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Effective-mode analysis of the dynamics of weakly bound molecular systems
by an example of hydrogen-bonded water clusters
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A method for the analysis of internal dynamics of nonlinear weakly bound polymolecular systems based on
the effective-mode approach is proposed. The method enables one to estimate the number of the governing
collective degrees of freedom of the system of interest at a preset accuracy under particular conditions and
analyze the character of the modes depending on the activation energy of the system and the duration of its
dynamic propagation, which provides qualitative and quantitative information about the coupling of diverse
motions and the respective energy redistribution. The method is applied to the analysis of the dynamics of
small water clusters stabilized by hydrogen bonds, which are unique spectacular examples of the systems with a
pronounced coupling between the intramolecular and substantially delocalized intermolecular oscillations. The
dynamic trajectories were generated in the adiabatic approximation at the Born-Oppenheimer level with the
use of the quantum chemical description of selected clusters at the MP2/6−311++G(d, p) level. The initial
conditions corresponded to different variants of the excitation of low-frequency normal modes, and the dynamic
runs were carried out at a time step of 0.5 fs and the whole duration of 50 to 100 ps. Different prevailing characters
of the cluster dynamics were identified depending on the molecular size, the total activation energy, and the
mean potential-energy-increment to kinetic-energy-increment ratio, from an efficient accumulation of the excess
kinetic energy on the effective modes of the cluster to the dissociation of the cluster into constituting fragments.
The signs of the corresponding processes in the overlap matrices of the effective-mode vectors, kinetic-energy
distribution over the modes, and the correlation between the number of the modes and the mean kinetic energy
of the cluster are distinguished.
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I. INTRODUCTION

Fundamental problems people face when describing finite-
size weakly bound atomic and molecular clusters are related to
their dynamic and thermodynamic properties [1]. Estimation
of the dynamic characteristics of a cluster involves analyzing
those phase-space domains where the trajectory of the system
is chiefly localized, searching for the parameters that control
the system dynamics, and whenever possible distinguishing
characteristic collective motions of the particles that constitute
the system of interest and their spectral fingerprints.

Interpreting the inner dynamics of weakly bound atomic
and molecular clusters meets certain difficulties. The normal-
mode approach is typically valid in the energy ranges that are
not far from the energies of the equilibrium cluster structures
and within the configuration space domains in the vicinity of
these structures, because the strong nonlinearity of the system
dynamics results in a substantial mixing of all basic types of
motions.

Historically, the first results concerning the dynamics of
weakly bound atomic clusters were obtained for nonrotating
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clusters of noble gas atoms [2]. In the case of a rotat-
ing triatomic Ar3 cluster, the phase-space regions with the
predominant regular and chaotic dynamics were studied de-
pending on the total energy and total angular momentum
of the system [3]. A strong coupling between the rotational
and vibrational states within the chaotic dynamics region was
noticed.

In the case of more strongly bound molecular clusters, such
as those stabilized by hydrogen bonds (H-bonds), the dynam-
ics of relatively small- and medium-sized clusters composed
of water molecules [(H2O)n with n = 5–20] was studied
previously and aimed at identifying the most probable con-
figurations of the H-bond networks depending on the total
energy of the system or its temperature chiefly with the use
of empirical potentials [4–16].

Insofar as the interactions between particles in such clus-
ters are determined by nonquadratic potentials, the character
of the dynamic propagation of the system can and should
be governed by a varying number of modes, which are es-
sentially collective degrees of freedom. Even the seemingly
localized high-frequency intramolecular vibrational motions
can be substantially coupled both to each other when the
oscillating fragments belong to the neighboring H-bonded
molecules and to the lower-frequency vibrations due to the
multipleness of the frequencies (akin resonances in individual
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molecules between stretching and twice as excited defor-
mation oscillations). Such interactions should become more
noticeable with an increase in the excitation energy and gov-
ern the energy redistribution among various combinations of
basic vibrational motions. The signs and criteria of such re-
distribution are important not only in view of the particular
structure reorganization of the H-bonded species, which is
related particularly to their reactivity and absorbance of radia-
tion, but also for estimating the thermodynamic characteristics
of the systems as well. Thermodynamic parameters that are
used in the theory of clusters, namely, entropy, temperature,
and specific heat capacitance, are adapted from the classical
thermodynamics, and their changes enable one to identify
phase transitions. For example, the cluster temperature, which
is treated as an inner system parameter, can be defined as
the kinetic energy normalized to the number of vibrational
degrees of freedom [2,17].

Because of the strong coupling of all the motion kinds in
weakly bound systems, an approach based on the effective-
mode analysis (EMA) was proposed for describing the
dynamics of clusters, originally atomic ones. The method is
similar to the biorthogonal decomposition method described
in [18] and the Karhunen-Lòeve decomposition method de-
scribed, e.g., in [19,20]. It is worth noting that EMA,
biorthogonal decomposition, and Karhunen-Lòeve decom-
position can be treated as modifications of the principal
component analysis (PCA) proposed by Pearson in 1901 [21]
and efficiently implemented in diverse fields [22]. The essence
of PCA is in decreasing the dimensionality of data so that
the maximum possible amount of information is retained.
That is why the PCA method is applied to study collec-
tive motion in macromolecules, where the number of atoms
moving in a concerted way is very large. The method was
applied as quasiharmonic analysis for displaying the large-
scale low-frequency modes of proteins [23] and to estimating
the configuration entropy of macromolecules [24]. The PCA is
also typically used in determining the vibrational frequencies
of small molecules. For example, the principal mode analysis
(PMA) was applied [25] to the analysis of intra- and inter-
molecular vibrations of a water monomer, a water dimer, and
a water molecule in liquid water. The criteria for using the
PMA method for assessing the frequencies of oscillations in
molecular systems are discussed in [26]. It is argued that the
method can provide accurate frequencies when the interaction
potential of the particles in a molecule is harmonic and the ki-
netic energy is evenly distributed over all modes. The question
about the accuracy of calculated frequencies is also discussed
in [27] where the frequencies of intramolecular motions in a
water molecule are estimated with the use of two methods,
namely, the normal-coordinate approximation and the PMA.
The results show how to obtain characteristic frequencies for
each mode without invoking an assumption about the energy
equipartition. To decompose vibrational spectra of molec-
ular systems into modes, a variation of the effective-mode
method was suggested in [28]. Here, the effective normal-
mode method was based on a localization criterion for the
Fourier-transform velocity time-correlation functions of the
effective modes. It should be noted that the aforementioned
works dealing with the application of the PCA or its variations
to vibrational spectroscopy problems are usually restricted to

the classical descriptions of the nuclei interactions. In [29]
the authors extended the PCA method to quantum trajectories
to compute the infrared spectra of several polycyclic aro-
matic hydrocarbon molecules, such as naphthalene (C10H8)
and pyrene (C16H10). The authors also suggested a new ap-
proach called the self-consistent phonons (SCP) method. The
latter one is a practical approach for computing structural
and dynamic properties of a general quantum or classical
many-body system while incorporating anharmonicity. The
SCP method was later applied to classical Lennard-Jones
clusters [30].

Previously, we have used the effective-mode method as a
modification of PCA for the analysis of the internal dynamics
of a triatomic cluster composed of argon atoms to visualize
the motion of the cluster as a whole [31], distinguish the
phase-space regions with the predominant regular and chaotic
dynamics depending on the total angular momentum of the ro-
tating system [32–34], as well as separate the vibrational and
rotational components in the cluster dynamics [33]. In the case
of molecular clusters, the analysis of the effective phase space
becomes more complex because molecules involve atoms of
different masses, and there are intra- and intermolecular inter-
actions and effective motions of diverse kinds.

As regards the objects of investigation in this paper, they
deserve special attention. An interest in the dynamic char-
acteristics of the clusters composed of water molecules is
related to a number of fundamental problems. One of them
can be formulated as follows: what are the key characteristics
of the H-bond network in such species, which are interme-
diate between individual molecules and extended H-bonded
fragments in the bulk of a condensed phase [10,13,14,16,35]?
The characteristics include not only the static parameters of
the ordered arrangement of molecules, but also the dynamic
features of their collective motions, which are crucial for
their response to external effects; the stronger the impact,
the more pronounced the local reorganization, which can
later on spread over and touch the neighboring fragments of
larger species. For example, molecular clusters are interesting
and informative species for studying the phase transitions
in weakly bound molecular systems [36]. In this paper, the
effective-mode analysis is applied to the dynamics of small
water clusters composed of three to five molecules. Note that
the method of effective modes used by us is not limited to
relatively small variations of the stable cluster configurations,
as required by the calculation of the autocorrelation function
in the variant applied in [29], but allows us to study in detail
the dynamics of clusters within broad configuration space
domains.

The main object of this paper is to distinguish collec-
tive modes; estimate their composition with the use of the
normal-mode basis; follow the changes in their character,
number, and contribution to the dynamics of molecular water
clusters depending on the excitation energy of the latter; and
find out the quantitative indications of the particular structure
reorganization. The paper has the following structure. The
effective-mode approach is described in Sec. II. The results of
the analysis applied to the internal dynamics of tri-, tetra-, and
pentamolecular water clusters depending on the initial excita-
tion energy are discussed in Sec. III. Here, the character of the
activation and coupling of the modes depending on the total
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energy of the system is considered and aimed at identifying
general criteria of the character of cluster dynamics.

II. THE EFFECTIVE-MODE ANALYSIS IN THE CASE
OF MOLECULAR SYSTEMS

For interpreting a cluster dynamics, it is expedient to rep-
resent a phase trajectory as a superposition of apparently
independent contributions, each of which describes a partic-
ular collective motion of the atoms that constitute the whole
system of interest. For example, the dynamics of an N-particle
system close to its equilibrium configuration, which corre-
sponds to the potential-energy minimum in the vicinity of
which the small-amplitude approximation for the nuclear mo-
tions is valid, can be considered as a linear combination of
normal modes that are determined by independent equations
[37] and represent collective harmonic motions with constant
frequencies each.

However, when one turns to a cluster, the particles of which
are bonded via more or less weak intermolecular contacts
that are typically many-body in nature and characterized by
anharmonic potentials, and especially when the kinetic energy
of such a cluster increases, a linearized model is no longer
a satisfactory approximation. In this paper, it is proposed to
investigate the dynamics of systems with a strong nonlin-
earity based on the orthogonal components of the collective
motions defined as follows. The time-averaged squared norm
of the sum of m effective components should provide the
most accurate approximation for the time-averaged physical
property of the cluster, which can be given as a squared value
of a Hermitian operator. For this purpose, an effective-mode
analysis, which is a modification of the principal component
analysis, is used.

The basic idea of the effective-mode analysis as applied
to the dynamics of molecular clusters is the decomposition
of the system dynamics in an n-dimensional phase space into
orthogonal components (m = 1, 2, . . . , n) in such a way that
a linear superposition of m components (effective modes) pro-
vides the best possible approximation of a quadratic function
of the phase (position and/or momentum) coordinates.

Let us illustrate the effective-mode analysis by two exam-
ples. Let �x(t ) ∈ Rn (t ∈ [0, T ] is the time variable) be the
phase trajectory of a system in Rn phase space. The prob-
lem is formulated as follows: the �x(t ) trajectory should be
represented by an �x(t ) = ∑n

i=1 (�x(t ), �ei )�ei expansion in the
orthonormal {�ei} ⊂ Rn basis constructed in such a way that
any mth partial sum

�xm(t ) =
m∑

i=1

(�x(t ), �ei ) �ei (1)

approximates the �x(t ) trajectory in the time-averaged sense no
worse than any mth partial sum �x′

m(t ) = ∑m
i=1 (�x(t ), �e′

i ) �e′
i

of the expansion in any other orthonormal {�e′
i} ⊂ Rn basis.

Here, (·, ·) denotes a scalar product in Rn, and the quality of
the approximation is given by the time integral of the squared
norm of the �x(t ) and �x′

m(t ) difference. Formally, the orthonor-
mal {�ei} basis set can be obtained as the one that provides the
greatest lower bound of the following functional over all the

orthonormal basis sets in Rn:

inf
{�e′

i}⊂Rn

1

T

∫ T

0

∥∥∥∥∥�x(t ) −
m∑

i=1

(�x(t ), �e′
i ) �e′

i

∥∥∥∥∥
2

dt .

The solution can be found in terms of the principal compo-
nent analysis. To construct a {�ei} basis set with the specified
extreme properties, one should solve the eigenvalue problem
of a linear operator X : Rn → Rn, the action of which on any
vector

⇀

y ∈ Rn is defined as

X �y = 1

T

∫ T

0
�x(t )(�x(t ), �y)dt . (2)

The problem consists in determining the α2
1, α

2
2, . . ., α

2
n

eigenvalues and the corresponding �e1, �e2, . . ., �en ∈ Rn eigen-
vectors, such that X �ei = α2

i �ei, i = 1, . . . , n (the α2
i eigen-

values are written as squared αi real values to stress
their non-negativity). If the eigenvalues are ordered as
α2

1 � α2
2 � . . . � α2

n � 0, the corresponding {�ei} eigenbasis is
the one sought for. In this case, the following equalities are
met:

1

T

∫ T

0

∥∥∥∥∥
m∑

i=1

(�x(t ), �ei )�ei

∥∥∥∥∥
2

dt =
m∑

i=1

α2
i , (3)

1

T

∫ T

0

∥∥∥∥∥�x(t ) −
m∑

i=1

(�x(t ), �ei )�ei

∥∥∥∥∥
2

dt =
n∑

i=m+1

α2
i , m = 1, . . . , n.

(4)

When applied to a molecular cluster, Eq. (3) means that the
mth partial sum (1) has a squared norm value equal to the sum
of the first m eigenvalues of the X operator, which is maximum
among all mth partial sums, while Eq. (4) means that Eq. (1)
approximates the �x(t ) (t ∈ [0, T ]) trajectory with an accuracy
which equals the sum of the last (n-m) eigenvalues of the X
operator that is minimum among all the corresponding partial
sums. In practice, this makes it possible to distinguish a linear
subspace of the lowest dimensionality, which contains the
whole �x(t ) (t ∈ [0, T ]) trajectory at the preset accuracy. At the
same time, it is possible to estimate the fraction of the time-
averaged squared norm of the �x(t ) trajectory in the mth partial
sum (1), this fraction being SX,m = (

∑m
i=1 α2

i )/(
∑n

i=1 α2
i ).

Thus, the properties of the extreme orthonormal {�ei} basis
enable one to state that the whole �x(t ) (t ∈ [0, T ]) trajec-
tory can be represented by a sum of (�x(t ), �ei ) �ei effective
modes, the �e1, �e2, . . ., �en vectors of which are mutually or-
thogonal collective motion modes in Rn, while the time
dependent (�x(t ), �ei(t )) scalar products are the amplitudes of
the effective modes. The mean squared value of the ith ef-
fective mode equals α2

i , i = 1, . . . , n, and its contribution
to the time-averaged squared norm of the �x(t ) trajectory is
(α2

i )/(
∑n

i=1 α2
i ).

Thus, the effective-mode analysis does not essentially dif-
fer from the principal component analysis. However, the
variant proposed in this paper (which is on the whole similar
to the one described in [29]) implies the possibility of using
different metrics in the trajectory phase space, which enables
one to decompose the system dynamics into modes, which
meet extreme conditions not only in view of the squared norm
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of the trajectory, but also some other dynamic characteristics,
e.g., kinetic energy averaged over the trajectory. Additionally
it provides the means for distinguishing the changes in the
character of the governing effective modes with time depend-
ing on either the total duration of the dynamic run or particular
time intervals within the whole trajectory.

In fact, let us consider dynamics of an N-particle
system in a potential force field in a three-dimensional
space. Let m1, m2, . . ., mN denote the masses of particles,
q1(t ), q2(t ), . . ., q3N (t ) being their Cartesian coordinates and
p1(t ), p2(t ), . . ., p3N (t ) their momenta components. Here, the
first three q1(t ), q2(t ), q3(t ) position coordinates and the cor-
responding p1(t ), p2(t ), p3(t ) momenta are those of the first

particle; q4(t ), q5(t ), q6(t ) and p4(t ), p5(t ), p6(t ) are those of
the second particle; and so on. At any fixed t ∈ [0, T ] time
interval, the (q1(t ), q2(t ), . . ., q3N (t ), p1(t ), p2(t ), . . ., p3N (t ))
vector specifies a (�q(t ), �p(t )) element of a 6N-dimensional
R3N × R3N phase space, where �q(t ) ∈ R3N , �p(t ) ∈ R3N .

The problem consists in decomposing a trajectory as �q(t ) ∈
R3N or �p(t ) ∈ R3N into orthogonal components (modes) in the
corresponding R3N subspace so that the modes are ordered
according to the decrease in their time-averaged fractions of
the total kinetic energy. In order to reduce the problem of
determining the effective modes to the estimation of principal
components, it is reasonable to consider the mass-weighted
�p(t ) ∈ R3N trajectory:

(
p1√
2m1

,
p2√
2m1

,
p3√
2m1

,
p4√
2m2

,
p5√
2m2

,
p6√
2m2

, . . .,
p3N−2√

2mN
,

p3N−1√
2mN

,
p3N√
2mN

)
. (5)

Then, the squared norm of the vector at any t ∈ [0, T ]
is the instantaneous kinetic energy of the system, while the
time-averaged kinetic energy can be obtained by integrating
this squared norm divided by the total T duration. To be
able to apply the above formulas, one should simply replace

the �x(t ) trajectory in Eqs. (1) and (2) with the one defined
by Eq. (5).

In practice, vector (5) can be obtained by multiplying the
�p(t ) vector by a diagonal matrix with the following diagonal
elements:

(
1√
2m1

,
1√
2m1

,
1√
2m1

,
1√
2m2

,
1√
2m2

,
1√
2m2

, . . .,
1√
2mN

,
1√
2mN

,
1√
2mN

)
.

If the latter matrix is denoted as Ê1/2, then vector (5) can
be written as Ê1/2 �p(t ). And, as was already mentioned, the
squared norm of the Ê1/2 �p(t ) vector equals the kinetic energy

of the N-particle system: E = ‖Ê1/2 �p(t )‖2
, t ∈ [0, T ]. To de-

termine the orthonormal basis in R3N , which represents the
effective modes, let us decompose Ê1/2 �p(t ), t ∈ [0, T ], into
(Ê1/2 �p(t ), �gi )�gi components (�gi ∈ R3N , i = 1, . . . , 3N) with
the following properties.

(1) The mth partial sum

m∑
i=1

(Ê1/2 �p(t ), �gi )�gi (6)

determines the part of the Ê1/2 �p(t ) vector function, for

which 1
T

∫ T
0 ‖∑m

i=1 (Ê1/2 �p(t ), �gi )�gi‖2
dt is the time-averaged

kinetic energy of the system that is maximum among all∑m
i=1 (Ê1/2 �p(t ), �g′

i )�g′
i mth partial sums estimated for any or-

thonormal basis sets {�g′
i} ∈ R3N .

(2) The mth partial sum (6) approximates the time-
averaged kinetic energy of the system with the highest
accuracy among all the mth partial sums.

As follows from the above discussion, the desirable {�gi} ∈
R3N orthonormal basis set, which determines the effective
modes of the kinetic-energy decomposition, is the basis com-
posed of the eigenvectors of a linear operator G : R3N →
R3N , the action of which on any �z ∈ R3N vector is defined as

follows:

G�z = 1

T

∫ T

0
Ê1/2 �p(t )(Ê1/2 �p(t ), �z)dt

= 1

T

∫ T

0
Ê �p(t )( �p(t ), �z)dt, (7)

where Ê : R3N → R3N is a linear Hermitian operator,
whose matrix is diagonal in the natural basis of the R3N

space: Êc = diag{1/(2m1), 1/(2m1), 1/(2m1), . . ., 1/(2mN )).
Basis vectors {�gi} ∈ R3N should be ordered in such a
way that λ2

1, λ
2
2, . . ., λ

2
3N eigenvalues, which correspond to

�g1, �g2, . . ., �g3N eigenvectors, fit in the inequality series: λ2
1 �

λ2
2 � · · · � λ2

3N � 0. Thus, the system dynamics can be
treated as a superposition of (�q(t ), �gi )�gi effective modes with
the following properties.

(1) They meet the aforementioned extreme requirements.
(2) The time-averaged kinetic energy of a partic-

ular (�q(t ), �gi )�gi effective mode (i = 1, . . . , 3N ) equals
1
T

∫ T
0 (Ê1/2 �p(t ), �gi )

2
dt = λ2

i .
(3) The fraction of the time-averaged kinetic energy ac-

cumulated on m effective modes (�q(t ), �gi )�gi equals ϑm =
(
∑m

i=1 λ2
i )/(

∑3N
i=1 λ2

i ).
To finish the discussion, let us add three comments.
Comment 1. The method can be used for constructing

effective modes that enable one to decompose the system
dynamics in the extreme approximation for any time-averaged
Q(t) dynamic parameter of the �x(t ) ∈ Rn trajectory, which can
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FIG. 1. (a) The optimum structures of a water trimer, tetramer, and pentamer and (b) the shapes of active normal-mode vibrations (from
left to right): twisting, pleating, canting, and breathing combined with rocking.

be estimated at any time moment based on the phase trajectory
data as follows: Q(t ) = ‖Q̂1/2�x(t )‖2 = (�x(t ), Q̂�x(t )), where
Q̂ = (Q̂1/2)

∗
Q̂1/2 : Rn → Rn, the star denotes the conjugation,

and Q̂1/2 : Rn → Rn is a linear operator.
Comment 2. The above variant Ê1/2 �p(t ) is especially rea-

sonable for the analysis of the character of the governing
effective modes within diverse time intervals as related to
the coupling of normal modes and the energy redistribution
among them in the system of interest due to the same mass-
weighted definition of the coordinates.

Comment 3. If the phase trajectory is defined as a
set of values at discrete time moments tk = (k−1)�, k =
1, 2, . . . , K , then matrix elements of the X linear operator
defined according to Eq. (2) are Xi j = 1

K

∑K
k=1 xi(tk )x j (tk ),

i, j = 1, . . . , n, while the elements of the G linear opera-
tor defined by Eq. (7) are Gi j = 1

K

∑K
k=1

pi (tk )p j (tk )
2
√

m[(i−1)/3]+1m[( j−1)/3]+1
,

i, j = 1, . . . , 3N , where [z] is the floor function of z. Sub-
scripts in the denominator are selected in such a way that
p3s−2, p3s−1, p3s momentum components of the sth particle
are divided by

√
2ms, s = 1, . . . , N .

In this paper, the effective modes that provide the most
accurate approximation of the kinetic energy of a cluster are
considered. The Neff number of the effective modes is esti-
mated as follows:

Neff = exp

⎛
⎝−

N∑
j=1

θ j · ln ( θ j )

⎞
⎠. (8)

Here, θ j = 〈Ej [ �p(t )]〉
E is the kinetic-energy fraction

(〈Ej[( �p(t ))]〉) accumulated in the jth mode normalized
to the E kinetic energy of the cluster averaged over the whole
trajectory.

III. MODEL SYSTEMS AND TRAJECTORY GENERATION

As was mentioned above, water clusters are interest-
ing subjects for the effective-mode analysis, because they
are stabilized by hydrogen bonds, which, on one hand, are

intermolecular interactions of weak or moderate strength and
substantial anharmonicity and, on the other hand, provide
collective effects that inevitably should be manifested in the
peculiarities of cluster dynamics. To test the method proposed
and demonstrate its possibilities in drawing meaningful con-
clusions about the character of collective dynamics, small
(H2O)n clusters composed of three to five water molecules
were selected (Fig. 1). The dynamic trajectories were gen-
erated in Born-Oppenheimer molecular dynamic simulations.
Despite the large number of various-level semiempirical po-
tentials up to the advanced variants including polarizable
Thole type model and atomic multipole optimized energetics
for biomolecular applications variants and explicit many-body
polarizable potential families [38], we opted for the nonem-
pirical potential, which can be estimated as a solution of the
electronic Schrödinger equation and implies the absence of
any predefined force field components. The reason for that
lies in the possibility of unrestricted variations in the mutual
arrangement of the nuclei up to the dissociation of the system
into particular components accompanied by the corresponding
electron density redistribution, which is impossible in terms
of any parametrized model. For solving the equation, the
second order of the Møller-Plesset perturbation theory was
used. The method was repeatedly proved to be adequate for
the description of hydrogen-bonded systems that involve the
first- and second-row elements of the periodic table. The basis
set used was of the triple-zeta quality, namely, 6–311G aug-
mented with diffuse and polarization functions on all nuclei
[6−311++G(d, p)], which is sufficiently flexible to provide a
reliable description of the electron density redistribution upon
the formation, distortion, or breakage of hydrogen bonds and,
at the same time, sufficiently compact to eliminate the linear
dependence of basis functions.

The dynamic trajectories were generated as follows. At
first, optimum configurations of the clusters were found
[Fig. 1(a)], and their correspondence to the true minima was
proved by the normal-coordinate analysis. Thus, at the starting
point, information about the normal modes of the clusters
was available. Different variants of the initial conditions of
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TABLE I. Model water clusters and their initial excitation ener-
gies (Eexc, kcal/mol).

Eexc 3.6 7.2 10.7 14.3
(H2O)3 Notation W3_1 W3_2 W3_3 W3_4

Eexc 6.2 12.3 18.5 24.6
(H2O)4 Notation W4_1 W4_2 W4_3 W4_4

Eexc 7.6 15.2 22.7 30.3
(H2O)5 Notation W5_1 W5_2 W5_3 W5_4

the dynamic propagation were considered, but all of them
mimic an excitation that is possible under particular thermal
conditions, which was provided by the excitation of those
normal modes solely whose frequencies fall below 210 cm−1.
The modes in this spectral range are all strongly delocalized
and represent diverse distortions of the model cluster rings,
namely, breathing (extension and contraction), canting, twist-
ing, pleating, and rocking of molecules [schematically shown
in Fig. 1(b)]. A small portion of the translational motion was
also supplied to the cluster at the accurately zero rotational
momentum. Such excitation predetermines the initially nearly
uniform excess energy distribution over the whole cluster, so
that any drastic reorganization of the cluster can only be a con-
sequence of a substantial energy redistribution, particularly its
accumulation on a few degrees of freedom, which makes it
possible to retrieve information about the coupling of diverse
modes and the corresponding energy flows. Series of exci-
tations of a regularly increasing energy were considered for
each cluster. The excitation energies involved in the analysis
and the corresponding notations of dynamic trajectories are
listed in Table I.

Several aspects should be noted. First of all, the number
of normal vibrations that obey the above criterion increases
with an increase in the number of water molecules involved
in the cluster and equals 6 in a trimer, 10 in a tetramer, and
14 in a pentamer. Therefore, even the lowest initial excitation
energy normalized to the number of molecules increases from
1.2 kcal/mol in a trimer to ≈1.5 kcal/mol in a tetramer
and a pentamer. Next, an average H-bond energy, which was
estimated as the total dissociation energy of the cluster into
individual water molecules divided by the n number of bonds
(or, equally, the number of molecules) also changes with the
cluster size, being equal to 5.0, 6.5, and 6.8 kcal/mol at n = 3,
4, and 5. As one can see, already Wn_2 trajectories formally
meet the conditions when the total energy accumulated by the
cluster is sufficient for the breakage of at least one hydrogen
bond. The latter process requires the localization of energy
on particular vibrational degrees of freedom, but the initial
excitation energy, as was already stressed above, was always
quite uniformly distributed over all the molecules involved,
which made the dissociation unlikely at least within the initial
period of dynamic propagation. At the same time, the highest
excitation energy in the case of all the clusters considered is
already sufficient for the decomposition of the clusters with
the formation of more or less independent fragments. Thus,
the conditions involved in the consideration enable one to
judge not only the character of the excess energy redistribu-

tion within the cluster and, hence, the character of the most
meaningful effective modes, but also the possibility of the ex-
cess energy localization on particular degrees of freedom that
may lead to the dissociation. The conclusions drawn below are
based on the results of the dynamic propagation of water clus-
ters at the aforementioned initial conditions with the whole
lengths of trajectories of 50 to 100 ps at time steps of 0.5 fs,
which was found to be the largest possible value that provided
the energy conservation even at the highest activation energy
considered. At the same time, it is quite small, providing not
as substantial shifts in the positions of all the nuclei. The
smaller values may be necessary only for constructing reliable
dipole moment or polarizability dependences on the effective
structure coordinates, but insofar as the investigation was not
aimed at constructing absorption or scattering spectra of the
systems, the smaller steps were not required.

IV. DYNAMIC EFFECTS IN SMALL WATER CLUSTERS
IN TERMS OF THE EFFECTIVE-MODE ANALYSIS

First of all, it is expedient to analyze the activation of
modes for all the clusters depending on their initial excitation
energy. This characteristic can be deduced from the distribu-
tion of the trajectory-averaged kinetic energy of the cluster
over the effective modes. For a water trimer, the effect is illus-
trated by Fig. 2. The numbers of effective modes depending on
the mean kinetic energy were estimated according to Eq. (8). It
is worth noting that the total number of the degrees of freedom
of the trimer equals 27, but three of them correspond to the
rotational motion, which is not activated in the dynamic runs
under consideration. Therefore, the maximum possible num-
ber of active degrees of freedom, including the translational
motion, is 24. As follows from Fig. 2(b), it is nearly reached
at the highest excitation energy considered. At the same time,
when the energy is by half and by a third smaller, the number
of effective modes is nearly the same, which is in full agree-
ment with the character of the kinetic-energy distributions
[Fig. 2(a)]. Furthermore, with an increase in the overall exci-
tation of the cluster, the distribution gradually approaches the
one when the trajectory-averaged energy accumulated on each
of the largest number of modes, namely, 18 (which is only by
three smaller than the number of the vibrational degrees of
freedom), is nearly the same, an average of ≈4.1% (falling in a
range of 3.7 to 4.5%). Accordingly, the potential-energy incre-
ments of the cluster again averaged over the 50-ps trajectories
(〈�Epot〉) increase from ≈1.9 to 9.3 kcal/mol (Table II) with
an increase in the excitation energy (Table I). Naturally, these
are mean values, and the actual potential-energy oscillations
around them are quite large. These oscillations reflect how
substantial the structure changes can be due to the temporary
localization of the kinetic energy on particular degrees of
freedom, and this aspect is touched upon in detail below, while
the averaged values characterize the mean distortion level of
the cluster. This level naturally increases with an increase in
the initial excitation, but, as follows from the data of Table II,
it is not proportional to the latter. It increases from an average
of 55% for trajectories W3_1, W3_2, and W3_3 to 65% for
W3_4, which means that the highest excitation corresponds
to the strongest time-averaged distortion of the cluster, which,
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FIG. 2. (a) The effective-mode distribution of the kinetic energy of a water trimer averaged over the whole trajectory at different initial
conditions (see Table I), (b) the corresponding number of effective modes, and (c), (d) the effective-mode distribution of the mean kinetic
energy within 5-ps intervals (c) for W3_1 and W3_2 trajectories within the first 5 ps of propagation and (d) for the W3_3 trajectory within all
5-ps intervals.

hence, has a lower additional kinetic energy (normalized to
the number of degrees of freedom) at its disposal.

What happens to the trimer structure at the above exci-
tations? This is clearly illustrated by the shapes of effective
motions (represented by the corresponding eigenvectors gi;
see above) that prevail within different time intervals. When
the smallest activation energy (≈3.6 kcal/mol) is supplied
to the cluster [Fig. 2(c)], the highest eigenvalues correspond
to breathing, swinging, canting, and two rocking motions
coupled to swinging. Judging from the overlap integrals of
the effective and normal-mode vectors, each effective mode
can be considered as a superposition of the basic normal
motions. Moreover, it is impossible to distinguish the leading
contributions of particular normal modes, because typically
the largest amplitudes fall in a range of 0.15 to 0.70, so that 6

TABLE II. Trajectory-averaged potential-energy increments
(〈�Epot〉, kcal/mol) of the model clusters.

Trajectory W3_1 W3_2 W3_3 W3_4
(H2O)3 〈�Epot〉 1.9 3.9 6.1 9.3

Trajectory W4_1 W4_2 W4_3 W4_4
(H2O)4 〈�Epot〉 3.4 6.9 11.14 16.2

Trajectory W5_1 W5_2 W5_3 W5_4
(H2O)5 〈�Epot〉 4.0 8.3 13.1 18.5

to 12 coupled oscillators determine each effective distortion
character. As a result, these coupled motions predetermine
the general structure transformations. The governing effective
modes themselves change their roles, which is manifested
in the structure of the overlap matrices of the modes that
characterize the dynamic changes in the cluster within suc-
cessive 2-ps-long intervals. At this lowest excitation of the
trimer, the top left 9 × 9 block of the matrices can distinctly be
distinguished (the corresponding elements are at least an order
larger than the residual ones in the same rows and columns
of the matrix) within the first 10 ps of the dynamic prop-
agation, which means that the governing motions preserve
their character, but a certain energy redistribution between
the modes takes place. Accordingly, OHf fragments (where
the f subscript denotes a “free” hydrogen atom uninvolved
in hydrogen bonds) of the molecules are flipping from time
to time, typically in pairs or sequentially, so that the one
initially located above the oxygen plane becomes oriented
downwards, while an adjacent one changes its location in an
opposite way. As a result, all three Hf atoms can be found
sometimes at the same side of the oxygen plane, which is
untypical of an energetically favorable arrangement. Swinging
motions distort hydrogen bonds between the molecules from
time to time, but the latter are always quite rapidly restored,
and the amplitude of the motions is insufficient for such a
reorientation of the molecules that may provide the inversion
of the H-bond sequence from clockwise to counterclockwise.
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The corresponding changes proceed in a kind of waves over
the cyclic trimer.

Generally similar trends can be noticed in the dynamics
of the trimer at twice as large excitation (W3_2 trajectory),
which corresponds to twice as high mean kinetic energy
localized on the effective modes and nearly twice as large
potential-energy increment. Hence, the amplitudes of breath-
ing, canting, and swinging motions mixed with rocking in
the latter case [which correspond to five highest eigenvalues,
Fig. 2(c)] are noticeably larger. Additionally rocking com-
bined with wagging (two next eigenvalues) begins to play a
substantial role. All these effective motions provide such an
amplitude of OH oscillations that the protons involved and
uninvolved in a hydrogen bond can swap around, though the
direction of bonding remains the same. The latter is predeter-
mined by the fact that the excitation energy is sufficient for
the swapping within only one molecule at a time.

When the additional total energy is still nearly by half
higher (W3_3) but distributed at a close mean potential-
energy-increment to kinetic-energy-increment ratio, the same
kinds of motions correspond to the eigenvalues that fall in a
still narrower range [Fig. 2(d), 1–5-ps interval], which reflects
their nearly concurrent activation. This variant of the excess
energy distribution provides much quicker swapping and half
rotation of molecules so that hydrogen bonds between them
are noticeably weakened, and already by 2.5 ps one of them
is broken, and the whole cluster transforms into a bended
chain. However, the chain survives for no more than 0.5 ps,
and the closed trimolecular ring is restored. Later on, such
more or less complete folding and unfolding of the chain
into the ring and backwards takes place in ≈1 ps. No other
principal changes can be noticed in the dynamics of the cluster
compared to the W3_2 trajectory, and this fact correlates quite
well with nearly the same character of the kinetic-energy
distribution in the effective modes for these two situations
[Fig. 2(a)] and is reflected in apparently the same number of
the effective modes that do determine the character of motions
[see Figs. 2(c) and 2(d)], but a slightly higher mean kinetic
energy provides conditions for more noticeable distortions
[Fig. 2(b)].

If we now analyze the time dependence of the
kinetic-energy distributions within successive 5-ps intervals
[Fig. 2(d)], an interesting peculiarity can be noticed. The re-
sulting mean energy distribution characterized by an extended
plateau [Fig. 2(a)] gradually arises from the steeper descend-
ing curves, each of which has much in common with the mean
energy distribution in the case of W3_1 trajectories or with
the distribution for the initial 5-ps time interval [Fig. 2(c)].
However, the leading effective modes (that correspond to the
highest eigenvalues) are replacing each other with time. For
example, the leading breathing modes activated from the very
beginning of the dynamic evolution (in the first 5 ps) fully
restore their role only by 45 ps. In between, the alternating key
modes are of the swinging (5–10 and 20–25 ps) and distortion
(10–20 and 25–30 ps) kinds, which concurrently contribute
to the dynamics in a 30–40-ps interval. As a result, the excess
energy transfer between different sets of effective modes upon
integration over the whole time interval produces a picture of
a nearly uniform mean energy distribution in diverse effective
modes.

Further increase in the excitation energy (W3_4 trajectory)
adds to the possibilities of the molecules in their concurrent
but nearly independent (due to the increased intermolecular
distances) large-amplitude oscillations, which can result in
local reorientations of molecules and the concurrent inversion
of the H-bond directions between them. Such a reorganization
in combination with the weakening of the residual bonds en-
ables the transformation of the ringlike structure into an open
chain, which having passed through a straight-line configura-
tion can bend the other way, which corresponds to the formal
reordering of molecules within the ring. With time, a similar
transformation cycle becomes possible for any molecule as
central in the transient chainlike configuration, which results
in all possible permutations of molecules in the closed struc-
ture. When not only one but simultaneously two hydrogen
bonds are weakened, the trimer apparently dissociates into a
more or less distorted dimer and a monomer, and such a re-
peated process becomes prevailing after 10 ps of the dynamic
evolution. The corresponding averaged (over 2- to 3-ps inter-
vals) configurations of the cluster can be represented by not
as substantially bent trimolecular chains or combinations of a
dimer and a monomer at different mutual orientations. These
transformations (partial breakage of intermolecular bonds
leading to the visible permutations of molecules) are possi-
ble due to the increased mean potential-energy-increment to
kinetic-energy-increment ratio (65% compared to the above
values of 53 to 57%). The corresponding additional degree
of freedom is clearly reflected by the increased number of
effective modes of the cluster [Fig. 2(b)] at the more uniform
energy distribution in the larger number of modes [Fig. 2(a)].

In the case of the tetramer, the activation of modes and their
involvement in the 50-ps dynamics are illustrated by Fig. 3. It
is worth noting that here the mean potential-energy to kinetic-
energy ratios (Table II) are higher than those typical of the
trimer, namely, as the excitation energy increases, the mean
potential-energy increment increases from 55 and 56% in the
case of W4_1 and W4_2 trajectories to 60 and 66% in the case
of W4_3 and W4_4 trajectories. Therefore, though the ob-
served trends are generally similar to those distinguished in
the case of the trimer, there are certain differences. First of all,
there is no such scattering of the mean kinetic energy even at
the lowest excitation energy. Next, the system with the high-
est excitation energy (W4_4 trajectory) is characterized by a
very pronounced plateau of the distribution function, which
corresponds to as much as 27 degrees of freedom (similar to
that in the trimer taking into account the total numbers of the
degrees of freedom of these clusters), the contributions of each
of which to the total mean kinetic energy fall in a very narrow
range of 2.6 to 3.3%, being equal on the average to 2.9%.
The largest possible number of translational and vibrational
degrees of freedom is activated at the highest excitation en-
ergy of the cluster, which shows again that the conditions
selected are sufficiently broad to deduce valuable information
about the cluster dynamics. And these dynamics changes with
an increase in the activation energy are as follows.

At the lowest excitation energy (W4_1 trajectory), which is
≈1.55 kcal/mol per molecule (compared to 1.2 kcal/mol for
the trimer in the W3_1 run), the structure changes are driven
from the very beginning by the following effective modes
[in the decreasing order of the corresponding eigenvalues,
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FIG. 3. (a) The effective-mode distribution of the kinetic energy of a water tetramer averaged over the whole trajectory at different initial
conditions (see Table I), (b) the corresponding number of effective modes, and (c), (d) the effective-mode distribution of the mean kinetic
energy within 5-ps intervals (c) for W4_1 and W4_2 trajectories within the first 5 ps of propagation and (d) for the W4_3 trajectory within all
5-ps intervals.

Fig. 3(c)]: breathing, pleating (along the spatial diagonal of
the ring), and canting of rhombic and trapezoid characters of
the ring, as well as two swinging and two rocking motions
of the molecules. The larger amplitudes of the oscillations
correlate well with the larger mean potential-energy increment
(≈55%); however, the total excitation energy is insufficient
for drastic changes within the bonded cluster. Upon the twice
as large activation of the cluster that corresponds to the mean
activation energy per molecule of ≈3.1 kcal/mol, which is
intermediate between those typical of W3_2 and W3_3 trimer
dynamic runs, a slightly different ranking of the effective
modes in the first 5 ps of the dynamic propagation can be
noticed. The contributions of pleating and breathing distor-
tions of the molecular ring become nearly equal at a level
typical of canting in the lower-energy dynamics [Fig. 3(c)],
pleating being the leading among them. The next effective
modes are combinations of swinging, rocking, and breathing
motions with varying weights. Here, changes in the charac-
ter of the governing effective modes deserve mention. The
structure of the overlap matrix of the effective-mode vectors
within successive 2-ps intervals changes as follows. Up to
6–8 ps, the whole matrix and even its top left corner block
are noticeably sparse (the largest nondiagonal elements are
0.4 to 0.8 compared to the diagonals that vary from 0.02 to

0.4). Within the subsequent 6 ps, the overlap matrix becomes
gradually less sparse, and by 20 ps its top left 8 × 8 block is
nearly tridiagonal (in a sense that the corresponding elements
are ≈0.5–0.8 and, thus, at least half an order larger than the
residual ones). Then, a second round of energy redistribution
takes place, which ends by 24–26 ps, which is again mani-
fested in the nearly tridiagonal 8 × 8 block. And so on. As
a result, the temporary breakage of some hydrogen bonds
becomes possible due to either the breathing of the ring or the
swinging of molecules at certain time intervals predetermined
by particular kinetic-energy transfer within the cluster. Here,
the flipping of molecules typical of the trimer in its W3_2
trajectory is already accompanied by swapping noticed in the
case of W3_3 evolution, which shows that such changes be-
come possible when the excitation energy, which is formally
lower when normalized to the number of molecules, can be
redistributed within the cluster and accumulated on the proper
degrees of freedom of a particular particle. Note that the mean
potential-energy increment per molecule in the case of the
W4_2 trajectory is 1.7 kcal/mol compared to 1.3 and 2.0 in
the case of W3_2 and W3_3 sets of trajectories for the trimer.
Such a redistribution takes place due to the correlation in the
states (particularly, vibrational states) of the molecules bound
via hydrogen bonds to each other. Naturally, in the absence
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of such interactions, the necessary consistent flowing of the
kinetic energy would be impossible.

The next set of trajectories (W4_3) corresponds to still
higher activation energy, ≈4.6 kcal/mol per molecule, which
is already close to the normalized activation energy supplied
to the trimer at its highest excitation (4.8 kcal/mol). However,
here the mean potential-energy increment is lower, ≈60 vs
65% in the trimer. Therefore, quite expectedly, local distor-
tions of the tetramer are driven by temporary breakages of
hydrogen bonds and the respective reorganization in the mu-
tual arrangement of molecules. According to the temporarily
prevailing mean configuration of the cluster, the weights of
some effective modes increase, while those of some others
decrease. For example, the reciprocal shifts of molecules that
dominate in the first 5-ps interval give the pass to pleating
within 5–10- and 10–15-ps intervals, the prevalence being
sometimes quite substantial [see curves in Fig. 3(d)]. Here,
it is worth noting that in the trimer the breakage of a hydro-
gen bond results in the opening of the trimolecular ring and
the decrease in the total number of intermolecular contacts
by 1. In the tetramer, the breakage of one hydrogen bond
within a ring is typically accompanied by the closing of a
trimolecular cycle, the fourth molecule being kept attached to
a vertex of the triangle via the already existing unbroken bond.
The unchanged number of hydrogen bonds predetermines the
aforementioned smaller potential-energy increments, which
nevertheless enable not only flipping, but also swapping of
OH bonds in individual molecules. At the same time, the mu-
tual arrangement of the triangle and the fourth molecule may
be any between the nearly coplanar and pyramidal ones, the
latter being a transient between the two closed tetramolecular
ring configurations, which differ by a transposition of the two
neighboring molecules of the ring. This transformation can be
described quite reasonably already with a sole effective mode,
namely, the aforementioned pleating of the tetramolecular
ring along its diagonal. Taking into account that the mean
frequency of this effective mode is close to 30 cm−1, its exci-
tation can be estimated as nearly sixfold, which is actually
sufficiently high to promote the transformation of a nearly
planar quadrangle into a pyramid. Later on, the leading role
is transferred to effective modes that correspond chiefly to
moderate-amplitude breathing of the cluster with frequencies
about four times as high as that of the pleating motion.

Thus, the larger the number of intermolecular contacts
between molecules, the broader the possibilities for the re-
arrangement of the latter at nearly the same mean excitation
energy per molecule and the close potential-energy-increment
to kinetic-energy-increment ratio. However, a drastic reorga-
nization can take place only when a sufficient kinetic energy
is localized on proper degrees of freedom, which becomes
a progressively rarer event with an increase in time when
the mean energy distribution becomes more uniform, and the
leading effective modes are more strongly delocalized [see
Figs. 3(c) and 3(d)]. Nevertheless, the possible formation of
different structures stabilized by the same number of hydrogen
bonds promotes permutations of molecules in the tetramer
at an activation energy per molecule lower than that found
necessary in the case of the trimer (≈4.6 vs 4.8 kcal/mol).

At still higher activation energy (W4_4 trajectories), all
the transformations described above become possible already

within the first 1.5 ps of the dynamics. Moreover, the re-
sulting transpositions of molecules are accompanied by the
inversion of the hydrogen-bond sequence from clockwise to
counterclockwise, and transient configurations may be either
chainlike or pyramidal, or elongated rhombic with an interlink
(which makes the structure resemble two fused triangles), or
a triangle with a side molecule. Such changes result from
various gradually interchanging combinations of effective
motions (wagging, swinging, and winging of all molecules)
with nearly the same mean kinetic energies: as one can judge
based on Fig. 3(a), this dynamic evolution is characterized by
the most uniform kinetic-energy distribution over the largest
number of effective modes. It is worth noting that the structure
averaged over the first 5 ps of the dynamics resembles a
combination of two dimers, which shows that there are certain
correlations in the states of the closest molecules in the system
despite their visible noticeable reciprocal shifts. Later on, the
effective averaged configurations resemble, for example, a
tetramolecular zigzag chain in 5–10- and 15–20-ps intervals
or a trimer with a side molecule in a 10–15-ps interval that
is replaced with two dimers in a 20–25-ps interval. In fact,
though the structures are visually different, the aforemen-
tioned correlation between the adjacent molecules in pairs is
always preserved.

If one turns to the pentamer, both certain similarities and
differences can be noticed. Although the initial activation
energies per molecule are close to the values of the tetramer
(Table I), the mean potential-energy increment differs
(Table II): it is an average of ≈54% for W5_1 and W5_2
trajectories and an average of ≈59% for W5_3 and W5_4
ones. Thus, the first two are similar to those of the low
excited trimer, while the two residual ones are smaller than
the largest values found in the case of both the trimer and
tetramer. As a result, the mean kinetic energy of the cluster is
as large as 2.4 kcal/mol per molecule in W5_4 dynamic runs
[Fig. 4(b)]. In general, the mean kinetic-energy distribution
demonstrates not as regular character as was typical of the
smaller clusters [Fig. 4(a)]. It does not approach a plateau
shape with an increase in the excitation energy: the trend is
broken for the W5_4 trajectory. Here, one can see a half-
bell-shaped distribution for the first five or six modes and a
descending slope for the next ten modes. This means that the
dynamic evolution of the cluster drastically differs from all
the residual situations. This conclusion is further supported by
the numbers of activated effective modes shown in Fig. 4(b).
As one can see, the initial gradual increase in the number of
modes, which was typical of the smaller clusters, is broken
at the highest excitation energy, and the number falls below
41. This is possible only if the cluster is decomposed into
smaller fragments, which do not rotate independently. This
idea is further supported by the kinetic energy of the cluster
[Figs. 4(c) and 4(d)], which increases after 30 ps in the case
of the W5_4 trajectory and remains constant at the lower
activation in the W5_3 run, as well as the analysis of the
structure transformations along the trajectory.

To be consistent, at the lowest activation energy (W5_1
trajectories), quite an expected overall breathing [that corre-
sponds to the highest eigenvalue, Fig. 5(a)] of the pentamolec-
ular ring is accompanied by moderate-amplitude canting of
three complementary shapes and twisting of the ring. Only
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FIG. 4. (a) The effective-mode distribution of the kinetic energy of a water pentamer averaged over the whole trajectory at different initial
conditions (see Table I), (b) the corresponding number of effective modes, and (c, d) the kinetic energy of the cluster along the trajectories (c)
W5_3 and (d) W5_4.

at this level (≈3.5% contribution to the total kinetic en-
ergy) wagging, swinging, and winging motions of molecules
appear. Such energy distribution results in flipping of OHf

functional groups from time to time, but nothing special takes
place compared to tri- and tetramolecular rings in agreement
with a little bit higher mean kinetic-energy fraction at a
smaller mean potential-energy increment, which reflects the
extent of structure distortions. A twice as large increase in the
activation energy (W5_2 trajectories) at the same potential-
energy-increment to kinetic-energy-increment ratio (Tables I
and II) provides a noticeable wavy motion of the ring: two
first canting effective modes are succeeded by three combi-

nations of breathing and twisting distortions, each (the two
former and the three latter) contributing a total of ≈6 to 7%
to the kinetic-energy distribution [Fig. 5(a)]. As a result, in
short-term averaged configurations (which resemble an open
envelope or a half chair when one molecule does not fall in
the plane of the four residuals), a protuberance (the molecule
which drops out of the plane) moves along the ring during
the dynamic run. Accordingly, hydrogen bonds between the
molecules become bifurcated from time to time when both OH
groups of one molecule are oriented toward an oxygen nucleus
of the neighboring molecule. Such transformations can be
viewed as incomplete or half swapping. Full swapping does

FIG. 5. The effective-mode distribution of the kinetic energy of a water pentamer averaged over 5-ps intervals for (a) W5_1 and W5_2
trajectories in the first 5 ps of propagation and (b, c) W5_3 and (c) W5_4 trajectories within all 5-ps intervals.
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not take place despite nearly the same mean dynamic charac-
teristics of penta- and tetramolecular rings. However, this is
in agreement with the kinetic-energy distributions in effective
modes, which are very close for W5_1 and W5_2 trajectories
[Fig. 4(a)] by contrast to smaller molecular rings where the
corresponding distributions noticeably differed [Figs. 2(a) and
3(a)]; namely, with an increase in the activation energy, the
kinetic energy accumulated on the leading effective modes
rapidly decreased to the mean level of the residual ones. Here,
the number of modes characterized by the energy percentage
above the plateau level reaches nearly 12 for the two sets of
trajectories.

A more uniform kinetic-energy distribution is reached
upon further increase in the activation energy (W5_3 tra-
jectories) when the aforementioned wavy distortion of the
pentamolecular ring transforms into more substantial structure
changes. The changes are driven by loosening of intermolec-
ular bonds. If one looks at the energy distribution depending
on time within 5-ps intervals along the trajectory [Fig. 5(b)],
a previously untypical narrow half-bell-shaped segment in the
kinetic-energy distribution within the first 5-ps interval can
be noticed, which shows that there are two effective modes
that play a key role in the dynamic onset. These modes are
breathings with mean frequencies of ≈160–175 cm−1 and
nearly equal percentages. Later on, the energy distribution
curves acquire a typical descending character, the highest
percentage being by a quarter smaller in the final 5-ps interval
and corresponding to an effective mode of wagging kind with
a frequency ≈350 cm−1. Moreover, within this interval, the
mean structure of the cluster is a restored bound pentamolec-
ular ring, and the resulting mean kinetic-energy distribution
[Fig. 4(a)] is even closer to a plateau shape than those in
the case of W4_4 and W3_4 trajectory sets. This can be
treated as another illustration of the collective nature of the
effective modes of H-bonded clusters, which provides a rapid
redistribution of the excitation energy.

In intermediate time intervals, the envelop flap molecule
in the overall ringlike structure may become either nearly
coplanar with the residual tetramolecular segment or find it-
self above it (which resembles a half-closed flap) or migrate
toward the opposite edge, thus pushing another molecule and
forcing it to acquire the role of a new flap. And all such
transformations proceed at the preserved coordination be-
tween the molecules. Note that here the mean kinetic-energy
increment (≈1.9 kcal/mol per molecule) is close to the largest
values observed in the dynamic trajectories of the trimer and
tetramer, but the large energy is quite well accumulated by the
cluster, which does not undergo any transformation leading
to a decrease in the total number of hydrogen bonds: a mean
potential-energy increment (Table II) is only 58% compared
to 65 and 66% in the trimer and tetramer under comparable
conditions.

However, the same collectivity of the dynamic states of
the cluster may lead to opposite and quite drastic changes
in its structure. As was mentioned above, the collective na-
ture of intermolecular bonds may predetermine the temporary
accumulation of large kinetic energy on particular degrees
of freedom at certain time moments, and if these degrees
correspond to the breakage of some coordinating bonds this
will definitely happen. This is the situation we face in the case

of W5_4 trajectories. Here, the activation of the cluster results
in the opening of a pentamolecular ring followed by various
structure transformations, nearly all of which provide the ex-
istence of one molecule coordinated to the residual system
via only one hydrogen bond. This system resembles a folded
zigzag (up to 10 ps), a twisted or almost flat ringlike tetramer
(from 10 to 20 ps), or a trimer with a side molecule when
the fifth molecule is attached to either the side one (20–25
ps) or another vertex of a triangle (25–30 ps). Accordingly,
the character of the first (leading) effective mode changes
with time [Fig. 5(c)] up to nearly 30 ps. Later on, a closed
tetramer and the fifth molecule, which is gradually departing
from it, constitute the molecular system, and a very pro-
nounced half-bell-shaped initial segment can be noticed in all
of the corresponding 5-ps-averaged kinetic-energy distribu-
tions. The prevailing effective modes are swinging oscillations
of the monomer and breathing, pleating, and twisting of the
tetramer ring. It is these motions that integrally contribute
to the aforementioned half-bell-shaped segment of the total
kinetic-energy distribution curve [Fig. 4(a)]. It is worth noting
that the long-term stable prevalence of the modes is clearly
reflected in the peculiar structure of the overlap matrices of
the effective-mode vectors, which characterize the dynamics
of the cluster in successive 2-ps intervals. By contrast to the
aforementioned situations when the matrices were more or
less sparse and the governing modes were more or less sub-
stantially coupled to each other and change their roles, here
the top left 10 × 10 block of the matrices undergoes quite reg-
ular changes with time after 30 ps. In its own block-diagonal
structure, the diagonal sub-blocks acquire a progressively
smaller dimensionality, so that by 100 ps already eight effec-
tive modes can be distinguished as persistently retaining their
character and contribution to the overall dynamics.

At the same time, the dissociation consumes a certain
portion of the excess energy, and the translational departure
of the monomer and tetramer also requires a certain fraction
of the kinetic-energy increment to be spent on it. Hence, the
subsequent changes within the tetramolecular ring are not as
drastic. And it is this dissociation that results in the abrupt
drop in the correlation dependence between the number of
effective modes and the mean kinetic energy of the cluster
[Fig. 4(b)]. This is clearly illustrated by the time dependences
of the number of effective modes (Fig. 6). When the cluster
dynamics is governed by the energy redistribution among al-
most all the effective modes, the leading roles being from time
to time switched between them, as in the case of W5_3 trajec-
tories, a nearly constant mean number of modes characterizes
the cluster dynamics [Fig. 6(a)]. However, when the character
of cluster dynamics is abruptly changed, as in the case of
W5_4 trajectories, the number of effective modes, which was
nearly constant up to the corresponding time moment, grad-
ually drops to the final value, which reflects the origination
of smaller subsystems that become nearly independent with
time [Fig. 6(b)]. The corresponding change can be followed
in more detail at shorter time intervals around the moment
when the cluster decay takes place [Fig. 6(c)]. Note that the
number of effective modes within short-term intervals is natu-
rally smaller than that within long-term intervals, because (as
was illustrated above) the characters of motions continuously
transform into each other, so that the leading modes repeatedly
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FIG. 6. The numbers of effective modes of a water pentamer within successive short-term intervals along the dynamics trajectories: (a),
(b) 5-ps intervals for (a) W5_3 and (b) W5_4 50-ps runs and (c) 0.5-ps intervals for the W5_4 run around and after the cluster decay.

replace each other with time. By 30 ps, the number of effective
modes rapidly drops at first to 27 and then below 24 and 23.
The drop is nonmonotonous, but rather wavy when a certain
energy redistribution over the increasing number of effective
modes is followed by a steep drop that corresponds to the
short-time accumulation of energy on the smaller number of
modes, which makes them process determining within 2- to
3-ps time intervals. This is what results in a drop in the afore-
mentioned integral correlation dependence shown in Fig. 4(b)
for the whole W5_4 trajectory when the increase in the total
kinetic energy of the system is accompanied by the decrease
rather than typical increase in the number of the effective
modes of the cluster.

V. CONCLUSIONS

The above analysis shows that the effective-mode approach
should by no means be considered as just an auxiliary instru-
ment in vibrational analysis or related statistical description
and estimation of the thermodynamic characteristics of the
systems of interest. It is an efficient tool of the quantita-
tive analysis of the key processes governing the dynamics
of weakly bound systems, particularly clusters stabilized by
hydrogen bonds, which are known to provide collective ef-
fects reflected in not only correlation between but essentially
coupling of the vibrational states of individual molecules. This
instrument enables one to quantify the dynamics at femto-
to picosecond scales and makes it possible to distinguish the
governing kinds of internal dynamics within different time
intervals; quantitatively follow the changes in their characters
(judged from the overlap matrices) and contributions to the to-
tal kinetic energy of the system; analyze particular couplings
of normal modes, which approximate the corresponding effec-
tive modes; and even suggest criteria that enable one to judge
the collectivity of dynamics and the persistency of particular
motions, as well as the overall stability of the system or its
decomposition into smaller fragments.

In the case of small water clusters considered, at the larger
number of molecules in the cluster stabilized by hydrogen
bonds, the same weighted activation energy (activation en-
ergy per particle) can lead to more noticeable local dynamic
changes because of the possibility of the consistent energy
redistribution within the cluster. Such redistribution can result
in the local temporary accumulation of the kinetic energy on
those effective modes that provide the key reorganization of

the structure. This would be impossible in the absence of a
hydrogen-bond network between the molecules. Such favor-
able energy distribution always follows a period when all the
molecules in the cluster were hydrogen bonded to each other,
being located at quite small O...H distances typical of ordinary
or even slightly shortened hydrogen bonds.

An ultimate variant of the reorganization is the dissociation
of the cluster system. It is reflected by a drop in the correlation
between the number of effective modes and the mean kinetic
energy of the system, because a substantial fraction of the
excess kinetic energy determines the translational motion of
the resulting fragments in opposite directions in space. At the
same time, the number of effective modes that provide the
dissociation can be judged from the half-bell-shaped first seg-
ment of the integral kinetic-energy distribution in the effective
modes.

The integral energy distributions can be supplemented with
the short-term (≈5 or 0.5 ps) distributions that enable one to
follow the time dependence of the dynamic changes. Here,
the same half-bell-shaped initial segments reflect the strong
predominance of particular structure changes predetermined
by a few key effective modes. Additionally, the short-term
distributions when compared to the integral curve enable
one to judge (even without analyzing the structure changes
along the trajectory) whether the leading effective modes
replace each other during the dynamic evolution or are acti-
vated concurrently. In the former case, the short-term curves
have clearly descending character, while the integral one in-
volves an extended plateau. In the latter case, the short-term
dependences themselves involve a larger or shorter plateau
segment.

At the same time, if one turns to the correlation dependence
between the number of effective modes and the mean kinetic
energy of the cluster, the existence of a plateau segment in it
means that the prevailing character of the dynamics is nearly
the same despite the increase in the mean kinetic-energy in-
crement. In this situation, the actual dynamics is characterized
by larger amplitudes of motions, which nevertheless do not
result in drastic changes in the organization of the cluster
system. An additional indication of the unchanged character
of the dynamics is the close kinetic-energy distribution over
the effective modes when nearly the same number of modes
provides comparable contributions.

The more extended the plateau in the kinetic-energy dis-
tribution over the effective modes the more uniform the
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excitation of the larger number of different effective modes; in
the case of clusters stabilized by hydrogen bonds, this should
be reflected in more or less noticeable consistent changes
in the mutual arrangement of molecules, which keep their
coordination to the neighbors, and, in this way, provide the
survival of the whole bonded structure. The larger the number
of molecules in the cluster, the larger the activation energy

that can be redistributed over the effective modes and, thus,
accumulated by the unbroken cluster.
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