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In this paper we study the effects of a topological Weyl semimetal (WSM) upon the ground state and
polarization of a hydrogen-like atom near its surface. The WSM is assumed to be in the equilibrium state and
at the neutrality point, such that the interaction between the atomic charges and the material is fully described
(in the nonretarded regime) by axion electrodynamics, which is an experimentally observable signature of the
anomalous Hall effect in the bulk of the WSM. The atom-WSM interaction provides additional contributions to
the Casimir-Polder potential thus modifying the energy spectra and wave function, which now becomes distance
dependent. Using variational methods, we solve the corresponding Schrödinger equation for the atomic electron.
The ground state and the polarization are analyzed as a function of the atom-surface distance, and we directly
observe the effects of the nontrivial topology of the material by comparing our results with that of a topologically
trivial sample. We also study the impact of the medium’s permittivity by assuming a hydrogen atom in vacuum,
and a donor impurity in the semiconductors gallium arsenide (GaAs) and gallium phosphide (GaP). We find
that the topological interaction behaves as an effective-attractive charge so that the electronic cloud tends to be
polarized to the interface of materials. Moreover, the loss of wave-function normalization is interpreted as a
critical location from below which the bound state is broken.
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I. INTRODUCTION

Topological materials have attracted great attention re-
cently both from the theoretical and experimental sides. Topo-
logical insulators (TIs) are characterized by a gapped bulk
and gapless boundary states that are robust against disorder
[1]. Furthermore, Weyl semimetals (WSMs) are phases with
broken time-reversal or spatial-inversion symmetry, whose
electronic structure contains pairs of band-crossing points
(Weyl nodes) in the Brillouin zone provided the Fermi level
is close to the Weyl nodes [2]. Besides their spectroscopic
distinguishing features, these phases also exhibit unusual elec-
tromagnetic responses, which are described by topological
field theories [3,4] akin to axion electrodynamics [5].

On the other hand, the manipulation of charge carriers
in materials by doping has become of central interest in the
technologies that enable the semiconductor electrical conduc-
tivity control over several orders of magnitude [6–10]. The
conductivity enhancement is understood in terms of bound
states associated with the impurity that, after on an excitation,
become delocalized as conduction- or valence-band states.
Although the Coulomb potential of donor or acceptor may
scatter the mobile charges and therefore reduces its mobil-
ity, the combination of large effective dielectric constant and
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small effective masses in a semiconductor medium result in
wave functions extended over a large space, which implies
binding energies of a few electronvolts [11]. In bulk semicon-
ductors such as Si, GaAs, or GaP, the potential of charged
impurities is screened by the dielectric response of the envi-
ronment, generating localized Bloch states with hydrogen-like
wave functions [12–15].

It is well-established that a hydrogenic donor or acceptor
impurity is entirely equivalent to a hydrogen atom regarding
their quantum mechanically description at the effective-mass
approximation [11,16]. From the theoretical point of view,
the donor levels into a semiconductor material have been
attractive in order to explore the optical properties and
modifications to the band structure. Bastard performed a
variational calculation of the binding energy for hydrogenic
impurity states in a quantum well, where the energy lev-
els depend on the position and the well’s thickness [17].
Keldysh showed that the Coulomb interaction is sensitive to
the impurity’s location in systems with interfaces between
two materials [18]. Lipari solved the effective-mass equa-
tions for a donor impurity due to its interface’s distance of
the semiconductor-insulator juncture [19]. Moreover, the ex-
perimental developments that make possible the introduction
and manipulation of impurities in low-dimensional systems
opened the study of their effects in the so-called quantum
dots [20–25]. Such experimental setups have inspired theo-
retical search of the hydrogenic-like impurities in confined
nanosystems: Banin et al. developed a method to dope semi-
conductor nanocrystals with metallic impurities, finding that
a low concentration of donor impurities the redshift on the
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photoluminescence spectrum is well explained when consid-
ering both donor and acceptor hydrogenic impurities [26].
Baimuratov et al. discussed the level anticrossing for im-
purity donor states in a spherical semiconductor nanocrystal
[27]. Mughnetsyan et al. calculated electric and magnetic-
field effects on the binding energy and photoionization cross
section on an off-axis hydrogen donor impurity located in
a quantum well wire [28], and, recently, Aghajanian et al.
observed localized states described by hydrogen wave func-
tions in the valence band’s edge for doped two-dimensional
semiconductors [29]. The research on these kinds of impu-
rities also covers areas such as quantum information, where
the spin-orbit interaction plays a crucial role in the impurities’
hyperfine structure [30–32].

In the aforementioned works, the juncture is always be-
tween materials with trivial band structures, i.e., they have no
topological features. Then, it is interesting to study situations
when a topologically ordered material interacts with a trivial
one and search for signatures of the topological nontriviality
into the physical observables. Some works have been done
in this spirit. For example, some particular classical elec-
trodynamics configurations both in TIs [33–39] and WSMs
[40–44], the frequency shift induced by the Casimir-Polder
interaction between atoms and TIs [45–47], and the optical ab-
sorption of semiconductor-TI quantum dots [48–51], among
others. Moved by this research, in this paper we investigate the
effects of a Weyl semimetallic phase upon hydrogenlike ions
near the surface, taking into account the modifications arising
from the topological nontriviality of the material. Taking a
WSM in the equilibrium state and at the neutrality point,
we avoid undesired contributions such as the chiral magnetic
effect and the chiral separation effect, thus allowing us to
concentrate on the consequences of the bulk anomalous Hall
effect upon the ground state and polarization of a hydrogen-
like atom located near its surface. In the nonretarded regime,
our model Hamiltonian includes the electromagnetic interac-
tion between the Hall currents in the bulk of the WSM and the
atomic electron. By means of variational methods we solve
the Schrödinger’s equation for atomic electrons and study, as
a function of the atom-surface distance, the ground-state and
the atomic polarization.

The paper is organized as follows: In Sec. II we review the
basics of the electromagnetic response of WSM. The Hamil-
tonian describing the interaction between the hydrogen-like
atom and the WSM is derived in Sec. III. Section IV presents
the form of the variational functions we use, and Sec. V
presents the corresponding results and discussion. Finally, the
summary and conclusions can be found in Sec. VI.

II. ELECTROMAGNETIC RESPONSE
OF A WEYL SEMIMETAL

The low-energy effective-field theory governing the elec-
tromagnetic response of WSMs with a single pair of
band-touching points, independently of the microscopic de-
tails, is defined by the usual Maxwell Lagrangian density [4]

LMax = 1
2 [εE2 − (1/μ)B2] − ρφ + A · J, (1)

supplemented by an additional θ term of the form

Lθ = α

4π2
θ (r, t ) E · B. (2)

The so-called axion field θ (r, t ) has the form

θ (r, t ) = 2b · r − 2b0t, (3)

where 2b is the separation between the Weyl nodes in mo-
mentum space, 2b0 is their energy offset, and α � 1/137 is the
fine-structure constant. It should be noted that, unlike topolog-
ical insulators for which θ is quantized due to time-reversal
symmetry [3], in WSMs the nonquantized expression for θ

is due to the time-reversal symmetry breaking by b and the
inversion symmetry breaking by b0 [4].

The physical manifestations of the θ term can be best un-
derstood from the associated field equations, which give rise
to the following charge-density and current-density response,

ρθ (r, t ) = δLθ

δφ
= − α

2π2
b · B, (4)

Jθ (r, t ) = δLθ

δA
= α

2π2
(b × E − b0B). (5)

The charge density of Eq. (4) together with the first term
of the current density in Eq. (5) encode the anomalous Hall
effect, which is expected to occur in a WSM with broken time-
reversal (TR) symmetry [52,53]. The chiral magnetic effect,
which manifests in WSMs with broken I symmetry, indicates
that a ground-state dissipationless current is generated along
a static magnetic field even in the absence of electric fields
[54]. One part of this peculiar phenomenon is described by
the b0-dependent term in the current density given by Eq. (5).

The electromagnetic response of WSMs is not fully cap-
tured by axion electrodynamics, but as in ordinary metals,
there are additional currents which depend linearly on the
electric and magnetic fields. For example, WSMs being metal-
lic systems, Ohm’s law still holds. If we have chiral fermions
with chemical potentials μL and μR for left- and right-handed
fermions, driven by a single-frequency electric field, there is a
term of the form Ji = σi j (ω)Ej , where σi j (ω) is the longitudi-
nal conductivity tensor given by

σi j (ω) = e2τ

6π2h̄3vF

δi j

1 + iωτ

(
�2

L + �2
R

)
, (6)

where e, vF , and τ are the electron charge, Fermi velocity,
and scattering time, respectively. �χ ≡ μχ − b0χ is the filling
of the cone with chirality χ . In Appendix A we derive the
formula (6) by using kinetic theory. The corresponding zero-
temperature carrier density is found to be

n = �2
L + �2

R

2π2(h̄vF )3 . (7)

Clearly, σi j varies as the square of the filling, and therefore
it vanishes exactly at the Weyl nodes. This is expected since
the density of states in this model vanishes when approaching
the Weyl point.

In addition, there are two additional current terms depend-
ing on the magnetic field, namely,

J = α

2π2
μ5B, J5 = α

2π2
μB, (8)
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where μ5 = (μL − μR)/2 and μ = (μL + μR)/2 are the chi-
ral and electric chemical potentials, respectively. The second
part of the chiral magnetic effect is given by J in Eq. (8),
which arises from an imbalance between chemical potentials
of right- and left-handed fermions. The total contribution to
the Chiral magnetic effect (CME) current is then [54]

JCME = α

2π2
(μ5 − b0)B = α

4π2
(�L + �R)B, (9)

which vanishes for b0 = μ5 in which case the WSM is said to
be at the equilibrium state. On the other hand, J5 in Eq. (8),
which is identified with the chiral separation effect, vanishes
for μ = 0, a condition that defines the neutrality point. The
existence of the static chiral magnetic effect is, however, ruled
out in crystalline solids [55], which is also consistent with our
understanding that static magnetic fields do not generate equi-
librium currents. All in all, the full electromagnetic response
of a WSM is described by axion electrodynamics defined by
the Lagrangian LMax + Lθ , together with the afore-discussed
current terms. In summary, in the presence of electric and
magnetic fields, the Weyl response is described by the anoma-
lous Hall effect, Ohm’s law, the chiral magnetic effect and the
chiral separation effect. As we discuss below, in the problem
at hand the nontopological contributions can overwhelm the
topological ones, and, hence, we need to choose appropriately
the setup in order to obtain physical effects due to the topo-
logically nontrivial Weyl nodes.

III. HYDROGEN-LIKE IONS NEAR THE WEYL
SEMIMETAL SURFACE

A. Statement of the problem

In general, the interaction between a WSM and a nearby
atom will be dominated by the trivial optical properties of the
material, such as the longitudinal conductance. To be precise,
the anomalous Hall current in Eq. (5) will be overwhelmed
by the nontopological Ohm’s current, and so would its con-
tribution to the interaction between the atom and the WSM.
To avoid this problem and disentangle the topological from
the trivial contributions, we have to make some simplifying
but realistic assumptions. On the one hand, it is well known
that the static chiral magnetic effect is ruled out in crystalline
solids [55], although it can be realized under nonequilibrium
circumstances. Therefore, this being a static problem, we can
safely take a WSM in the equilibrium state, i.e., with b0 = μ5.
On the other hand, as suggested by Eq. (6), the longitudinal
conductivity goes out when the filling of the cones equals
zero, i.e., for �L = �R = 0. This is reasonable, since in
WSMs, the carrier density n is typically very low since the
Fermi momentum is small around the Weyl nodes. When this
happens, the Ohmic conductivity can be ignored, and we can
set σii = 0. If n is increased, the conductivity can no longer
be ignored and the Ohm’s current cannot be set to zero. So,
for definiteness, we take the fillings equal to zero. Clearly,
this condition simultaneously guarantees the vanishing of the
chiral magnetic effect.

B. Model Hamiltonian

The interaction between atoms and surfaces have proven
to be of fundamental importance in physics. For example,

atom-surface interactions play an important role in atomic
force microscopy and they also affect the properties of an
atom or molecule nearby. In the particular case of metallic
surfaces and/or dielectric samples, since the interaction with
an atom takes place far from the surface (as compared with the
atom size), the atom-surface interaction can be modeled by
nonretarded electrostatic forces and the matter can be treated
as a continuum with a well-defined frequency-dependent di-
electric function. Under this circumstance, the only force
relevant in the problem is the Casimir-Polder force acting
upon the electron, thus affecting its quantum properties, such
as the energy levels for a given quantum state and the decay
rates of excited states, which now become functions of the
atom-surface distance. In the nonretarded regime, the atom-
surface interaction can be modeled by the electrostatic method
of images, i.e., the images of the electric charges of the atom
act as another atom which exerts additional forces on the
atomic electron [56–59].

If the material body is, for example, a topological insulator,
additional interactions arise due to the topological magneto-
electric effect: the charges in the atom will induce, besides
image electric charges, image magnetic monopoles as well
(physically induced by a vortex Hall current in the surface),
which in turn will interact with the atom via the minimal-
coupling prescription. This problem has been considered
within the framework of quantum [46,47] and classical [60]
mechanics. The aim of this work is to built up a formalism
that allows us to investigate the influence of a topological
WSM upon an atom nearby. Due to the broken symmetries in
the bulk, additional nontrivial topological effects may result
as compared with the case of the TIs. So, we first recall the
problem of an electric charge placed near a WSM half-space,
such that the WSM’s electromagnetic response is described by
Maxwell macroscopic theory supplemented with the axionic
term characteristic of the topological phases.

The electromagnetic response of TIs is rather simple, since
the only nontrivial physical effect is a half-quantized quantum
Hall effect on the sample’s surfaces. However, in the case
of WSMs, Eq. (2) does modify the field equations in the
bulk and thus provides additional observable consequences,
namely, the anomalous Hall effect. Consider the geometry
presented in Fig. 1. The lower half-space (z < 0) is occupied
by a topological WSM with a pair of nodes separated along the
kz direction in the bulk Brillouin zone, while the upper half-
space (z > 0) is occupied by a dielectric or semiconductor.
Being this a static problem, we neglect all frequency depen-
dencies to the conductivities and permittivities, such that the
lower half space is just a material that is solely a bulk Hall
material with current response given by the Hall conductivity
σxy and the dielectric constant ε1, and the upper half space is
characterized solely by its dielectric constant ε2. An electric
charge of strength q is brought at a distance z0 > 0 from the
surface z = 0. Working in cylindrical coordinates (ρ, ϕ, z) to
exploit the axial symmetry of the problem, in the region z > 0
the electric potential is found to be [42]

�q(r, r0) = q

ε2

1

|r − r0| + q

ε2

ε2 − ε1

ε2 + ε1

1

|r + r0| − 2qε1

ε1 + ε2

×
∫ ∞

0

(α2
+ + α2

− − k2)J0(kρ)e−k(z+z0 )

ε1(α2+ + α2−) + ε2k2 + kα+(ε1 + ε2)
dk.

(10)
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FIG. 1. Hydrogenic impurity near a WSM. The hydrogen-like
atom is embedded in a material of permittivity ε2. The charge q is
negative for donors and positive for acceptors and vice versa for the
charge Q.

where r0 = z0êz, Jn is the nth-order Bessel function of the first
kind, ρ = (x2 + y2)1/2, and

α±(k) =
√

k

2
(
√

k2 + �2 ± k), (11)

where � = 4π
c

σxy√
ε1

is an effective bulk Hall conductivity (with
dimensions of inverse length). Clearly, the electric potential
can be interpreted as due to the original electric charge of
strength q at z0, an image electric charge of strength q(ε2 −
ε1)/(ε2 + ε1) at −z0, and an additional term arising from the
nontrivial topology of the WSM. In the limit σxy → 0 the last
term in Eq. (10) vanishes, and the potential can be interpreted
solely in terms of the image charge. Due to the axial symme-
try, the vector potential has the form A = Aq(ρ, θ )êϕ , a choice
that naturally naturally satisfies the Coulomb gauge. In the
problem at hand, the function Aq(ρ, θ ) for the region z > 0
becomes

Aq(r, r0) =
∫ ∞

0

2qε1α−kJ1(kρ)e−k(z+z0 )

ε1(α2+ + α2−) + ε2k2 + kα+(ε1 + ε2)
dk.

(12)

Clearly, the corresponding magnetic field arises from the topo-
logical nontriviality of the material, i.e., a direct manifestation
of the anomalous Hall effect. It vanishes in the limit σxy → 0,
when magnetoelectricity disappears. Physically, the induced
magnetic field can be interpreted as generated by an infinite
number of 2 + 1 Dirac subsystems (one for each value of z in
the bulk) supporting a surface Hall current [42]. Therefore, the
magnetic field, as well as the �-dependent term of the electric
field, cannot be interpreted in terms of a well-localized image
source.

With the help of the scalar and vector potentials above, we
are ready to write down the interaction Hamiltonian between
a WSM and a nearby atom. To this end, some assumptions
are needed, which we shall discuss in the following. For the
sake of simplicity we expressly consider the case of an atom
located near to the surface with no arc states. The analogous
problem of an atom located in front of a surface that supports

Fermi arcs would also be of great interest. However, from a
practical point of view, we assume that the WSM phase has
been properly characterized, such that the surfaces with or
without arc states have been identified. For example, when a
WSM phase is produced from a Dirac semimetal by applying
an external magnetic field, the separation between nodes will
be along the field direction and thus the identification of the
surfaces supporting arc states is possible. Therefore, we can
safely choose the configuration depicted in Fig. 1, and we left
the complementary problem for future investigations. Last but
not least, we have to justify the validity the dielectric-response
picture. The interaction between an atom and a material body
(e.g., conductor, dielectric, or topological insulator) depends
on the distance between them. As long as the atom-body sep-
aration is sufficiently large compared with the atomic radius
on the one hand, and the typical distance between the atomic
constituents of the body on the other hand, the atom-body
interaction can be calculated within the frame of macroscopic
electrodynamics, provided there is no direct wave-function
overlap. If the atom is close to the surface (at least a few
atomic radii), the interaction is dominated by electrostatics.
However, retardation becomes important for atoms further
away from the surface. Experimental support for the use of
macroscopic electrodynamics in these systems is found in
Refs. [61–66].

In the nonretarded regime, the atom-surface interaction is
achieved by computing the Coulomb interaction between all
atomic charges and all image charges [56–59]. In the prob-
lem at hand we cannot interpret the electric field in terms
of localized image charges, but we are able to calculate the
electrostatic interaction energy with the help of Eq. (10). Due
to the anomalous Hall effect of the WSM, the atomic charges
will also produce magnetic fields sourced by nonlocalized
distributions in the bulk [42], which in turn will interact with
the atomic electron. Therefore, in the minimal-coupling pre-
scription, the quantum Hamiltonian we consider reads

Ĥ = 1

2μ

(
p̂ − e

c
A

)2

+ V (r), (13)

where μ is the mass of the moving charge, c is the speed
of light, and p̂ = −ih̄∇. In Eq. (13), V (r) accounts for the
electrostatic interactions and A is the vector potential. Let us
derive these terms.

Treating the ion as an electric composite system, the ef-
fective charge density can be expressed as ρ(r′) = e[Zδ(r′ −
r0) − δ(r′ − r − r0)], where Z is the atomic number and r lo-
calizes the atomic electron from the nucleus. The electric field
due the ion can thus be computed by superposing the solution
(10). So, the interaction energy between the hydrogen-like
atom and the WSM can be written as

V (ρ, θ ) = 1
2 [−eφZe(r + r0, r0) − eφ−e(r + r0, r + r0)

+ ZeφZe(r0, r0) + Zeφ−e(r0, r + r0)], (14)

where φq(r, r′) is the scalar potential at the position r due
to a charge q at r′, given by Eq. (10). Clearly, the potential
energy (14) accounts for the many pairwise interactions in
our configuration. For example, the first term, −eφZe(r +
r0, r0), corresponds to the interaction energy between the
nucleus and the atomic electron, including the contributions
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arising from the presence of the WSM. The second term,
−eφ−e(r + r0, r + r0), is the electron-electron interaction en-
ergy, which includes a divergent term arising from the electron
self-energy, which we discard. The third term, ZeφZe(r0, r0),
is the nucleus-nucleus interaction energy, which contains also

a divergent terms due to the nucleus self-energy, which we
discard. The last term, Zeφ−e(r0, r + r0), is the interaction
energy between the electron and the nucleus (which is the
same that the first term). In a coordinate system attached to
the nucleus, the potential energy (14) takes the form

V (ρ, θ ) = −Ze2

ε2r
− e2

ε2

ε2 − ε1

ε2 + ε1

(
Z√

r2 + 4z0(z + z0)
− 1

4(z + z0)

)
+ e2ε1

ε1 + ε2
I (ρ, θ ), (15)

where

I (ρ, θ ) =
∫ ∞

0
dk

(α2
+ + α2

− − k2)

ε1(α2+ + α2−) + ε2k2 + kα+(ε1 + ε2)
[2ZJ0(kρ)e−k(z+2z0 ) − e−2k(z+z0 )]. (16)

The first term in Eq. (15) is the usual Coulomb interaction
experienced by the atomic electron due to the nucleus. The
second term corresponds to the interaction between the image
nucleus and the atomic electron, while the third term is the
interaction between the electron and its own image. The last
term, which cannot be interpreted in terms of images, is a
direct manifestation of the anomalous Hall effect.

The vector potential can be computed in a similar fashion.
However, from the result of Eq. (12), we observe that the
vector potential vanishes along the line perpendicular to the
charge source, i.e., for ρ = 0. This means that the vector
potential sourced by the atomic electron does not act upon
the electron itself. Therefore, the only vector potential to be
considered is that sourced by the nucleus. So, in the coordinate
system attached to the nucleus the nonzero component of the
vector potential reads

AZe(ρ, θ ) =
∫ ∞

0
dk

2Zeε1α−J1(kρ)e−k(z+2z0 )

ε1(α2+ + α2−) + ε2k2 + kα+(ε1 + ε2)
.

(17)

This vector potential cannot be interpreted in terms of images,
as in the case of a topological insulator, for which the mag-
netic field is due to an image magnetic monopole. As shown
in Ref. [42], Eq. (17) can be interpreted in terms of an infinite
number of sheets, one for each value of z in the bulk, all
supporting a surface Hall effect.

The natural geometry of the problem is provided by the
prolate spheroidal coordinates (ξ, η, φ) which are related with
the Cartesian coordinates as follows:

x = z0

√
(ξ 2 − 1)(1 − η2) cos φ,

y = z0

√
(ξ 2 − 1)(1 − η2) sin φ,

z = z0ηξ, (18)

with the range of the parameters given by

1 � ξ � ∞, −1 � η � 1, 0 � φ � 2π. (19)

The usefulness of this coordinate system is apparent, since
the plane z = 0, i.e., the interface between the WSM and the
dielectric semiconductor or vacuum, is defined by the surface
η = 0; hence, we restrict our calculations to the range 0 �
η � 1.

In the new coordinate system, the potential energy (15)
takes the form

V (ξ, η) = − e

ε2z0

[
Z

ξ − η
+ ε2 − ε1

ε2 + ε1

(
Z

|ξ + η| − 1

4ηξ

)]

+ eε1

ε1 + ε2
I (ξ, η), (20)

where

I (ξ, η) = 1

z0

∫ ∞

0
dk

(γ 2
+ + γ 2

− − k2)[2ZJ0(k
√

(ξ 2 − 1)(1 − η2))e−k(ηξ+1) − e−2kηξ ]

ε1(γ 2+ + γ 2−) + ε2k2 + kγ+(ε1 + ε2)
, (21)

and the vector potential now becomes

AZe(ξ, η) =
∫ ∞

0
dk

2Zeε1γ−J1(k
√

(ξ 2 − 1)(1 − η2))e−k(ηξ+1)

ε1(γ 2+ + γ 2−) + ε2k2 + kγ+(ε1 + ε2)
, (22)

where now

γ±(k) =
√

k

2
(
√

k2 + �2 ± k), (23)

� = z0� being a dimensionless parameter.

We observe that both the potential energy (20) and the
vector potential (22) do not depend on the azimuthal angle.
One can notice from the potential (20) that the effective po-
tential from the interface between both materials is attractive
or repulsive depending on the sign of (ε2 − ε1) with effective
charge e/z0. In addition, given the Laplacian associated with
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the prolate coordinate system

∇2 = 1

z2
0(ξ 2 − η2)

[
∂

∂ξ

(
(ξ 2 − 1)

∂

∂ξ

)

+ ∂

∂η

(
(1 − η2)

∂

∂η

)
+ ξ 2 − η2

(ξ 2 − 1)(1 − η2)

∂2

∂φ2

]
, (24)

it is clear that the full system (WSM + atom) has azimuthal
invariance. Therefore, the wave function can be separated as

�nm(ξ, η, φ) = ψnm(ξ, η)
eimφ

√
2π

, (25)

where the constant m must be an integer for the wave function
to be a single-valued and n is additional quantum number to
be determined. Applying the quantum Hamiltonian (13) to the
wave function (25) we get the eigenvalue equation[

− h̄2

2μ
∇2 + V m

eff(ξ, η)

]
ψnm(ξ, η) = Emψnm(ξ, η), (26)

where Em is the energy of the state with quantum number m
and V m

eff(ξ, η) is the effective potential given by

V m
eff(ξ, η) = V (ξ, η) + m2h̄2

2μz2
0(ξ 2 − 1)(1 − η2)

+ e2

2μc2
A2

Ze(ξ, η) + meh̄AZe(ξ, η)

z0μc
√

(ξ 2 − 1)(1 − η2)
.

(27)

The first term corresponds to the electrostatic interactions
(including the one coming from the anomalous Hall effect),
the second term is the usual centrifugal potential, while the
third and forth terms are the diamagnetic and paramagnetic
components of the Hamiltonian, respectively.

IV. VARIATIONAL CALCULUS

To compute the energies of the lowest states, we used the
standard variational method. We follow a recipe for choosing
trial functions based on the product of 1s Slater orbitals in
order to reproduce the correct behavior near the Coulombic
singularities. This recipe to design compact wave functions
has been widely applied for studying atoms, molecules, and
quantum dots [67–71]. Thus, the trial function is a product of
three Slater orbitals corresponding to each Coulombic inter-
action: electron-nucleus, electron-image of the nucleus, and
electron-image of the electron, i.e.,

ψ0 = ηe−α1r1−α2r2+αcr

= ηe−α1(ξ+η)e−α2(ξ−η)e2αcz0ξη, (28)

where α1, α2, and αc are variational parameters and the factor
η is introduced in order to satisfy the boundary condition
ψ (z = 0) = 0. In general, for any state, we consider a wave
function in the form of Eq. (28) (with its own set of variational
parameters) multiplied by a convenient factor that guarantees
orthogonality:

ψnm(r) = [(ξ 2 − 1)(1 − η2)]|m|/2ψ0 fn(η, ξ )
eimφ

√
2π

, (29)

where fn(η, ξ ) is a polynomial of degree n which in turns,
indicates the number of radial nodes of the wave function.
Due the numeric nature of our solutions, notice that n does not
match the principal quantum number of the hydrogen atom
where the radial nodes of the wave function are given by
n − l − 1. Here, n serves as a label for the radial trial function.
Therefore, states with angular momentum m > 0 represent
angular excitations, while n > 0 stands for radial excitations.
At large distances z0, the wave function of Eq. (29) goes to the
1s and 2p orbitals of the hydrogen atom for (n = 0, m = 0)
and (n = 0, m = 1), respectively. In particular, for the excited
state n = 1, m = 0 we use

f1(η, ξ ) = (α − r2), (30)

where r2 is the distance from the electron to the nucleus and
α is a constant. With this form of the polynomial (30), the
wave function (29) reproduces the 2s orbital of the hydro-
gen atom at large distances z0. The parameter α is chosen
such that it guarantees orthogonality between the excited state
n = 1, m = 0 and the ground state n = 0, m = 0:

α =
∫

d3rr2ψ0(r)ψ10(r)∫
d3rψ0(r)ψ10(r)

. (31)

It is worth mentioning that the wave function of Eq. (28)
is square normalizable as long as the argument in the ex-
ponential remains positive. Since the effective potential of
Eq. (20) can be repulsive, if the ratio e/z0 is large enough, the
system can be ionized and therefore the wave function losses
square normalizability, i.e., a critical effective charge e/z0

appears. The estimate of critical charges is a very active area
in atomic systems [72–76], and in this work such a feature will
impact the allowed transitions of the system, as is discussed in
Secs. V A and V B.

We evaluated the two involved integrals (numerator and
denominator) numerically in cylindrical coordinates, two
dimensional and three dimensional, including topological ef-
fects, employing the adaptive multidimensional routine [77].
For each integral, the integration space was subdivided into
six (twelve including topological term), in which the inte-
gration was done separately. The partitioning is adjusted and
controlled depending on the variational parameters and the
value of z0. We performed the minimization in the parameter
space by using the subroutine MINUIT of CERN-LIB [78]. The
code used in this work is an adaptation of the FORTRAN code
designed by Turbiner and Lopez Vieyra for the variational
calculus of atoms and molecules in strong magnetic fields
[68].

V. RESULTS AND DISCUSSION

To elucidate the impact of the anomalous Hall effect, a
hallmark of the Weyl semimetallic phase, upon a hydrogen-
like atom near of its surface, we study three experimentally
accessible configurations: a single hydrogen atom in vacuum,
and hydrogenic GaAs and GaP impurities. The first one can
be achieved by placing a noninteracting hydrogen gas close
to the surface of the WSM. The second is accomplished with
semiconductor growing techniques, which are implemented
in thin films. For a hydrogen in vacuum we take ε2 = ε0 = 1
and the electron’s mass m0. For the GaAs impurity, we use
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FIG. 2. Ground-state energy E0 for a hydrogen atom in vacuum
(ε2 = 1) close to the WSM EuCd2As2 (ε1 = 6.2) as a function of
the distance z0 (in atomic units, a.u.). The dashed line-open symbols
is the calculation performed without topological terms, whereas the
continuous line-filled symbols is the result with topology included.

ε2 = 13.18 for the relative permittivity and μ = 0.067m0 for
the effective mass, while for the GaP impurity we use ε2 = 9.1
for the relative permittivity and μ = 0.35m0 for the effective
mass [79].

For the Weyl semimetal sample we use EuCd2As2. This
material hosts a single pair of Weyl nodes located at k =
(0, 0,±0.03)2π/c at the Fermi level when the Eu spins are
fully aligned along the c axis (here c = 0.729 nm, such that
b ≈ 5.1×108 m−1) [80]. In this case the anomalous Hall effect
is fully described by the theory introduced in Sec. II and
hence the analysis of the atom-WSM interaction of Sec. III is
applicable, since the surface that does not support Fermi-arc
electronic states is properly identified (in this case is the xy
plane since b = bêz). The data, including energies and optimal
variational parameters obtained in this work, can be found in
the repository linked in Ref. [81].

A. The ground state

Figure 2 shows the ground-state energy E0 as a function
of the distance z0 for a hydrogen atom in vacuum located
near to the WSM EuCd2As2, for which ε1 = 6.2 [82]. As we
can see, the ground state has a shift in energy as compared
with the nontopological case when the atom is close to the
surface. As expected, at large distances, the interaction with
the surface is negligible, and hence the results converge to
the standard description of the hydrogen atom in the ground
state. In this case, for the sake of clarity, we plot the energy
including distances of a few atomic radii, where we know
the electromagnetic response theory of Sec. III B ceases to be
valid. In a similar fashion, in Fig. 3 we plot the probability
density for the system. We observe that in the absence of

FIG. 3. Probability density function |ψ |2 (measured in a.u.−3) for
the ground state of the hydrogen atom in vacuum located at z0 =
2.5 a.u. from EuCd2As2 surface: (a) without topological effects and
(b) with topological terms.

the topological term (i.e., for σxy = 0), the electronic cloud
is repelled by the material, and as we can directly read from
Eq. (15), this is due to the repulsive Coulomb-like interaction
between the orbiting electron in vacuum and its image charge
within the sample given that ε2 < ε1 for a vacuum-EuCd2As2

junction. However, as Fig. 3(b) indicates, the effect of the
WSM’s nontrivial topology is to compensate such repulsion
so that the electronic cloud is attracted to the wall. Physically,
being positive the image charge, the atomic electron is always
followed by its image charge, and these atomic currents at-
tracts each other according to the Ampere’s force law.

The second possibility we shall consider is a hydrogen-like
impurity embedded in GaAs close to a Weyl semimetal. As we
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FIG. 4. Ground-state energy E0 for a hydrogenic impurity in
GaAs (ε2 = 13.18) close to the WSMs EuCd2As2 (ε1 = 6.2) as a
function of the distance z0 (in atomic units, a.u.). The dashed line-
open symbols line is the calculation performed without topological
terms, whereas the continuous line-filled symbols is the result with
topology included.

can see from Eq. (20), the sign of the interaction potential can
be tuned by means of the permittivities. For a hydrogen atom
in vacuum it is clear that δε ≡ ε2 − ε1 < 0; however, GaAs
has a larger permittivity such that δε flips its sign. Figures 4
and 5 shows the ground state of a hydrogen-like impurity
embedded in GaAs (GaP) and close to the WSM EuCd2As2.
When the topological contribution is considered, the last term
in the interaction potential of Eq. (20), which is positive
definite, overwhelm the second term and hence the resulting
ground-state energy becomes positive for small z0 and tends
to zero as the atom moves far away from the surface. To un-
derstand this effect, in Fig. 6 the probability density function
for a GaAs impurity is plotted. This probability distribution
shows that both cases (with and without topological terms)
support bound states. However, the nontopological calculation
describes an extended atomic cloud (due to the small effective
mass and the large effective dielectric constant [11]), which
is strongly confined when the topological term is considered.
Then, the presence of the WSM localizes the charge carriers
which may affect the enhancement of electric conductivity in
doped semiconductors.

A similar situation is observed in Fig. 7, where we changed
the semiconductor sample by GaP: by ignoring the topological
terms the electronic cloud is slightly repelled by the materi-
als interface, but when the topology is turned-on there is a
strongly confinement and deformation of the spatial proba-
bility distribution. The latter is not only correlated with the
value of the semiconductor’s relative permittivity, but also
with electron’s effective mass (μGaP 
 μGaAs), so that if μ

enhances then the topological effects are appreciable given

FIG. 5. Ground-state energy E0 for a hydrogenic impurity in GaP
(ε2 = 9.1) close to the WSMs EuCd2As2 (ε1 = 6.2) as a function
of the distance z0 (in atomic units, a.u.). The dashed line-open
symbols line is the calculation performed without topological terms,
whereas the continuous line-filled symbols is the result with topology
included.

that the kinetic term of Eq. (13) is not dominant in the Hamil-
tonian.

It is worth mentioning that, for the electromagnetic field
theory we have considered to be valid, it is required that
the atom-WSM distance be large compared with the atomic
radius. However, as one can see in Fig. 3 for a hydrogen in
vacuum near the WSM sample, the effects of the topological
nontriviality are appreciable only when the atom is close
enough to the surface, at a few atomic radii. Therefore, al-
though interesting, this case is not realistic. For the topological
effects to be observed in a region where our model applies
we turned to use semiconductor samples, since the effective
electron mass is smaller (than the electron mass) and hence
the unperturbed atomic cloud is less confined. This situation
opens the possibility to be furthest from the surface, where
our model works, and observe anomalous Hall effect signals
upon the atomic could and energy levels. This is confirmed by
our plots of the ground-state energy: while significant effects
for a genuine hydrogen take place at the length scale of few
atomic units (see Fig. 2), they appear in a farther region for
semiconducting samples.

We have to point out that, to construct Fig. 6, the value
of z0 is not arbitrary at all. Indeed, for enough small values
of z0, our variational method to solve Schrödinger’s equa-
tion produces a not-normalizable wave function. To better
understand this fact we have to study the shape of the ef-
fective potential of Eq. (20). On the one hand, we observe
that due to the Coulombic term, the effective electrostatic
potential exhibits an infinite potential well at the origin, thus
supporting bound-state solutions. On the other hand, it is clear
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FIG. 6. Probability density function |ψ |2 (measured in a.u.−3) for
the ground state for the junction EuCd2As2 + GaAs (a) without topo-
logical terms, and (b) with topological terms both for z0 = 75 a.u.

from Eq. (17) that the vector potential vanishes for ρ = 0,
i.e., along the line perpendicular to the interface. Also, it is
clear that the potential diverges at the surface, and this is
due to the divergent electron-image electron interaction there.
Therefore, a critical point zc must exist between the surface
and the position of the nucleus, i.e., −1 < zc/z0 < 0. For
z0 > zc, bound-state solutions are allowed, and hence the cor-
responding wave functions are normalizable, as they should
be. However, when the nucleus-surface distance is below the
critical point, z0 < zc, there are no bound-state solutions since
the atom becomes ionized, and consequently the wave func-
tion stop to be normalizable, as evinced by our numerical
solutions. For the permittivity configuration of EuCd2As2 +
vacuum Fig. 2 the critical value is zc ≈ 2.5 a.u. A detailed
discussion about the existence of zc is given in Appendix B.

FIG. 7. Probability density function |ψ |2 (measured in a.u.−3) for
the ground state with z0 = 40 a.u.

B. The excited states

Figure 8 shows the probability density function of the ex-
cited states n = 1, m = 0 and n = 0, m = 1 for the juncture
EuCd2As2 + GaP. Moreover, Fig. 9 depicts the energy for
those states as a function of the distance z0 for a hydrogen-like
impurity in GaP near the WSM. As can be noticed, the attrac-
tive effect of the WSM is present even in the excited states,
which implies a considerable deformation of the electron’s
probability cloud. In the case of Fig. 9, each plot suddenly cuts
off at a different critical distance. Indeed, the ground state’s
critical distance is smaller than that corresponding to excited
states, as evinced in the figure. This means that there exist a
certain range of distances z0 where the ground state is bound
but the excited states are not. At large distances each state
goes asymptotically to the energy of the hydrogen atom in
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FIG. 8. Probability density function |ψ |2 (measured in a.u.−3) for the excited states (n, m) = (0, 1), and (1,0), for the junction EuCd2As2 +
GaP. In each panel, the hydrogen-like ion is located at (a), (b) z0 = 125 a.u. and (c), (d) z0 = 40 a.u.

GaP, namely,

lim
z0→+∞ En = − μ

2n2ε2
2

, (32)

with permittivity ε2 = 9.1 and effective mass μ = 0.35.

C. Transition amplitude

To know the allowed transitions between the computed
states, let us define the following transition amplitude in the
dipole approximation:

M(n,m)
(n0,m0 )(ê j ) ≡ 〈n, m; z0| ê j · (r − r0) |n0, m0; z0〉 , (33)

where ê j is a unit vector that depends on the polarization of
an external monochromatic light source. The defined quantity
is related to the electron’s probability to perform a transition
which, by construction, depends on the ion location r0 = z0êz.

In the former discussion about the critical distance z0 in
which the wave function is still normalizable, one may wonder
if the transitions from the ground to the excited states are
available. For that sake, in Figs. 10 and 11 we present the
transition amplitudes of Eq. (33) for the transitions |0, 0〉 →
|0, 1〉, and |0, 0〉 → |1, 0〉, respectively. The plots indicate
that such transitions are allowed in the dipolar approxima-
tion, hinting that the impurity can perform the transition by
changing its quantum numbers in distances up to the critical
one, where we interpret that the ionization occurs. Also, the
transition probability between states is appreciably modified
when the topological effects are included, which can be used
as a probe for testing the topological nature of the WSM.

D. The atomic polarization

Finally, we study the effects of the WSM upon the atomic
polarization. To this end, we use the standard definition of
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FIG. 9. Ground and excited states for a hydrogen-like atom in
GaP (εr = 9.1) for the cases with and without topological terms in
the WSM EuCd2As2 as a function of the distance z0 (in atomic units
a.u.). Note the shift of zcritical

0 for m = 1.

this quantity: 〈0, 0|(ẑ − z0)|0, 0〉. In Fig. 12 we show the
polarization for a hydrogenic GaP impurity close to the WSM
EuCd2As2. The variational calculations show that the polar-
ization points away from the surface, which we understand
from the repulsion between the atomic cloud and its image.
However, due the attractive nature of the topological sector

FIG. 10. Transition amplitudes of Eq. (33) for the transition
|0, 0〉 → |0, 1〉.

FIG. 11. Transition amplitudes of Eq. (33) for the transition
|0, 0〉 → |1, 0〉.

in the effective potential, the polarization flips orientation for
σxy = 0 and then points towards the surface. Also, as we
can see in Fig. 12, the polarization decreases as increasing
z0, as expected, since the atom gets back to be spherically
symmetric and hence by parity considerations the polarization

FIG. 12. Dipolar matrix element 〈0, 0|(ẑ − z0)|0, 0〉 as a function
of z0 for a hydrogen atom in vacuum (ε2 = 1) close to the WSMs
EuCd2As2. The dashed line-open symbols lines is the calculation
performed without topological terms, whereas the continuous line-
filled symbols is the result with topology included.
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vanishes. On the other hand, for nucleus-surface distances z0

below the critical distance z0 the polarization is ill defined
due to the not normalizability of the wave function. The re-
sults have the same qualitative information if a hydrogen-like
impurity in GaAs is considered but with an enhancement of
〈0, 0|(ẑ − z0)|0, 0〉, given the associated material parameters.

VI. SUMMARY AND CONCLUSIONS

The interaction between atoms and surfaces has proven to
be of fundamental importance in many branches of science
such as field theory, cosmology, molecular physics, colloid
science, biology, astrophysics, and micro- and nanotechnol-
ogy. The measurements of atom-surface interactions range
from experiments based upon classical and quantum scatter-
ing, up to high-precision spectroscopic measurements. Within
the realm of atomic spectroscopy, hydrogenlike atoms provide
an attractive test bed for studying new atom-surface interac-
tions. It has been used, for example, to predict the effects of
induced magnetic monopole fields in topological insulators
upon the hyperfine structure of a hydrogenlike atom nearby
[46]. Following this idea, in this paper we consider the effects
of a topological Weyl semimetal upon a hydrogenlike atom
close to its surface. Importantly, unlike the TI case, the inter-
action between an atom and a metallic phase is rather stronger,
and hence a perturbative analysis is not appropriate for small
atom-surface distances.

In this paper we have analyzed the effects of a topological
Weyl semimetal upon a hydrogen-like atom which is located
in front of the face without surface states. Here we work in the
nonretarded approximation, which is valid for atom-surface
distances sufficiently large as compared with both the atomic
radius and the distance between the atomic constituents of the
sample. In this regime, the model Hamiltonian is based on
the electromagnetic interaction between the atomic charges
(atomic electron + nucleus) and the WSM. In the case of
a dielectric, the interaction is computed as the Coulomb in-
teraction between the atomic charges and the image electric
charges. In a topological insulator, besides image electric
charges, image magnetic charges appear as well, whose mag-
netic fields will in turn interact with the atomic electron
(through the minimal-coupling prescription). In the problem
at hand, the electromagnetic interaction cannot be interpreted
in terms of charge-image charge Coulomb interaction, since
Maxwell equations are modified in the bulk of the WSM.
However, assuming a WSM in the equilibrium state and at
the neutrality point, the electromagnetic interaction can be
modeled in an analytical fashion.

Using variational methods, we solve the corresponding
Schrödinger equation and determine the energy and wave
function for the ground state of the system. This theory can be
applied to two different configurations with possible experi-
mental opportunities. On the one hand, we consider a genuine
hydrogen atom placed in vacuum near the WSM. In this case
we find that, when the topological term is switched off, the
surface pushes out the atomic cloud (this is understood from
the electrostatic repulsion between the atomic electron and
its image itself); however, in the presence of the topological
term, the anomalous Hall effect contribution reverses this
tendency, and the surface pulls in the atomic cloud (which

we understand as a consequence of the force between the
atomic current and the many Hall currents appearing in the
bulk). As expected, the focusing effect of the atomic cloud
depends on the atom-surface distance: the cloud becomes
a sharply focused peak as the atom approaches the inter-
face. High-resolution spectroscopy experiments, which has
been successfully used to test the Casimir-Polder interaction
between an atom in its ground state and metallic or dielec-
tric samples (over five orders of magnitude for the potential
strength) [61–64], can also be used to test the energy shift in
the ground state for an atom near the WSM. Other nonspec-
troscopic methods, which have been used to test atom-surface
interactions, could also be relevant in the present context,
namely, atomic interferometry and quantum reflection. For
example, a beam of atoms in the ground state traveling inside a
cavity formed by material samples is sensitive to atom-surface
interactions [65]. The experiment measures the transmission
(or rather the opacity) as a function of the separation between
the plates: since for large separation one gets the geometri-
cal expectation, by comparing with the result with a smaller
separation one can therefore extract the information regarding
the atom-surface interaction. On the other hand, quantum
reflection has been used in Ref. [66] to confirm experimen-
tally the attractive character Casimir–van der Waals potential
between an atom and metallic sample: for atoms approaching
the sample at low incident kinetic energy, they are reflected
well before reaching the interface, so the presence probability
of the atoms remains vanishingly small around the minimum.
Using a Weyl semimetallic target, this kind of experiment
could be able to reveal the position of the minimum in the in-
teraction potential, which strongly depends on the topological
contribution.

To enhance the effects of the topological terms upon a
physical system, we also consider the case of a hydrogenic
donor-acceptor impurity near the WSM, which as we know,
within the effective-mass approximation, it is exactly equiv-
alent to the quantum-mechanical hydrogen atom. The small
mass (as compared with the electron mass) of a GaAs and
GaP impurities make them an interesting possibility to test
the anomalous Hall effect of the WSM in the present con-
figuration. Indeed, we find that in the unperturbed case the
atomic cloud is extended over a large region of space (a
consequence of the small effective mass). However, when
we turn on the topological coupling, the electron cloud is
then strongly attracted towards the surface, thus exhibiting an
interesting confinement effect. Due to the deformation of the
atomic cloud, we expect also repercussions upon the atomic
polarization. Evaluating the corresponding expectation value
we find that, in the unperturbed case, the polarization points
away from the surface, while in the perturbed case the polar-
ization flips and points towards the surface. The latter may
have also deep implications in the electrical conductivity of
doped semiconductors. This idea is being currently explored
and will be reported elsewhere.

All in all, in this paper we have shown that the anoma-
lous Hall effect, a distinctive manifestation of the topological
charge of Weyl semimetals, induces significant effects upon
the properties of a nearby atom, namely, energy shifts, the
probability distribution, and the polarization. This repre-
sents an alternative to the usual classical electrodynamics
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configurations in which the topological nontriviality mani-
fests through optical observables. In the present case, being
quantum observables, high-precision experiments increase the
chance for detecting the topological features of the material.
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APPENDIX A: BOLTZMANN FORM
OF THE CONDUCTIVITY

In this Appendix, we derive an expression for the Drude
part of the conductivity using kinetic theory.

The effective low-energy continuum Hamiltonian for time-
reversal broken WSMs with a pair of nodes is given by

Hχ (k) = b0χ + χ h̄vF σ · (k − χb), (A1)

where vF is the Fermi velocity and χ = ±1 is the chirality
eigenvalue for a given Weyl node. The vector χb localizes the
node with chirality χ from the origin at k = 0. For simplicity,
we choose coordinate axes such that b points along the Carte-
sian z direction, i.e., b = bez. The energy dispersion is found
to be

Esχ (k) = b0χ + sh̄vF

√
k2

x + k2
y + (kz − χb)2, (A2)

where s = ±1 is the band index.
In the semiclassical approach, the nonequilibrium quasi-

particle current density driven by a single frequency electric
field is given by

J = −e
∑
s=±1

∑
χ±1

∫
d3k

(2π )3 vsχ fsχ (k, t ), (A3)

where vsχ = 1
h̄∇kEsχ is the band velocity and fsχ (k, t ) is

the statistical distribution function of carriers in the phase
space of position and crystal momentum. In the absence of
an external field, the distribution is given by the Fermi-Dirac
distribution f FD

sχ (k) = [1 + exp( Esχ −μχ

kBT )]−1, where μχ is the
chemical potential for fermions with chirality χ and kB is
the Boltzmann constant. In the presence of external fields the
nonequilibrium distribution solves the Boltzmann equation,
which we solve up to linear order in the electric field and
in the relaxation-time approximation. Taking an input electric
field of the form E = Eeiωt + E∗e−iωt , the current (A3) can be
expressed as Ji = σi j (ω)E jeiωt + c.c., where

σi j (ω) = − e2τ

1 + iωτ

∑
s=±1

∑
χ=±1

∫
d3k

(2π )3 vi
sχv j

sχ

∂ f FD
sχ (k)

∂Esχ
,

(A4)

is the longitudinal conductivity tensor. For the sake of sim-
plicity, we shall assume that the chemical potential μχ is
above the band-touching point of the node with chirality χ ,

and hence we will concentrate on the transport phenomena
of the conduction band (i.e., s = +1). Here, we will work at
zero temperature T = 0, such that ∂ f FD

sχ (k)/∂Esχ = −δ(μχ −
Esχ ). This means that the conductivity tensor (A4) is property
of the Fermi surface. Defining the vector wχ = kx êx + kyêy +
(kz − χb)êz, which is the crystalline momentum measured
from the node with chirality χ , the conductivity tensor (A4)
simplifies to

σi j (ω) = e2τvF /h̄

1 + iωτ

∑
χ=±1

1

η2
χ

∫
d3k

(2π )3 wi
χw j

χδ
(
ηχ − w2

χ

)
,

(A5)

where ηχ ≡ μχ−b0χ

h̄vF
. If we change the origin of the k space

from (0,0,0) to the node (0, 0, χb), the above integral simpli-
fies to

σi j (ω) = e2τvF /h̄

1 + iωτ

∑
χ=±1

1

η2
χ

∫
d3k

(2π )3 kik jδ(ηχ − k2). (A6)

Evidently, the integral has spherical symmetry, and hence it
can be written as

σi j (ω) = e2τvF /h̄

1 + iωτ

∑
χ=±1

1

η2
χ

δi j

3

∫
d3k

(2π )3 k2δ(ηχ − k2).

(A7)

This integral is quite simple by using the properties of the
Dirac δ function. The final result is then

σi j (ω) = e2τ

1 + iωτ

∑
χ=±1(μχ − b0χ )2

6π2h̄3vF
δi j, (A8)

which is our expression for the conductivity tensor. In Eq. (6)
we present the limit ω → 0 of the result (A8).

APPENDIX B: THE EXISTENCE OF zc

As we stated in the main text, there is a value zc where the
wave function cannot be normalized, i.e., there are no bound
states. Such a behavior can be understood from the shape of
the effective potential given by Eq. (27).

Let us concentrate in the ground state for which m = 0, so
that the condition for turning points in the potential reads:

∇Veff(ρ, z) = 0. (B1)

From the analytical form of Veff(ρ, z) it is clear that the condi-
tion is satisfied if

∂zVeff(ρ = 0, z) = 0. (B2)

Figure 13 shows the dimensionless potential V (ρ =
0, z)/V0 (where V0 = e2/z0) for m = 0 as a function of the
dimensionless distance z/z0. At z = 0, we observe the usual
singular potential due to the nucleus-electron Coulomb in-
teraction. Also, it decays properly for z > 0. However, for
z < 0, the behavior of the effective potential is quite dif-
ferent due to the presence of the Weyl semimetal in the
lower half-space. Moreover, close the surface z = −z0, the
effective potential is dominated by the Coulomb attraction-
repulsion between the atomic electron and its image. For
example, for sgn(ε1 − ε2) = 1, the interaction is attractive
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FIG. 13. Scheme of the effective potential of Eq. (27) with m = 0
at ρ = 0, as a function of z for the two considered configurations of
the relative permittivities: (a) ε1 > ε2, and (b) ε1 < ε2. In panel (a),
zc indicates the critical point with its corresponding critical energy
Ec. The energies E1, and E2 are arbitrary bound states. The dots are
the turning points for each energy value.

[Fig. 13(a)], while sgn(ε1 − ε2) = −1 implies a repulsive in-
teraction [Fig. 13(b)]. The latter exhibits the usual behavior
of a Coulomb potential, so we concentrate on the former.
Nevertheless, it is clear that the repulsive effect shown in
Fig. 13(b) also has a critical distance so that close to the barrier
imposed by the WSM, the atom gets ionized.

In Fig. 13(a), it is clear the existence of a critical point
zc in the region between the nucleus and the WSM surface,
i.e., zc ∈ (−z0, 0), which is determined from Eq. (B2). Such
a critical point defines a critical energy Ec. Therefore, for
energies Ek < Ec there exist bound quantum states, similar
to the usual hydrogenic bound states. However, for Ek > Ec

bound states cannot be formed, and the wave functions given
in Sec. IV ceases to be valid. An indication of this is the
non-normalizability of the wave function.

On the other hand, from the effective potential one can
also understand the different behavior in the plots of the

FIG. 14. Critical points for the ground state z(g)
c , and the first-

excited state z(e)
c , each with its corresponding critical energy.

probability density. Let us consider three different values of
the energy, E1 < E2 < E3, with E3 � Ec. All of them define
two turning points, z1 > 0 and z2 < 0, so that the atomic
electron bounces back and forth between these positions. For
the energy E1 one finds that z1 > |z2|, such that the electronic
cloud is repelled by the WSM half-space. For the energy E2

one gets z1 < |z2| and hence the orientation is inverted, i.e.,
the atomic cloud is now attracted towards the WSM. For the
energy E3, which is very close to the critical energy Ec, the
turning point z2 approaches the critical point zc. For an energy
slightly above the critical energy, the electron ceases to be
bounded and the atom becomes ionized.

The case of m = 1 can be achieved in a similar fashion.
The unique difference comes from the fact that the topological
term modifies the critical-point condition, i.e.,

0 = ∂zV
(e)

eff (ρ = 0, z)

= ∂zV
(e)(ρ = 0, z) + e2ε1h̄

μc

∫ ∞

0
dk

× α−k2e−k(z(e)
c +2z0 )

ε1(α2+ + α2−) + ε2k2 + kα+(ε1 + ε2)
, (B3)

where (e) means “excited,” and ∂zV (e)(ρ = 0, z) is the effec-
tive potential for m = 0.

The latter equation shows explicitly that the ground state
critical point z(g)

c is different from the excited state one z(e)
c .

Figure 14 shows the effective potential for m = 0 and m = 1,
with their corresponding critical points. As can be noticed,
|z(g)

c | > |z(e)
c | which means that the wave function normal-

ization for m = 1 is lost at larger distances from the WSM,
compared with the case m = 1. This is in concordance with
Fig. 9 and can be generalized for other excited states.
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