a Gaussian basis set of quadruple-zeta quality
is used where all {6s, 6p, 7s, 7p}-correlating and all dipole-
polarizing primitive functions were included [22]. The Dirac
spinors are optimized by diagonalizing a Fock operator where
a fractional occupation of f = 1

12 per 7s and 6d spinor is
used. Effectively, this yields a Dirac-Hartree-Fock state that is
averaged over the 2S1/2 ground term and the 2D3/2,5/2 excited
terms with spinors that are not biased towards any of the
corresponding states.

Acronyms are used for brevity in defining atomic corre-
lated wave functions, also in the following section on the Tm
atom. As an example, SDT9_10 a.u. stands for single, double,
triple replacements relative to the DCHF reference state where
the outermost nine electrons (occupying the shells 6s, 6p, 7s
in the DCHF reference state) are described by the correlation
expansion and the space of virtual spinors is truncated at 10
a.u.

2. Results and discussion

EQMs and level energies for Ra+ are compiled in Table I.
The DCHF results using spinors specific to the electronic

TABLE I. Atomic electric quadrupole moments and level ener-
gies for state k, defined as �ε(k) = ε(k) − ε(2S1/2) with ε the total
electronic energy, for Ra+.

Excited state CI model �ε [cm−1] Qzz [a.u.]

2D3/2(3d1) DCHF (7s1) 15295 4.944
DCHF (av.) 13053 3.312
SD9_10au 12171 2.998

SDT9_10au 12083 2.879
Final 12083 2.88(12)

Other theory 2.84(3) [23]
2.90(2) [24]

Exp. [25] 12084.3
2D5/2(3d1) DCHF (7s1) 16021 7.309

DCHF (av.) 13853 4.964
SD9_10au 13639 4.559

SDT9_10au 13654 4.402
Final 13654 4.40(16)

Other Theory 4.34(4) [23]
4.45(9) [24]

Exp. [25] 13 743.0

ground state of Ra+ (7s1 configuration) exhibit large devia-
tions from the experiment and from reliable theoretical results.
The spinor averaging [DCHF (av.)] rectifies this problem to a
large degree. Including electron correlation effects at up to
the level of Double excitations (model SD9_10 a.u.) based on
the state-averaged spinors diminishes Qzz(2D3/2) by roughly
10% and Qzz(2D5/2) by 8%, respectively. Triple excitations
are also not unimportant, further quenching Qzz(2D3/2) and
Qzz(2D5/2) by 3–4%. The term energies for both excited states
are in excellent agreement with the experiment in the most
accurate model, SDT9_10 a.u., where deviations are less than
1%. Present uncertainties are estimated conservatively to be at
most as large as the effect of triple excitations, accounting for
excitation ranks higher than triples and basis-set truncations.

The present final results fall in between those from
Refs. [23] and [24] and are, considering uncertainties, com-
patible with both. However, from the present series of
calculations, it can be concluded that quadruple excitations
and beyond will lead to a further, albeit small, downward
correction to Qzz, likely on the order of 1–2%. A further
downward correction of a few percent is to be expected from
the inclusion of basis functions with high angular momentum
(� > 4), as was pointed out in Refs. [23,26]. The present
basis set terminates at � = 4 for the large-component of the
four-component wave functions. Thus, the present EQM re-
sults for Ra+ are in very good agreement with those from
Ref. [23] which remain the most accurate to date. This is a
further confirmation of the reliability of the present approach
to calculating atomic EQMs, which was the goal for this study
on Ra+.

C. Tm

The afore-going sections have set the stage for making
reliable predictions for EQMs in systems where they are so
far unknown.
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TABLE II. Atomic electric quadrupole moments for Tm
2F 7/2(4 f 13 6s2) using various CI models, TZ basis.

CI model (number of virtual functions) Qzz [a.u.]

DCHF −0.2711
SD15_0.2 a.u. (1s, 1d; 2p) 0.1128
SD15_1 a.u. (2s, 3d, 1g; 3p, 2 f ) −0.0101
SD15_2 a.u. (3s, 4d, 2g; 4p, 3 f ) −0.1170
SD15_4 a.u. (3s, 4d, 2g; 4p, 4 f , 1h) −0.1920
SD15_6 a.u. (4s, 5d, 2g; 5p, 5 f , 1h) −0.2319
SD15_10 a.u. (4s, 6d, 3g; 5p, 6 f , 1h) −0.2519
SD15_20 a.u. (5s, 7d, 3g; 6p, 7 f , 1h) −0.2543
SD15_50 a.u. (6s, 8d, 4g; 7p, 8 f , 2h) −0.2530
SD15_130 a.u. (7s, 9d, 4g; 8p, 9 f , 2h) −0.2531
SD23_10 a.u. −0.2470
SD33_10 a.u. −0.2473
SDT15_0.2 a.u. 0.1181
SDT15_1 a.u. 0.0509
SDT15_2 a.u. −0.0139
SDT15_4 a.u. −0.0498
SDT15_6 a.u. −0.0472
SDT15_10 a.u. −0.0299
SDT15_20 a.u. −0.0311
SDT15_50 a.u. −0.0304
SDTQ15_2 a.u. 0.021
SDTQ15_4 a.u. 0.013
SDTQ15_10 a.u. (est.) 0.067

1. Technical details

Two Gaussian basis sets are employed for Tm,
Dyall’s ccpVTZ set with all 4 f , 6s, 5s, 5p, 5d-correlating
and 4 f dipole-polarizing functions added amounting
to {30s, 24p, 18d, 13 f , 4g, 2h} functions and Dyall’s
ccpVQZ set including all valence-correlating and the

4 f dipole-polarizing functions [27], amounting to
{35s, 30p, 19d, 16 f , 6g, 4h, 2i} functions. The Dirac spinors
are optimized by diagonalizing a Fock operator where a
fractional occupation of f = 13

14 per spinor with � = 3 is
used (4 f 13 6s2 ground configuration). Effectively, this yields
a Dirac-Hartree-Fock state that is averaged over the 2F7/2

ground term and the 2F5/2 excited term and spinors that are
not biased towards any of the corresponding states.

2. Results and discussion

Tables II and III show results for the EQM of the elec-
tronic ground term 2F J . Valence correlation effects from up
to double excitations are converged at the percent level when
the virtual spinor space is truncated at 20 a.u. These effects
decrease Qzz (on the absolute) by about 6%. However, when
full triple excitations are introduced in addition, the EQM is
quenched by an astonishing order of magnitude. This strong
quenching is basis-set dependent to only about 6%, which
justifies a deeper investigation using the smaller TZ basis set
only.

The strongest positive contribution to Qzz from excitations
into the virtual spinor space is observed at the very low cutoff
of 0.2 a.u. Further cutting down on this virtual set reveals that
the positive contribution is mainly due to double excitations
of the type 6s2 → 5d2

5/2,5/2, the amplitude (CI coefficient)
of which diminishes strongly as the dimension of the virtual
space is increased. It is remarkable that the residual quenching
of Qzz is about +0.24 a.u. for the model SDT15_20 a.u., which
leads to a value for Qzz that is roughly one order of magnitude
smaller on the absolute than the DCHF value. Expressed in
different terms, we here observe an electron correlation ef-
fect (difference between a given CI model and Hartree-Fock
theory) of nearly 90%. This extraordinary situation can be
attributed to the fact that the open- f -shell contribution to Qzz

TABLE III. Atomic electric quadrupole moments and level energies for state k, defined as �ε(k) = ε(k) − ε(2F 7/2) with ε the total
electronic energy, for Tm using various CI models, QZ basis.

State CI model (virtual functions) �ε [cm−1] Qzz [a.u.]

2F 7/2(4 f 13 6s2) DCHF 0 −0.2711
SD15_10 a.u. (6s, 5d, 4g, 1i; 7p, 7 f , 2h) 0 −0.2531
SD15_20 a.u. (7s, 6d, 5g, 1i; 8p, 8 f , 3h) 0 −0.2546

SD15_50 a.u. (8s, 7d, 5g, 2i; 9p, 10 f , 3h) 0 −0.2556
SDT15_10 a.u. 0 −0.0349
SDT15_20 a.u. 0 −0.0292
SDT15_50 a.u. 0 −0.0305

S8_SD23_10 a.u. 0 −0.2511
SD23_10 a.u. 0 −0.2534

Exp. [25] 0
2F 5/2(4 f 13 6s2) DCHF 9016 −0.2203

SD15_5 a.u. 9277 −0.1863
SD15_10 a.u. 9215 −0.2059
SD15_20 a.u. 9143 −0.2074

SDT15_20 a.u. 9028 −0.0257
SD15_50 a.u. 9128 −0.2083

S8_SD23_10 a.u. 9199 −0.2043
SD23_10 a.u. 9158 −0.2061

Exp. [25] 8771.243
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FIG. 1. EQM (a.u.) of 2F7/2 Tm ground state using various CI models and virtual cutoffs, TZ basis; horizontal lines display converged
values for the respective model. The convergence patterns for the two largest calculations are shown explicitly.

of the thulium atom is rather small and that even a small
amplitude on the contributions that arise from d-shell occu-
pations, which, furthermore, have opposite sign, can nearly
cancel the latter.

The discussed cancellation leads to values for Qzz that are
close to zero and thus manifestly very difficult to describe
accurately, i.e., with small relative errors. The inclusion of
excitation ranks higher than full triples is explored using
the smaller (TZ) basis set, see Table II. Due to the extreme
computational demand a truncation of the virtual space has
to serve as a further approximation. When this truncation
is set to 2 a.u. the difference between the models SDT15
and SDTQ15 is +0.034 a.u. However, with this spinor space
the model SDT15 is qualitatively incorrect. A truncation at
4 a.u. yields an SDT15 result that agrees qualitatively with
the converged result from SDT15_50 a.u. The corresponding
expansion for SDTQ15_4 a.u. comprises roughly six billion
expansion terms, close to the limits of computational feasibil-
ity with the current code.

A correction due to full quadruple excitations, which is
not negligible in the present case, is thus obtained as fol-
lows. The base value is provided by the model SDT15_10
a.u. Since correlation contributions at any excitation rank are
nearly converged at a virtual cutoff of 10 a.u., but this spinor
space creates a configuration space too large to be treated
explicitly when Q excitations are taken into account, the result
for the model SDTQ15_10 a.u. is estimated by the following
formula:

Qzz(SDTQ15_10 a.u.)

:= Qzz(SDT15_10 a.u.) + �Q[Qzz(10 a.u.)]

where

�Q[Qzz(10 a.u.)]

:= [Qzz(SDTQ15_4 a.u.) − Qzz(SDT15_4 a.u.)]

× [Qzz(SDT15_10 a.u.) − Qzz(SD15_10 a.u.)]

[Qzz(SDT15_4 a.u.) − Qzz(SD15_4 a.u.)]
.

This scales the correction due to quadruple excitations by the
ratio of the triples correction for different virtual cutoff values.
In this estimation the assumption is made that the augmenta-
tion of the virtual spinor space affects the triples correction
�T and the quadruples correction �Q in an equivalent man-
ner. This way of obtaining the correction is also supported by
the graphical representation in Fig. 1. �T is always positive
(as is �Q) and increases monotonically as a function of virtual
cutoff (assumed for �Q). Since the correction due to higher
excitation ranks is more than halved when going from �T to
�Q a correction �5 due to full quintuples (or to even higher
excitation ranks) is not expected to surpass +0.05 a.u. for
Qzz(2F 7/2).

Possible corrections due to the use of the larger QZ ba-
sis set are investigated through the calculations presented in
Table III. Interestingly, the most elaborate comparable model
SDT15_50 a.u. does not yield a significant basis-set correction
(� QZ ≈ −0.0001 a.u.). Furthermore, a correction due to
core-valence correlation by including single-hole configura-
tions (model S8_SD23_10 a.u.), and in addition, double-hole
configurations (model SD23_10 a.u.) in the Tm 5s, 5p shells
also result in negligibly small corrections. The same is true
for correlations due to single- and double-hole configurations
in the Tm 4d shell (see Table II). The inclusion of additional
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functions of very high angular momentum [h (� = 5) and i
(� = 6)] in the basis set does not affect the EQM of the Tm
atom appreciably, as can be seen by comparing the models
SDT15_50 a.u. in Tables II and III. Also, the triples correction
�T increases by only about 2.5% when going from the TZ to
the QZ basis, a further indication that many-body effects are
well described using the TZ basis set.

The present final best result is, therefore,
Qzz(2F7/2) ≈ 0.07 a.u. I assign to this a rather conservative
(upper) uncertainty of 100%, almost entirely due to the
neglect of higher CI excitation ranks in even the most highly
correlated atomic wave function (SDTQ). Given the small
value of the EQM this uncertainty translates into only 0.07
a.u.

As can be inferred from the above-detailed discussion and
the results in Table III it can be said with certainty that
0 < Qzz(2F 5/2) < Qzz(2F 7/2). This conjecture is supported by
the fact that the correlation corrections �SD are very similar
for the 2F 7/2 ground state (+0.017 a.u.) and for the excited
clock state 2F 5/2 (+0.013 a.u.). Likewise, the triples correc-
tions �T are also similar: +0.225 a.u. and +0.182 a.u. for
2F 7/2 and 2F 5/2, respectively. This is not surprising since
correlation effects cannot differ greatly between a 4 f7/2-hole
and a 4 f5/2-hole atomic configuration, all else being equal.
This implies that the quadruples correction �Q for the excited
clock state is expected to be around +0.08 a.u., inferred from
the corrections in Table II, yielding an estimate Qzz(2F 5/2) ≈
0.05 a.u. Thus, the the electronically excited clock state also
has suppressed EQM.

The result by Sukachev et al. [28] obtained with the COWAN

code of Qzz(2F 7/2) ≈ 0.5 a.u. differs from the present final
result by roughly 0.4 a.u. This is a large relative and also a sig-
nificant absolute difference, given the observed discrepancies
from different electronic-structure models as compared for the
Ra+ ion in Sec. III B 2 at the highest level of accuracy. The
spread of final values for Ra+ is about an order of magnitude
smaller than 0.4 a.u. Since Sukachev et al. did not give any
details of their calculation it is not possible to analyze the
discrepancy for Tm.

3. Hyperfine interaction

However, a qualitative judgment on the present EQM re-
sults is possible in an indirect manner. Since closed-shell
contributions to the EQM are zero the spin density in the
atomic state is linked to the EQM. The same is true for the
magnetic hyperfine interaction constant. Thus, the correlated
wave functions presently optimized for the description of the
Tm EQM are expected to also describe the corresponding
hyperfine interaction constant correctly.

Table IV lists the results for A using wave functions from
the most accurate models for calculating the EQM. The spin
density in the correlated wave function of the Tm 2F 7/2

ground state largely resides in f (and d) states which explains
why A is comparatively small. Also here the basis set effect
is negligibly small. Higher excitations than doubles do not

TABLE IV. Magnetic hyperfine interaction constant A for 169Tm
2F7/2(4 f 13 6s2) calculated with Eq. (12) using various CI models and
basis sets.

CI model/basis set A [MHz]

SD15_20 a.u./TZ −390.2
SDT15_2 a.u./TZ −388.5
SDT15_4 a.u./TZ −391.0
SDT15_6 a.u./TZ −396.8
SDT15_10 a.u./TZ −397.5
SDT15_20 a.u./TZ −399.9
SDT15_50 a.u/TZ −399.6
SDTQ15_2 a.u./TZ −388.4
SDTQ15_4 a.u./TZ −390.8
SDT15_10 a.u./QZ −397.2
SDT15_20 a.u./QZ −398.2
SDT15_50 a.u./QZ −399.5
Exp.[29] −374.137661(3)

affect A substantially, in contrast to the EQM. This can be
understood from the fact that the triples correction as well as
higher excitation ranks affect the ratio of spin density in f and
d states, thus having a small effect on the hyperfine interaction
whereas this change of ratio has a large effect on the EQM.
The result with the largest deviation from the experimental
value for A is obtained with the model SDT15_50au/QZ
which differs from the experimental value by only about
6.8%.

IV. CONCLUSION AND OUTLOOK

In the present paper an accurate method for the calcu-
lation of atomic electronic electric quadrupole moments is
presented. The applications to the Be atom and to the Ra+

ion demonstrate the reliability of the method.
The quadrupole shift is identified as one of the contributors

to the uncertainty budget for a Tm optical clock using its
ground-state fine-structure components [28], albeit not the
leading one at the moment. An elaborate, detailed, and high-
level study on the Tm atom in the present work shows that
the EQM in its 2F 7/2(4 f 13 6s2) ground state is exceptionally
small. Thus, the application of methods for systematic cancel-
lation or suppression of the quadrupole shift [30,31] may not
be necessary in a thulium optical clock.

On the methodological side the present work is motivated
by the general importance of electric multipole moments and
electric transition multipole moments in many areas of atomic
and molecular physics. The author has also implemented E1
and E2 transition moments into the present relativistic corre-
lated many-body methods, applications of which will be the
subject of publications in the very near future. E1 transition
moments allow for the calculation of atomic dispersion co-
efficients which contribute to a clock’s uncertainty through
the van der Waals interaction. E2 transition moments are of
importance, for instance, in the field of parity nonconservation
[32].
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