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Resonance energy transfer between chiral molecules can be used to discriminate between different enan-
tiomers. The transfer rate between chiral molecules consists of nondiscriminatory and discriminatory parts. We
derive these two rate contributions in the framework of macroscopic quantum electrodynamics. We show that
their ratio is usually larger in the retarded regime or far zone of large separation distances and that the degree of
discrimination can be modified when considering a surrounding medium. We highlight the importance of local
field effects onto the degree of discrimination and predict for general identical chiral molecules the optimum
dielectric medium for discrimination. We apply our results to 3-methylcyclopentanone and show that exotic
media can even invert the discriminatory effect.
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I. INTRODUCTION

A key feature of macroscopic quantum electrodynamics
(QED) [1,2] that proves advantageous when it is deployed
is that it is able to treat objects that are large relative to the
atomic scale such as plates, slabs, and other geometrical bod-
ies. Another benefit is that it also accounts for the presence of
an environment. The surroundings, for example, may be taken
to be purely electric or magnetic, or a combination of the two
as in a magnetodielectric medium, or even be chiral. Notewor-
thy successful early applications of the formalism included the
calculation of Casimir–van der Waals forces [3–5]. Recently, a
number of other problems that require the use of the quantum
properties of light have been tackled. Some of these have
covered the generation of hybrid light-matter (polaritonic)
states via ultrastrong coupling, including those due to the
presence of a cavity, and its influence on chemical reactivity
[6–12], the simulation of molecular emission power spectra
[13–15], modeling Auger decay and interatomic Coulombic
decay [16–21], as well as predicting discriminatory optical
forces occurring between chiral systems [22–28]. Another
important interparticle process that has been considered, and
which is of wide-ranging scientific and technological interest,
is resonance energy transfer (RET) [29,30], in what was an
early application in chemical physics of the polariton concept
[31,32]. Subsequent effort has explored the role of a third
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body in mediating migration of energy in a dielectric medium,
the different pathways that may ensue, and the interesting
coherence and decoherence effects this gives rise to [33–35].
This has extended a large body of work (see the references
cited in a couple of recent reviews [36,37]) in which the
RET phenomenon has been evaluated and fully understood
using molecular QED theory [38–41], where in contrast to
macroscopic QED, the Maxwell fields propagate and are
quantized in free space instead of in a medium. Conveyance
of electronic energy takes place via the exchange of a single
virtual photon [42] between emitter and absorber species, and
the rate is computed perturbatively using the Fermi golden
rule.

A novel feature emerges on relaxing the common electric
dipole approximation. Including the magnetic dipole cou-
pling term enables a discriminatory contribution to the pair
transfer rate to occur which applies to migration of energy
between two chiral molecules [43,44]. Replacing one of the
enantiomers of the pair by its antipodal form changes the
sign of the discriminatory contribution. This makes RET a
candidate for the development of a new chiral discrimination
technique. While chiral molecules possess similar to identi-
cal physico-chemical properties, such as boiling and melting
points, solubility, and absorption spectra, they can have very
different biological properties especially when interacting
with other chiral objects. In particular, for chiral drugs, the
different enantiomers may have very different effects on the
human body. As roughly 56% of all drugs in the pharmaceu-
tical industry are made up of chiral molecules, measuring and
controlling the excess of one enantiomer in a mixture of chiral
molecules is a key aim [45].
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FIG. 1. Scheme of the considered setup: Two chiral molecules, one excited (donor) and one in its ground state (acceptor), undergo
resonance energy transfer. The donor’s handedness is assumed to be known while the acceptor’s handedness could be either left or right.
We place the system inside a medium and take local field effects and screening corrections around the donor and the acceptor into account.

In this work we employ the formalism of macroscopic
QED to calculate the RET rate between a chiral donor and
a chiral acceptor in a magnetoelectric medium. On choos-
ing conditions appropriate to a vacuum electromagnetic field,
previous free-space QED results are recovered. Screening
corrections and local field effects are taken into account by
utilizing a real cavity model to treat the influence of a sur-
rounding medium, extending electric dipole-dipole transfer
in a dielectric medium [32] to the important case of chi-
ral molecules exchanging energy in a complex environment.
Interestingly, it is found that the discriminatory rate may
be enhanced in a magnetoelectric medium. Conditions when
this occurs are investigated. The theory developed is applied
to the chiral molecule 3-methylcyclopentanone (3MCP). Af-
ter a brief presentation of the macroscopic QED formalism
tailored to the RET problem, the transition matrix element
and rate for transfer between two optically active molecules
in a magneto-electric medium are derived in Sec. II. The
free-space discriminatory rate is obtained and the degree of
discrimination is quantified in Sec. III. In Sec. IV, we investi-
gate the variation of the degree of discrimination as a function
of separation distance and differing medium characteristics to
model a number of different solvents. Conclusions are briefly
given in Sec. V.

II. RESONANCE ENERGY TRANSFER RATE

We derive, within the framework of macroscopic QED,
the resonance energy transfer rate between a chiral donor
molecule, D, and a chiral acceptor, A, in a medium (see
Fig. 1). In QED parlance, RET arises from the exchange of
a single virtual photon (or polariton in the case of exchange
occurring in a medium) between the two particles [36]. The
total Hamiltonian operator for the system, in which D is ini-
tially excited in the state |1〉D and A is in its ground state |0〉A,
is given by

Ĥ = ĤD + ĤA + ĤF + Ĥia, (1)

where ĤD/A is the particle Hamiltonian for D/A, ĤF is the
radiation field Hamiltonian, and the last term denotes the in-
teraction Hamiltonian for the coupling of the electromagnetic
field to each molecule. Because we assume each species to
be optically active, the magnetic and the usual electric dipoles
couple to the magnetic field B̂ and the electric field Ê as

Ĥia = −
∑

α=D,A

[d̂
(α) · Ê(rα ) + m̂(α) · B̂(rα )], (2)

where rD/A is the donor’s or the acceptor’s position, d̂
D/A

is
the donor’s or the acceptor’s electric dipole moment operator,
and m̂D/A is its magnetic counterpart. The energy migration
rate � is calculated using Fermi’s golden rule,

� = 2π

h̄2 ρ(ω f )|Mfi|2, (3)

where Mfi is the matrix element for the transition between
the initial and the final state, and ρ(ω f ) is the density of
final states with energy E f = h̄ω f . To leading order, Mfi is
evaluated from the second-order perturbation theory formula

Mfi =
∑

j

〈 f |Ĥia| j〉 〈 j|Ĥia|i〉
Ei − Ej

∣∣∣
Ei=E f

, (4)

where Ex is the energy of the respective state |x〉 and for
the system of interest the initial and final states are given by
|i〉 = |1〉D |0〉A |{0}〉F and | f 〉 = |0〉D |1〉A |{0}〉F . Our analysis
focuses on only one donor and acceptor pair. The extension
to N particles is, however, straightforward. By summing over
all possible final states one can account for n ground-state
acceptors and m excited donors. Only if multiple donors share
an excitation does the calculation become more involved and
superradiance effects occur [46].

From Eq. (4), it is necessary to sum over all possible
intermediate states

| j〉 ∈ {| j1(σ, ω, r)〉 , | j2(σ, ω, r)〉 ; ∀σ, r, ω}, (5)

with

| j1(σ, ω, r)〉 = |0〉D |0〉A |1σ (ω, r)〉F , (6)

| j2(σ, ω, r)〉 = |1〉D |1〉A |1σ (ω, r)〉F , (7)

where |0/1〉D/A is the ground or excited state of the donor

or acceptor molecule and |1σ (ω, r)〉F = f̂
†
σ (r, ω) |{0}〉F is the

single-quantum Fock state of collective, polaritonlike bosonic
excitations of electric and magnetic types (σ = e/m) at posi-
tion r with energy h̄ω. The creation and annihilation operators

f̂
†
σ (r, ω) and f̂ σ (r, ω) fulfill the commutation relations

[ f̂ σ (r, ω), f̂
†
σ ′ (r′, ω′)] = δσσ ′δ(r − r′)δ(ω − ω′) (8)
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FIG. 2. Feynman diagrams for RET between chiral particles:
Each intersection between a wavy line and a solid line represents
a particle-field interaction. Each interaction can either be electric or
magnetic. The two diagrams result in different frequency poles [see
Eq. (18)].

and may be used to expand the electric and magnetic fields as

Ê(r) =
∫ ∞

0
dωÊ(r, ω) + H.c., (9)

Ê(r, ω) =
∑

σ=e,m

∫
d3r′Gσ (r, r′, ω) · f̂ σ (r′, ω), (10)

B̂(r) =
∫ ∞

0
dωB̂(r, ω) + H.c., (11)

B̂(r, ω) = 1

iω

∑
σ=e,m

∫
d3r′−→∇ × Gσ (r, r′, ω) · f̂ σ (r′, ω).

(12)

The Green’s tensor Gσ is defined via the Helmholtz equa-
tion and is given explicitly in Appendix A. The RET process
may be visualized by the two Feynman diagrams of Fig. 2.
They reflect the two possible propagation directions associ-
ated with single virtual photon-polariton exchange between
emitter and absorber. Each intersection of a solid line with
a wavy line represents an interaction between the respective
particle and the field. Based on the coupling Hamiltonian,
Eq. (2), electric (−d̂ · Ê ) as well as magnetic (−m̂ · B̂) dipole
interactions with the Maxwell field operators have to be con-
sidered. The probability amplitude can therefore be divided
into four terms,

Mfi = Mee + Mem + Mme + Mmm, (13)

where the first and second subscripts imply electric or mag-
netic interaction of A and D with the field, respectively. By
using the vacuum correlation functions of the electromagnetic
fields (see Appendix B),

〈Ê(rD, ω) ⊗ Ê
†
(rA, ω′)〉vac = h̄μ0ω

2

π
δ(ω − ω′)ImG

× (rA, rD, ω), (14)

〈Ê(rD, ω) ⊗ B̂
†
(rA, ω′)〉vac

= − ih̄μ0ω

π
δ(ω − ω′)ImG(rA, rD, ω) × ←−∇ D, (15)

〈B̂(rD, ω) ⊗ Ê
†
(rA, ω′)〉vac

= −i
h̄μ0ω

π
δ(ω − ω′)

−→∇ A × ImG(rA, rD, ω), (16)

〈B̂(rD, ω) ⊗ B̂
†
(rA, ω′)〉vac

= − h̄μ0

π
δ(ω − ω′)

−→∇ A × ImG(rA, rD, ω) × ←−∇ D, (17)

we can derive the transition matrix elements in terms of the
Green’s tensor for general environments, with that for the
second term of Eq. (13) given as (see Appendix B)

Mem = −1

h̄

∫
dω

{
1

ω − ωD
dA · 〈ÊA ⊗ B̂

′†
D〉vac · mD

+ 1

ω + ωA
mD · 〈B̂D ⊗ Ê

′†
A〉vac · dA

}

= μ0c2

π

∫
dω

{
1

ω − ωD
+ 1

ω + ωD

}

× dA · ImG(rA, rD, ω) × ←−∇ D · mD, (18)

where ωD = ωD
1 − ωD

0 is the transition frequency of the
donor and the acceptor’s transition frequency is ωA = ωA

1 −
ωA

0 = ωD from energy conservation, and we introduced the
shorthand-notation ÊA/D = Ê(rA/D, ω), analogously for B̂,
while the prime indicates the substitution of ω → ω′ and
the arrows on the ∇ operator denote the direction which the
derivative acts on. Additionally, we introduced the following
notation for the downward and upward dipolar transitions in D
and A, respectively: dD = 〈0|d̂|1〉D and dA = 〈1|d̂|0〉A, with
analogous definitions for mD/A. The remaining transition ma-
trix elements can be derived similarly and the pole integration
can be calculated generally as∫

dω

{
f (ω)

ω − ωD
+ f (−ω)

ω + ωA

}
ImG(ω)

−→ lim
ε→0+

∫
dω

{
f (ω)

ω − (ωD + iε)
+ f (−ω)

ω + ωA

}

× 1

2i
[G(ω) + G(−ω)]

= π f (ωD)G(ωD), (19)

for ωA = ωD and f (ω) = ωn with n ∈ {0, 1, 2}. The correct
regularization of the pole on the real axis follows from revis-
iting the derivation of Fermi’s golden rule, and the detailed
pole integration is given in Appendix C. This finally yields
the desired transition matrix elements

Mee = −μ0ω
2
DdA · G(rA, rD, ωD) · dD, (20a)

Mem = iμ0ωDdA · G(rA, rD, ωD) × ←−∇ D · mD, (20b)

Mme = iμ0ωDmA · −→∇ A × G(rA, rD, ωD) · dD, (20c)

Mmm = μ0mA · −→∇ A × G(rA, rD, ωD) × ←−∇ D · mD.

(20d)

One can easily verify that they lead to the same results known
from free-space QED [43]. In vacuum, the Green’s tensor is
given by (see Appendix A)

G(0)(rA, rD, ω) =
[
I + ∇∇

k2

]
eikr

4πr
, (21)
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with r = |rD − rA|, k = ω/c, I being the 3 × 3-identity ma-
trix, ∇ = −→∇ , and ∇∇ = ∇ ⊗ ∇. For dipoles of the same type
at each particle, familiar matrix elements ensue [39],

Mee = −μ0c2dA
i [k2δi j + ∇i∇ j]

eikr

4πr
dD

j

= 1

4πε0
dA

i dD
j [∇2δi j − ∇i∇ j]

eikr

r
, (22)

Mmm = μ0mA
i

[
− ∇ × I × ∇ + ∇ × ∇∇

k2
× ∇

]
i j

eikr

4πr
mD

j

= −μ0mA
i mD

j [∇ × I × ∇]i j
eikr

4πr

= 1

4πε0c2
mA

i mD
j [∇2δi j − ∇i∇ j]

eikr

r
, (23)

while for the mixed dipole term, crucial for transfer between
chiral systems [43],

Mem + Mme = ik

4πε0c

(
dD

i mA
j − mD

i dA
j

)
εi jk∇k

eikr

r
, (24)

where we used

[
−→∇ A × G(rA, rD, ω)]i j = −εi jk∇k

eikr

4πr

= −[G(rA, rD, ω) × ←−∇ A]i j . (25)

Inserting the matrix elements in terms of the general Green’s
tensor (20a)–(20d) into Fermi’s golden rule (3) leads to the
rate for a general environment:

� =
∑

λ1,λ2,λ3,λ4

�λ1λ2λ3λ4 , (26)

�λ1λ2λ3λ4 = 2πρμ2
0

9h̄2

(
dA

λ1
· dA∗

λ2

)(
dD∗

λ3
· dD

λ4

)
× Tr

[
Gλ1λ4 · G∗T

λ2λ3

]
, (27)

where we have assumed that the transitions are isotropic, such
that d1 ⊗ d2 = (d1 · d2)I/3 and we adopted a dual formula-
tion with λi ∈ {e, m}. The rate depends on the absolute square
of the transition matrix element and involves hence the inter-
ference of all possible process channels (see Fig. 2). In the
dual rate contributions (27), λ1/2 label the type of interactions
of the acceptor with the field and λ3/4 the ones of the donor.
The relevant dual quantities are

de = d, dm = m
c

, (28a)

Gee = iω

c
G(rA, rD, ω)

iω

c
, (28b)

Gmm = −→∇ A × G(rA, rD, ω) × ←−∇ D, (28c)

Gem = iω

c
G(rA, rD, ω) × ←−∇ D, (28d)

Gme = −→∇ A × G(rA, rD, ω)
iω

c
, (28e)

where h̄ω = h̄ωD = h̄ωA is the transition energy. When the
handedness of one participating molecule is known, the rate
can be used to discriminate between different enantiomers

of the second entity. Without loss of generality, we take the
donor to be left-handed while the acceptor species may be
of either handedness (see Fig. 1). Molecular chirality may
be characterized by the scalar product between magnetic and
electric transition dipole moments, which is related to the
rotatory strength R of the respective chiral molecule through

R

c
= Im[〈0|d̂e|1〉 · 〈1|d̂m|0〉], (29)

and whose sign depends on the molecule’s handedness. In our
notational convention, where dD

λ denotes a downward transi-
tion, while dA

λ represents an upward transition, the respective
rotatory strengths of D and A are given by

RD

c
= Im

[
dD

e · dD∗
m

] = −idD
e · dD∗

m = idD∗
e · dD

m, (30)

RA

c
= Im

[
dA∗

e · dA
m

] = idA
e · dA∗

m = −idA∗
e · dA

m, (31)

where we have explicitly assumed real electric transition
dipole moments de = d∗

e and imaginary magnetic dipole mo-
ments dm = −d∗

m.

III. DISCRIMINATION IN FREE SPACE

With these preparations at hand, we can partition the rate
into different contributions, depending on their sensitivity
to the acceptor’s handedness. The potentially discriminatory
contributions that are proportional to the acceptor’s optical
rotatory strength RA are

�disc =
∑
λ1λ2

(�emλ1λ2 + �meλ1λ2 ), (32)

where λ1, λ2 ∈ {e, m} label electric and magnetic interactions
of the donor. These rate contributions are of two different
forms:

�emλλ ∝ RA
∣∣dD

λ

∣∣2
Tr

[
Geλ · G∗T

mλ

]
, (33)

�emλ1λ2 ∝ RARD Tr
[
Geλ1 · G∗T

mλ2

]
, (34)

with λ1 �= λ2 and analogously for �meλ1λ2 . The rotatory
strength RA/D ∝ d · m is a chiral property in the sense that
its sign changes depending on the molecule’s handedness.
On the other hand, the absolute square of the magnetic or
electric dipole is not sensitive to the handedness. In agree-
ment with Curie’s dissymmetry principle, contributions of the
first kind [Eq. (33)] vanish in free space: Tr[Geλ · G∗T

mλ] =
Tr[Gmλ · G∗T

eλ ] = 0, ∀λ. Only contributions that emerge from
the chiral properties of both the donor and the acceptor, i.e.,
that are proportional to the product RARD, can discriminate
the acceptor’s enantiomers. We are hence left with the dis-
criminatory rate contribution in free space,

�disc = �emme + �meme + �emem + �meem, (35)

and the nondiscriminatory rate contribution,

�nd =
∑
λ1λ2

�λ1λ1λ2λ2 , (36)

which yield the total rate for left(L)- and right(R)-handed ac-
ceptors, �L/R = �nd ± |�disc|. The discriminatory part of the
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rate results from interference effects, where process channels
involving pseudovectors (magnetic transition dipole) interfere
with process channels involving real vectors (electric transi-
tion dipole), such that their product changes its sign under
spatial inversion. By using the free-space Green’s tensor (A9)
we find the following for the two rate contributions:

�nd = ρ

36πε2
0 h̄2r6

{(∣∣dA
e

∣∣2∣∣dD
e

∣∣2 + ∣∣dA
m

∣∣2∣∣dD
m

∣∣2)

×
[

3 + ω2r2

c2
+ ω4r4

c4

]
+ (∣∣dA

e

∣∣2∣∣dD
m

∣∣2 + ∣∣dA
m

∣∣2∣∣dD
e

∣∣2)

×
[
ω2r2

c2
+ ω4r4

c4

]}
, (37)

�disc = ρ
RDRA

18πc2ε2
0 h̄2r6

(
3 + 2

ω2r2

c2
+ 2

ω4r4

c4

)
, (38)

where ω = ωD is the transition frequency. We define the de-
gree of discrimination as

S = �L − �R

�L + �R
= �disc

�nd
∈ [−1, 1]. (39)

Usually the magnetic dipole is much smaller than the electric
one, i.e., dm � de. With this approximation the degree of
discrimination in free space is given by the simple expression

S ≈ 4RDRA

c2
∣∣dA

e

∣∣2∣∣dD
e

∣∣2

3 + 2k2
0r2 + 2k4

0r4

3 + k2
0r2 + k4

0r4
, (40)

where k0 = ωD/c. It exhibits a lower bound Sr→0 in the
nonretarded or near-zone limit of small separations and an
upper bound Sr→∞ in the retarded or far-zone limit of large
distances. These limits may be derived analytically, yielding

Sr→0 ≈ 4RDRA

c2
∣∣dA

e

∣∣2∣∣dD
e

∣∣2 , (41)

Sr→∞ ≈ 8RDRA

c2
∣∣dA

e

∣∣2∣∣dD
e

∣∣2 = 2Sr→0. (42)

Although the absolute rate rapidly decreases with increasing
separation distance (∼r−6), the discrimination is stronger by
a factor of approximately 2 in the far zone (rω/c > 1). This
can be seen in Fig. 3, where the rate contributions and the
degree of discrimination in free space as well as in a medium
are plotted as a function of separation distance r between the
donor and the acceptor for the example of 3MCP as the chiral
donor and acceptor.

The transition frequency for 3MCP is given by ω = 6.44 ×
1015 s−1 and as we can see in Fig. 3 the retarded limit
is reached at separation distances of roughly r = 2c/ω ≈
100 nm.

The chosen example of 3MCP features a transition with a
very small electric transition dipole (|de| = 2.44 × 10−31 Cm)
compared to its magnetic transition dipole (|dm| = 3.31 ×
10−32 Cm) [27,47–49]. This leads to a relatively large rotatory
strength R/c = Im[de · dm]. If we define an angle such that

FIG. 3. (a) Discriminatory and nondiscriminatory rate contribu-
tions for RET in free space between chiral donor and acceptor as
a function of their separation distance r on the example of 3MCP,
as given by Eqs. (38) and (37). (b) Degree of discrimination S =
�disc/�nd for 3MCP as a function of separation distance r in free
space, in water without the local field correction (LFC) (i.e., ce =
cm = 1) and in water with local field correction [i.e., ce, cm given by
Eqs. (47)]. The rates �disc and �nd in media are given by Eqs. (48)
and (49).

R/c = |de||dm| cos θ , we find cos θ = 0.98 ≈ 1 for 3MCP.
Nonetheless, the maximum degree of discrimination in free
space for 3MCP is only at S = 7%. The chosen example
is a chiral molecule whose properties are well known and
which was used in a variety of similar studies with the aim
of discrimination such as in Ref. [27]. This makes 3MCP an
appropriate candidate system to demonstrate the discrimina-
tory power of RET.

In Fig. 3 we also plot the enhanced degree of discrim-
ination for 3MCP inside a medium with and without local
field corrections. In the next section we derive the necessary
formulas to consider such a surrounding medium and discuss
the resulting effect on the discrimination.
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IV. ENHANCED DISCRIMINATION IN
MAGNETOELECTRIC MEDIUM

While in free space the degree of discrimination is com-
pletely determined by the molecules involved and their
separation distance, we may modulate the effect by intro-
ducing a medium that surrounds the molecules. This can
be either a liquid or a gas that is well described by its
macroscopic properties. Let us consider a homogeneous
magnetoelectric medium with relative permittivity and per-
meability ε(ω), μ(ω) �= 1 that are in general complex-valued
(see Fig. 1). We can easily include the impact of such a
medium on the excitation propagation via the appropriate
Green’s tensor (A7) and the rate formula (27). The Green’s
tensor that fulfils the Helmholtz equation inside such a
medium is given by

G(r2, r1, ω) = − μ

3k2
δ(r) − μeikr

4πk2r3
{[1 − ikr − (kr)2]I

− [3 − 3ikr − (kr)2]er ⊗ er}, (43)

with r = r2 − r1, k = √
εμ ωD/c, and er = r/r. The applied

formalism is suited to treat inhomogeneous media as well,
where ε(r, ω) and μ(r, ω) might be tensor-valued and position
dependent. The Green’s function that solves the respective
Helmholtz equation might then not be known analytically but
needs to be solved numerically. Using the definition of S (39),
and evaluating the retarded and nonretarded limits, we find

Sr→0 = 4RDRA(Re[nr]2 − Im[nr]2)

c2
(∣∣dA

e

∣∣2∣∣dD
e

∣∣2 + |nr |4
∣∣dA

m

∣∣2∣∣dD
m

∣∣2) , (44)

Sr→∞ = 8RDRARe[nr]2

c2
(∣∣dA

e

∣∣2 + |nr |2
∣∣dA

m

∣∣2)(∣∣dD
e

∣∣2 + |nr |2
∣∣dD

m

∣∣2) , (45)

where nr = √
εμ is the medium’s complex refractive index,

and in contrast to the free-space case we did not neglect
higher orders in dm to account for cases with |nr | � 1. The
free-space discrimination (40) can be recovered for nr = 1.

However, it is known that this description is overly sim-
plified. When embedding the microscopic system into the
macroscopically described medium, local field effects around

the donor and the acceptor as well as screening effects must
be taken into account. Without these, the model would assume
emission and absorption inside of the macroscopic medium,
which is incorrect as the interactions with the field appear
inside of the microscopically described molecules that are not
permeated by a continuous medium. This so-called local field
correction is, in fact, a necessity to correct the naive approach.
There are a variety of different local field models [50,51]. The
different models all take the local field effects into account
by assuming the interacting atoms to be enclosed in a virtual
or real spherical cavity surrounded by the medium, where
the size of the introduced cavity is small compared to the
relevant transition wavelength. In the virtual cavity model the
introduced cavity is again filled microscopically by the atoms
that form the medium. As a result, the macroscopic fields are
not disturbed by the presence of the cavity. Here we employ
the Onsager real cavity model [52], where infinitesimal empty
regions around the emitting and absorbing atoms are assumed
that influence the resulting macroscopic fields in contrast to
the virtual cavity approach.

Which model is better suited depends on the setup at hand
and is still under discussion. It is commonly presumed that a
virtual cavity approach is rather suited for interstitial atoms,
while a real cavity approach is often the right choice for
substitutional atoms. In the case of a homogeneous magne-
toelectric medium the correction via the Onsager real cavity
model leads to additional factors to the dual Green’s tensors.
They differ depending on the nature of the interaction at each
point (electric or magnetic) and are lowest-order transmission
(Mie-)coefficients.

The local-field-corrected dual Green’s tensor reads

Glfc
λλ′ = cλGλλ′cλ′ , (46)

with ce = 3ε

1 + 2ε
and cm = 3

1 + 2μ
. (47)

Using Glfc
λλ′ in the rate formula (27) we find the rate in such a

medium including local field effects. The discriminatory and
nondiscriminatory rate contributions are then given by

�disc = RARD|μ|2e−2Imnr k0r

18πc2r6ε2
0 h̄2|nr |4

{
k2

0r2|ce|2|cm|2|nr |4
(
k2

0r2|nr |2 + 2k0rImnr + 1
)

+ Re
[
c∗2

e c2
mn2

r

](
k2

0r2|nr |2(2k0rImnr + 1) + k4
0r4|nr |4 + k2

0r2Imn2
r + 6k0rImnr + 3

)}
, (48)

�nd = |μ|2∣∣dA
e

∣∣2∣∣dD
e

∣∣2
e−2Imnr k0r

36πr6ε2
0 h̄2|nr |4

{
|ce|4

(|nr |4k4
0r4 + |nr |2k2

0r2(2Imnrk0r + 1) + 4Imn2
r k2

0r2 + 6Imnrk0r + 3
)

+ |ce|2|nrcm|2
(∣∣dD

m

∣∣2∣∣dD
e

∣∣2 +
∣∣dA

m

∣∣2∣∣dA
e

∣∣2

)(
2|nr |4k4

0r4 + |nr |2k2
0r2(2Imnrk0r + 1)

)

+ ∣∣nrcm

∣∣4

∣∣dD
m

∣∣2∣∣dA
m

∣∣2∣∣dD
e

∣∣2∣∣dA
e

∣∣2

(|nr |2k2
0r2(2Imnrk0r + 1) + |nr |4k4

0r4 + 4Imn2
r k2

0r2 + 6Imnrk0r + 3
)}

, (49)

where k0 = ωD/c and �nd reduces to the known electric dipole-dipole RET rate for |dm| = 0 [32,42].
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By dividing Eq. (48) by Eq. (49) and performing the limit of small and large distances, respectively, we obtain the degree of
discrimination in its retarded and nonretarded limits. For general magnetoelectric media including local field effects, they are
given by

Slfc
r→0 = 4RDRA

Dlfc
0

Re[(c∗
e cmnr )2], (50)

Dlfc
0 = c2

(|ce|2
∣∣dA

e

∣∣2∣∣dD
e

∣∣2 + |cm|2|nr |4
∣∣dA

m

∣∣2∣∣dD
m

∣∣2)
, (51)

Slfc
r→∞ = 8RDRA

Dlfc∞
Re[c∗

e cmnr]2, (52)

Dlfc
∞ = c2

(|ce|2
∣∣dA

e

∣∣2 + |cm|2|nr |2
∣∣dA

m

∣∣2)(|ce|2
∣∣dD

e

∣∣2 + |cm|2|nr |2
∣∣dD

m

∣∣2)
, (53)

where for each electric and magnetic transition dipole mo-
ment there appears an electric correction factor ce and a
magnetic correction cm, respectively. The uncorrected case
can be recovered for ce = cm = 1 and the free-space case
for ε = μ = nr = 1. In Fig. 3 the degree of discrimination
is shown with and without correction for water with real
permittivity ε(ω) ≈ 1.82 and trivial permeability μ(ω) = 1
(i.e., nr ≈ 1.35). As demonstrated in Fig. 3, for our exam-
ple, the impact of the local field correction is of similar
magnitude as the impact of the medium itself compared to
the free-space case. Without corrections, the medium’s im-
pact on the degree of discrimination would be overestimated
here. However, even in water the degree of discrimination
is enhanced by roughly 30%. An appropriate medium may
enhance the degree of discrimination, in general, up to S =∏

X Im[dX
m · dX

e ]/|dX
m||dX

e | = ∏
X cos θX � 100%, where X ∈

{A, D}. A degree of discrimination of 100% corresponds then
to vanishing excitation transfer to the opposite-handed ac-
ceptor (�R = 0 for a left-handed donor) independent of the
separation distance. It can only be achieved for θ = 0. This is
approximately the case in the chosen example of 3MCP. If we
limit ourselves to positive real refractive indices nr > 0 with
trivial permeabilities μ ≈ 1, the maximum enhancement can
be achieved for 3MCP at nr,max ≈ 11 and, alternatively but
less relevant, at nr,max ≈ 0.045 (see Fig. 4). It is interesting
to note that the discrimination vanishes in the limit nr → ∞.
We can predict the maximum real refractive indices at which
S = cos2 θ for any two chiral molecules of the same kind as
a function of the ratio |de|/|dm|, as shown in Fig. 4. They are
given by

nr,max = 3

4

|de|
|dm|

⎛
⎜⎝1 ±

√
9 − 8 |dm |

|de|
4

⎞
⎟⎠. (54)

The smaller the ratio the closer both optimum refractive in-
dices are to unity. In Fig. 5 we present the nonretarded and
retarded degrees of discrimination Sr→0/∞ as functions of a
complex refractive index. In theory, one may achieve a com-
plete inversion of the discriminatory effect in the nonretarded
limit for Imnr � Renr . In the chosen example of 3MCP, the
same-handed rate vanishes, �L = 0 ⇔ Sr→0 = −100%, for
Imnr = 11 and Imnr = 0.045. However, the retarded limit
does not experience such an inversion of the effect. Here
the discrimination simply vanishes with larger Imnr . Most
conventional media may be found around 1 < Renr < 2 and

0 < Imnr � 1. At the transition frequency of 3MCP (ωD =
6.44 × 1015 s−1 = 4.3 eV), some example media are given in
Table I [53]. If possible, their refractive indices were marked
in Fig. 5. An interesting simple medium example is mercury
where the discrimination is inverted in the nonretarded limit
compared to the free-space case. Solutions with resonances at
the desired frequency as well as fluids based on metamaterials
may be engineered to cover a larger range of the presented
parameter space [54]. The choice of an appropriate medium
then depends highly on the transition frequency.

FIG. 4. (a) Upper and lower bound of S for 3MCP in a dielectric
medium given by Eqs. (50) and (52). (b) Real refractive index of a
dielectric medium for maximum discrimination as a function of the
molecule’s transition dipole ratio. The solid line marks the ratio for
3MCP.
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FIG. 5. Nonretarded (a) and retarded (b) degrees of discrimi-
nation as a function of real and imaginary parts of the refractive
index (with μ = 1) for the example of 3MCP. We marked simple
media with complex nr : methane at nr = 1.44 + 0.04i and mercury
at nr = 0.52 + 2.39i.

V. CONCLUSION

We derived the RET rate between chiral molecules in the
framework of macroscopic QED, which includes retardation
effects and is able to take the impact of different environ-

TABLE I. Table of different simple media, their respective re-
fractive index, and their degree of discrimination in the nonretarded
and retarded limits [53].

Medium Refractive index Sr→0 Sr→∞

Water 1.4 + 10−8i 5.04% 9.60%
Biodiesel 1.56 + 8 × 10−6i 5.85% 11.06%
Ethanol 1.39 + 3 × 10−6i 5.01% 9.55%
Methane 1.44 + 0.07i 5.19% 9.87%
Mercury 0.52 + 2.39i −7.30% 0.96%

ments into account. Although the considered system consists
of one donor and one acceptor molecule, the extension to N
molecules is straightforward. The rate differs between same-
and opposite-handed enantiomers, making the rate discrimi-
natory. The degree of discrimination is usually larger in the
far zone, also known as the retarded limit of large inter-
molecular separation distances. However, this constitutes a
trade-off between the degree of discrimination and the overall
energy transfer rate, which decreases rapidly with increasing
separation distance. We showed that putting the system in-
side a magnetoelectric medium can have significant effects
on the discrimination. In one example we demonstrated the
significant impact of local field and screening effects on the
prediction of the degree of discrimination. Here, we chose
the Onsager real cavity model to account for these effects.
We offered analytical expressions for the rate involving chi-
ral molecules in a magnetoelectric medium including local
field effects. We applied our theory to the example of 3-
methylcyclopentanone (3MCP). By putting the system inside
water the degree of discrimination between two chiral 3MCP
molecules is already enhanced by roughly 30%.

We studied a large complex parameter space for dielectric
media and showed that appropriate media may even lead to
perfect discrimination; i.e., the energy transfer to the opposite-
handed enantiomer is completely suppressed. The degree of
discrimination shows, in general, two such maxima for real
refractive indices. One of these optimal refractive indices
is much larger than unity, and the other is much smaller,
depending on the transition dipoles involved in the process.
The smaller the ratio between electric and magnetic transition
dipole moments the closer the optimal refractive indices are
to unity. Media with a large imaginary refractive index can
even invert the effect in the near-zone or nonretarded limit
of small separation distances, such that the opposite-handed
enantiomer instead of the same-handed one is preferred by
the process. The medium imprints a complex phase onto the
propagated field excitation; this phase change might differ for
the magnetic and electric components and hence also invert
the sign of the interference terms between the two, which
build up the discriminatory contribution of the rate. In general,
an imaginary refractive index corresponds to strong absorp-
tion in the medium. The medium’s macroscopic properties are
evaluated at the molecule’s transition frequency. Hence, the
best choice for a medium depends on the molecules of inter-
est. We offered some simple example media at the transition
frequency of 3MCP. The transition frequency of the chosen
example molecule is quite large and simple liquids show little
optical response. However, for vibrational transitions involv-
ing wavelengths in the IR regime, recent advancements in the
field of metamaterials could soon offer media that will explore
a larger area of the presented parameter space.

In this work we chose chiral molecules and an achiral en-
vironment. However, even macroscopic media can have chiral
features. Although the environment only passively takes part
in the energy transfer process, its chiral property might be
able to actively discriminate enantiomers. Here, we employed
the Onsager real cavity model to account for local field and
screening effects. For some systems alternative local field
models are more suited. Their influence on the discrimination
will be studied in future work.
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APPENDIX A: GREEN’S TENSOR

The Fourier components of the electric field are given by
Eq. (10) with the shorthand notation

Ge(r, r′, ω) = i
ω2

c2

√
h̄

πε0
Imε(r′, ω)G(r, r′, ω), (A1)

Gm(r, r′, ω) = −i
ω

c

√
h̄

πε0

Imμ(r′, ω)

|μ(r′, ω)|2 G(r, r′, ω) × ←−∇ ′.

(A2)

Note that they are not related to the dual definition Gλλ′ for the
Green’s tensor but are shorthand notations that are often used
in the field of macroscopic QED. From Eq. (10) it follows that
the Green’s tensor G must fulfil the Helmholtz equation

[−→∇ a × 1

μ(ra, ω)
−→∇ a × −ω2

c2
ε(ra, ω)

]
G(ra, rb, ω)

= δ(ra − rb). (A3)

When considering homogeneous media it is sufficient to solve
the scalar Helmholtz equation

−[a + k2]g(ra, rb, ω) = δ(ra − rb), (A4)

with k2 = εμω/c. It is solved by the scalar Green’s
function

g(ra, rb, ω) = eik|ra−rb|

4π |ra − rb| . (A5)

The Green’s tensor is then given by the Green’s function g
via

G(ra, rb, ω) = μ

[
I + 1

k2

−→∇ a ⊗ −→∇ a

]
g(ra, rb, ω), (A6)

and yields with g given by Eq. (A5)

G(ra, rb, ω) = − μ

3k2
δ(r) − μeikr

4πk2r3
{[1 − ikr − k2r2]I

− [3 − 3ikr − k2r2]er ⊗ er}, (A7)

with r = ra − rb and er = r/r. In free space (ε = μ = 1), we
hence find

G(0)(ra, rb, ω) =
[
I + c2

ω2

−→∇ a ⊗ −→∇ a

]
eiω|ra−rb|/c

4π |ra − rb| (A8)

= − 1

3k2
0

δ(r) − eik0r

4πk2
0r3

{[
1 − ik0r − k2

0r2
]
I

− [
3 − 3ik0r − k2

0r2
]
er ⊗ er

}
. (A9)

APPENDIX B: DERIVATION OF TRANSITION
MATRIX ELEMENTS

Using the formula for the transition matrix element (4)
with the interaction Hamiltonian (2), the initial and final states
given by |i〉 = |1〉D |0〉A |{0}〉F and | f 〉 = |0〉D |1〉A |{0}〉F , and
the introduced dual notation [see Eq. (28a)] leads to the fol-
lowing expression:

M = −
∫

dω′
∫

d3r′ ∑
{λ}

[
〈g|d̂D

λ1
|e〉

D
· 〈{0}|Êλ1 (rD)|1′〉F 〈1′|Êλ2 (rA)|{0}〉F

h̄ω′ + h̄ωA
· 〈1|d̂A

λ2
|0〉

A

+ 〈1|d̂A
λ1

|0〉
A

· 〈{0}|Êλ1 (rA)|1′〉F 〈1′|Êλ2 (rD)|{0}〉F

h̄ω′ − h̄ωD
· 〈g|d̂D

λ2
|e〉

D

]
, (B1)

where Êe = Ê and Êm = cB̂. It is trivial to write the matrix element in a nondual formulation. However, the dual definitions
offer a simplified notation. By introducing the projection onto the frequency subspace,

P̂(ω) =
∑
n,λ

∫
d3r |nλ(r, ω)〉 〈nλ(r, ω)| , (B2)

each term in Eq. (B1) can be written as∫
dω′

∫
d3r′ ∑

λ′

〈{0}|Êλ1 (rα )|1′〉 〈1′|Êλ2 (rβ )|{0}〉
h̄ω′ + h̄ω

=
∫

dω′
∫

d3r′ ∑
λ′,n

〈{0}|Êλ1 (rα ) |n′〉 〈n′| Êλ2 (rβ )|{0}〉
h̄ω′ + h̄ω

=
∫

dω′ 〈{0}|Êλ1 (rα )P̂(ω′)Êλ2 (rβ )|{0}〉
h̄ω′ + h̄ω

=
∫

dω1

∫
dω2

〈
Êλ1 (rα, ω1)Ê

†
λ2

(rβ, ω2)
〉

h̄ω2 + h̄ω
, (B3)
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where 〈 · 〉 is the field vacuum’s expectation value. The cor-
relation functions 〈Êλ1 (rα, ω1)Ê

†
λ2

(rβ, ω2)〉 can be evaluated
by considering the field’s expansion in terms of the Green’s
tensor (9)–(12). For the magnetic-electric correlation function
(16), we find

〈Êm(ra, ω) ⊗ Ê
†
e (rb, ω

′)〉

= c 〈B̂(ra, ω) ⊗ Ê
†
(rb, ω

′)〉

=
∑
λ,λ′

∫∫
d3r′d3r

c

iω

〈−→∇ a × Gλ(ra, r, ω) · f̂ λ(r, ω)

⊗ f̂
†
λ′ (r′, ω′) · G∗

λ′ (r′, rb, ω
′)

〉
= ωc

i

h̄μ0

π
δ(ω − ω′)

−→∇ a × ImG(ra, rb, ω). (B4)

The remaining correlation functions of Eqs. (14)–(17) follow
analogously.

APPENDIX C: POLE INTEGRATION

Here we show how the relation Eq. (19) is obtained. In
the derivation of all matrix elements of interest we encounter
integrals in the frequency domain in the form of

lim
ε→0+

∫
dω

{
f (ω)

ω − (ωD + iε)
+ f (−ω)

ω + ωA

}
ImG(ω), (C1)

with f (ω) = ωn, n ∈ {0, 1, 2}. Let us transform the first term
in Eq. (C1). With the Schwarz-reflection principle G∗(ω) =
G(−ω∗), we find

∫ ∞

0
dω

f (ω)ImG(ω)

ω − (ωD + iε)
= 1

2i

∫ ∞

0
dω f (ω)

G(ω)

ω − (ωD + iε)

− 1

2i

∫ ∞

0
dω f (ω)

G(−ω)

ω − (ωD + iε)

= 1

2i

[∮
dω −

∫
�

dω −
∫ 0

−∞
dω

]
f (ω)

G(ω)

ω − (ωD + iε)

+ 1

2i

∫ 0

−∞
dω f (−ω)

G(ω)

ω + (ωD + iε)
, (C2)

where we express the integration as the sum over different
integration paths in the complex plane (see Fig. 6). The closed
path can be evaluated via the residuum theorem and the in-
tegration over path � vanishes since the Green’s tensor is
analytic in the upper half of the complex plane and vanishes

FIG. 6. Complex contour for the pole integration. The closed
contour consists of the sum of the green contour (from −∞ to 0),
the gray contour (from 0 to ∞), and the blue dashed contour (�). It
encloses a pole at ω = ωD + iε.

sufficiently fast for ω → i∞, such that∫ ∞

0
dω

f (ω)ImG(ω)

ω − (ωD + iε)

= π f (ωD + iε)G(ωD + iε)

− 1

2i

∫ 0

−∞
dω f (ω)

G(ω)

ω − (ωD + iε)

+ 1

2i

∫ 0

−∞
dω f (−ω)

G(ω)

ω + (ωD + iε)
. (C3)

The last integral in Eq. (C3) has no pole in the upper half of the
complex plane. Substituting here the integration path similarly
according to Fig. 6, i.e.,

∫ 0
−∞ → ∮ − ∫

�
− ∫ ∞

0 , leads to a
single nonvanishing contribution: the closed contour vanishes
due to a lack of enclosed poles and the integration over path
� vanishes due to the properties of G on the upper half of the
complex plane, and we are left with∫ ∞

0
dω

f (ω)ImG(ω)

ω − (ωD + iε)

= π f (ωD + iε)G(ωD + iε)

− 1

2i

∫ 0

−∞
dω f (ω)

G(ω)

ω − (ωD + iε)

− 1

2i

∫ ∞

0
dω f (−ω)

G(ω)

ω + (ωD + iε)

= π f (ωD + iε)G(ωD + iε)

−
∫ ∞

0
dω f (−ω)

ImG(ω)

ω + (ωD + iε)
, (C4)

where we have used the Schwarz-reflection principle
G(−ω∗) = G∗(ω) again in the last step. This result is finite
for ε → 0, we may hence form the limit. Substituting this
result back into our original expression (C1) reveals∫ ∞

0
dω

(
f (ω)

ω − ωD
+ f (−ω)

ω + ωA

)
ImG(ω) = π f (ωD)G(ωD),

(C5)

for ωA = ωD.
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