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Calculation of the hyperfine structure of Dy, Ho, Cf, and Es
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A recently developed version of the configuration interaction (CI) method for open shells with a large number
of valence electrons has been used to study two heavy atoms, californium (Cf, Z = 98) and einsteinium (Es,
Z = 99). Motivated by experimental work to measure the hyperfine structure (HFS) for these atoms, we perform
the calculations of the magnetic dipole HFS constants A and electric quadrupole HFS constant B for the sake
of interpretation of the measurements in terms of nuclear magnetic moment μ and electric quadrupole moment
Q. For verification of our computations, we have also carried out similar calculations for the lighter homologs
dysprosium (Dy, Z = 66) and holmium (Ho, Z = 67), whose electronic structures are similar to Cf and Es,
respectively. We have conducted a revision of the nuclear moments of some isotopes of Es leading to an improved
value of the magnetic moment of 253Es [μ(253Es) = 4.20(13)μN ].
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I. INTRODUCTION

The study of atomic properties of heavy actinides has
gained growing interest [1–8]. Transition frequencies and the
hyperfine structure (HFS) are being measured. Measuring
HFS is motivated by obtaining data on the nuclear momenta
of heavy nuclei. This would advance our knowledge about
the nuclear structure of superheavy nuclei benefiting the
search for the hypothetical stability island. In light of this,
we focus on theoretically studying the hyperfine structure for
heavy actinides, californium (Cf, Z = 98) and einsteinium
(Es, Z = 99). Combining the calculations with the measure-
ments would allow for the extraction of the nuclear magnetic
moment μ and electric quadrupole moments Q of the studied
isotopes.

HFS constants of some states of odd isotopes of Cf
(249Cf, 251Cf, 253Cf) were recently measured and nuclear mo-
ments μ and Q were extracted using our calculations [8].
This paper presents a detailed account of these calculations
as well as similar calculations for Es. In the case of Es, there
are no theoretical results currently available, whereas several
experimental papers have been published. Using different em-
pirical techniques, Refs. [1–3] studied the HFS of Es for three
isotopes with nonzero nuclear spins, 253,254,255Es.

Heavy actinides such as Cf and Es are atoms with an open
5 f subshell. The number of electrons on open shells is 12 for
Cf and 13 for Es (including the 7s electrons). This presents
a challenge for the calculations. We use the configuration
interaction with perturbation theory (CIPT) [9] method, which
has been developed for such systems. To check the applica-
bility of the method and the expected accuracy of the results
we performed similar calculations for lanthanides dysprosium
(Dy, Z = 66) and holmium (Ho, Z = 67), whose electronic
structures are similar to Cf and Es, respectively. Both Dy and
Ho were extensively studied experimentally and theoretically
(see, e.g., Refs. [10–18]). Here, we compare our results to

experimental data, Refs. [10,16] for Dy and Refs. [16–18] for
Ho, to check the accuracy of the method we use.

II. METHOD OF CALCULATION

A. Calculation of energy levels

As it was mentioned in the Introduction, the Dy and Cf
atoms have 12 valence electrons, and the Ho and Es atoms
have 13 valence electrons. It is well known that as the number
of valence electrons increases, the size of the configuration
interaction (CI) matrix increases dramatically, making the
standard CI calculations practically impossible for such sys-
tems. In this work, we use the CIPT method [9] which has
been especially developed for such systems and realized in a
FORTRAN code.

In this approach, the size of the CI matrix is reduced by
neglecting the off-diagonal matrix elements between high-
energy states and reducing the contribution of these states to
the perturbation-theory-like corrections to the matrix elements
between low-energy states. The size of the resulting CI matrix
is equal to the number of low-energy states.

The CI Hamiltonian can be written as follows,

ĤCI =
Nv∑
i=1

ĤHF
i +

Nv∑
i< j

e2

|ri − r j | , (1)

where i and j enumerate valence electrons and Nv is the total
number of valence electrons, e is electron charge, and r is
the distance. ĤHF

i is the single-electron Hartree-Fock (HF)
Hamiltonian, which has the form

ĤHF
i = cαi · p̂i + (β − 1)mc2 + Vnuc(ri) + V N−1(ri). (2)

Here, c is the speed of light, αi and β are the Dirac matrices,
p̂i is the electron momentum, m is the electron mass, Vnuc(r)
is the nuclear potential obtained by integrating the Fermi
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distribution of nuclear charge density, and V N−1(r) is the self-
consistent HF potential obtained for the configuration with
one 7s (or 6s) electron removed from the ground state config-
uration which has N electrons. This corresponds to the V N−1

approximation [19,20] which is convenient for generating a
single-electron basis. Single-electron basis states are calcu-
lated in the frozen V N−1 potential, so that they correspond
to the atom with one electron excited from the ground state.
External electron wave functions are expressed in terms of
coefficients of expansion over single-determinant basis state
functions

�
(
r1, . . . , rNv

) =
N1∑

i=1

Xi�i
(
r1, . . . , rNv

)

+
N2∑
j=1

Yj� j
(
r1, . . . , rNv

)
. (3)

Here, N1 is the number of low-energy basis states, and N2 is
the number of high-energy basis states.

Then the CI matrix equation can be written in a block form,(
A B
C D

)(
X
Y

)
= Ea

(
X
Y

)
. (4)

Here, block A corresponds to low-energy states, block D cor-
responds to high-energy states, and blocks B and C correspond
to cross terms. Note that since the total CI matrix is symmet-
ric, we have C = B′, i.e., ci j = b ji. Vectors X and Y contain
the coefficients of expansion of the valence wave function
over the single-determinant many-electron basis functions
[see Eq. (3)].

Finding Y from the second equation of (4) leads to

Y = (EaI − D)−1CX. (5)

Substituting Y to the first equation of (4) leads to

[A + B(EaI − D)−1C]X = EaX, (6)

where I is the unit matrix. Then, following Ref. [9] we neglect
off-diagonal matrix elements in block D. This leads to a very
simple structure of the (EaI − D)−1 matrix, (EaI − D)−1

ik =
δik/(Ea − Ek ), where Ek = 〈k|HCI|k〉. Matrix elements of the
effective CI matrix (6) have the form

〈i|Ĥ eff | j〉 = 〈i|ĤCI| j〉 +
∑

k

〈i|ĤCI|k〉〈k|ĤCI| j〉
Ea − Ek

. (7)

We see that the standard CI matrix elements between low-
energy states are corrected by an expression which is very
similar to the second-order perturbation theory correction to
the energy. This justifies the name of the method. To calculate
this second-order correction we need to know the energy of
the state Ea which must come as the result of the solution
of the equation, i.e., it is not known in advance. Therefore,
iterations are needed. We start from any reasonable guess for
the energy. For example, it may come from the solution of
the equation with a neglected second-order correction. Note
that the energy-independent numerators of the second-order
correction can be calculated only once, on the first iteration,
kept on disk, and reused on every consequent iteration. This
means that only the first iteration takes some time while all

TABLE I. Excitation energies (E , cm−1), and g factors for some
low states of Dy, and Ho atoms.

This work NIST [16]

Conf. Term J E g E g

Dy
4 f 106s2 5I 8 0.000 1.242 0.000 1.2416
4 f 106s2 7 3933 1.175 4134.2 1.1735
4 f 106s2 6 7179 1.073 7050.6 1.0716
4 f 95d6s2 7Ho 8 7818 1.347 7565.610 1.35246
4 f 95d6s2 7 9474 1.353 8519.210 1.336
4 f 106s2 5I 5 9589 0.909 9211.6 0.911
4 f 95d6s2 7Io 9 10048 1.316 9990.974 1.32
4 f 95d6s2 7Ho 6 11052 1.417 10088.802 1.36
4 f 106s2 5I 4 11299 0.613 10925.3 0.618

Ho
4 f 116s2 4Io 15/2 0.00 1.196 0.00 1.1951
4 f 116s2 13/2 5205 1.107 5419.7
4 f 105d6s2 (8, 3

2 ) 17/2 8344 1.262 8378.91
4 f 105d6s2 15/2 8385 1.280 8427.11
4 f 116s2 4Io 11/2 8501 0.979 8605.2 1.012
4 f 105d6s2 (8, 3

2 ) 13/2 8989 1.336 9147.08
4 f 105d6s2 19/2 8952 1.231 9741.50
4 f 116s2 4Io 9/2 10550 0.780 10695.8 0.866

other iterations are very fast. As a rule, less than ten iterations
are needed for full convergence. As a result, we have an
energy of the state Ea and expansion coefficients X and Y .

B. Basis states

To solve the CI equations we need many-electron basis
states which are constructed from single-electron states. For
single-electron basis states we use the B-spline technique
[21,22]. These states are defined as linear combinations of
B splines that are eigenstates of the HF Hamiltonian (2).
B-spline bases provide users with the flexibility to choose a
basis that best meets their study specifications.. In our study,
40 B splines of the order nine are calculated within a box of
radius Rmax = 40aB (where aB represents Bohr’s radius) and
an orbital angular momentum of 0 � l � 4. Fourteen states
above the core in each partial wave are used. With these
parameters the basis is sufficiently saturated for the low-lying
states. Increasing the values of lmax, Rmax, as well as the
number of B splines, do not produce any significant change
in the results.

The many-electron states are found by making all possible
single- and double-electron excitations from a few reference
configurations. One, two, or three configurations, correspond-
ing to the low-lying states of an atom, are considered as
reference configurations. One configuration of the same parity
is considered at a time. For each configuration, all possible
values of the projection of the total angular momentum j of
the single-electron states are considered and many-electron
states with fixed values of total many-electron angular mo-
mentum J and its projection M are constructed. Usually, we
take M = J .
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TABLE II. Hyperfine structure constants A and B (in MHz) for low-lying states of Dy and Ho. Nuclear spin I , nuclear magnetic moment
μ(μN ), and nuclear electric quadrupole moment Q(b) values for the isotopes of the 161,163Dy and 165Ho are taken from Ref. [24], gI = μ/I .
The last column presents references to experimental data for A and B.

Isotope This work Experimental results

Nuclear parameters Conf. Term J A B A B Ref.

161Dy
μ = −0.480, I = 5/2, Q = 2.51 4 f 106s2 5I 8 −113 1127 −116.231 1091.577 [10]

4 f 106s2 7 −125 1057 −126.787 1009.742 [10]
4 f 106s2 6 −140 991 −139.635 960.889 [10]

4 f 95d6s2 7Ho 8 −88 2256 − − −
4 f 95d6s2 7 −104 2397 − − −
4 f 106s2 5I 5 −166 928 −161.971 894.027 [10]

4 f 95d6s2 7Io 9 −80 2663 − − −
4 f 95d6s2 7Ho 6 −122 2901 − − −
4 f 106s2 5I 4 −216 997 −205.340 961.156 [10]

163Dy
μ = 0.673, I = 5/2, Q = 2.65 4 f 106s2 5I 8 158 1190 162.754 1152.869 [10]

4 f 106s2 7 176 1116 177.535 1066.430 [10]
4 f 106s2 6 196 1046 − − −

4 f 95d6s2 7Ho 8 123 2381 − − −
4 f 95d6s2 7 146 2531 − − −
4 f 106s2 5I 5 233 979 − − −

4 f 95d6s2 7Io 9 112 2812 − − −
4 f 95d6s2 7Ho 6 170 3063 − − −
4 f 106s2 5I 4 303 1053 − − −

165Ho
μ = 4.17, I = 7/2, Q = 3.58 4 f 116s2 4Io 15/2 787 −1943 800.583 −1668.089 [17]

4 f 116s2 13/2 939 −1668 937.209 −1438.065 [17]
4 f 105d6s2 (8, 3

2 ) 17/2 666 1085 776.4(4.5) 608(300) [18]
4 f 105d6s2 15/2 763 1127 783.0(4.5) 801(300) [18]

4 f 116s2 4Io 11/2 1061 −1315 1035.140 −1052.556 [17]
4 f 105d6s2 (8, 3

2 ) 13/2 879 1829 916.6(0.5) 2668(7) [18]
4 f 105d6s2 19/2 617 1650 745.1(1.4) 1747(78) [18]

4 f 116s2 4Io 9/2 1279 −1174 1137.700 −494.482 [17]

C. Calculation of hyperfine structure

In this section, we mostly follow our previous work on
hafnium and rutherfordium [23]. To calculate HFS, we use
the time-dependent Hartree-Fock (TDHF) method, which is
equivalent to the well-known random-phase approximation
(RPA). The RPA equations are the following,

(ĤRHF − εc)δψc = −(
f̂ + δV f

core

)
ψc, (8)

where f̂ is an operator of an external field (nuclear magnetic
dipole or electric quadrupole fields). Index c in (8) numerates
states in the core, ψc is a single-electron wave function of the

state c in the core, δψc is the correction to this wave function
caused by an external field, and δV f

core is the correction to
the self-consistent relativistic Hartree-Fock (RHF) potential
caused by changing of all core states. Equations (8) are solved
self-consistently for all states in the core. As a result, an
effective operator of the interaction of valence electrons with
an external field is constructed as f̂ + δV f

core. The energy shift
of a many-electron state a is given by

δεa = 〈a|
M∑

i=1

(
f̂ + δV f

core

)
i
|a〉. (9)

TABLE III. Experimental and theoretical values of the first ionization potential IP1 (in cm−1).

State IP1

Atom Initial Final Present Expt. Ref.

Dy 4 f 106s2 5I8 4 f 106s (8, 1
2 )17/2 46658 47901.76(5) [25]

Ho 4 f 116s2 4Io
15/2 4 f 116s ( 15

2 , 1
2 )o

8 47819 48567(5) [26]
Cf 5 f 107s2 5I8 5 f 107s 6I17/2 50821 50663(2) [27]
Es 5 f 117s2 4Io

15/2 5 f 117s 5Io
8 51763 51358(2) [27]

51364.58(14)stat (50)sys [28]
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TABLE IV. Calculated hyperfine structure constants A and B (in
MHz) for the ground states of Dy, Ho, Cf, and Es atoms.

Atom Conf. Term J A B

Dy 4 f 106s2 5I 8 587 × gI 449 × Q
Ho 4 f 116s2 4Io 15/2 661 × gI −543 × Q
Cf 5 f 107s2 5I 8 608 × gI 477 × Q
Es 5 f 117s2 4Io 15/2 681 × gI −818 × Q

Here, M is the number of valence electrons.
When the wave function for the valence electrons comes as

a solution of Eq. (6), Eq. (9) is reduced to

δεa =
∑

i j

xix j〈�i|Ĥhfs|� j〉, (10)

where Ĥhfs = ∑M
i=1( f̂ + δV f

core )i, and xi, x j are vector com-
ponents of X (the same is true for yi, zi below). For better
accuracy of the results, the full expansion (3) might be used.
Then it is convenient to introduce a new vector Z , which con-
tains both X and Y , Z ≡ {X,Y }. Note that the solution of (6)
is normalized by the condition

∑
i x2

i = 1. The normalization
condition for the total wave function (3) is different,

∑
i x2

i +∑
j y2

j ≡ ∑
i z2

i = 1. Therefore, when X is found from (6), and
Y is found from (5), both vectors should be renormalized.
Then the HFS matrix element is given by the expression,
which is similar to (10) but has many more terms,

δεa =
∑

i j

ziz j〈�i|Ĥhfs|� j〉. (11)

Energy shift (9) is used to calculate HFS constants A and B
using the textbook formulas

Aa = gIδε
(A)
a√

Ja(Ja + 1)(2Ja + 1)
, (12)

and

Ba = −2Qδε (B)
a

√
Ja(2Ja − 1)

(2Ja + 3)(2Ja + 1)(Ja + 1)
. (13)

Here, δε (A)
a is the energy shift (9) caused by the interaction of

atomic electrons with the nuclear magnetic moment μ, gI =
μ/I , and I is nuclear spin; δε (B)

a is the energy shift (9) caused
by the interaction of atomic electrons with the nuclear electric
quadrupole moment Q [Q in (13) is measured in barns].

III. ENERGY LEVELS AND HFS
OF DYSPROSIUM AND HOLMIUM

For the purpose of testing the accuracy of the method, we
start calculating the energy levels for some low-lying states
of Dy and Ho. The results are shown in Table I. As can be
seen, our results are consistent with the experimental results
compiled in Ref. [16] of respective atomic systems. The dif-
ference between theoretical calculations and measurements
is within a few hundred cm−1. Calculated and experimental
Landé g factors are also presented. A comparison of Landé
g factors calculated with nonrelativistic expressions is helpful

for identifying state labels:

gNR = 1 + J (J + 1) − L(L + 1) + S(S + 1)

2J (J + 1)
. (14)

The total orbital momentum L, and total spin S in (14) cannot
come from relativistic calculations. Instead, we choose their
values from the condition that formula (14) gives values very
close to the calculated g factors. This allows us to link the
state to the nonrelativistic notation 2S+1LJ . Here, J is the
total angular momentum (J = L + S). A good agreement is
also observed between current calculations and experimental
g factors of Dy and Ho whenever experimental data are avail-
able. In order to identify the states correctly, it is essential
to take this into consideration. An exception stands out in
state 4 f 116s2 4Io

9/2 of Ho, where the theory differs signifi-
cantly from the experiment. Based on the NIST database [16]
of the Ho spectrum, we can observe that there are multiple
states with the same parity and total angular momentum J ,
separated only by small energy intervals and dominated by
different electron configurations. Due to this vigorous mixing,
the calculations of the g factor become unstable.

The hyperfine structures of the ground states and some
low-lying states of Dy and Ho have also been calculated. The
Dy atom has two stable isotopes, 161Dy and 163Dy, and the
Ho atom has one stable isotope, 165Ho. The results of calcu-
lations and corresponding nuclear parameters are presented in
Table II. One can see that we have good agreement between
theory and experiment for the magnetic dipole constant A
and electric quadrupole constant B for most states of Dy and
Ho. The difference between theory and experiment is within
3% for the A constant of Dy and Ho, within 4% for the B
constants of Dy and ∼20% for the B constant of Ho. A similar
agreement between theory and experiment was found earlier
for the HFS constants of Er [7]. Two states of Ho present an
exception. These are the 4 f 105d6s2 (8, 3

2 )13/2 state, and the
4 f 116s2 4Io

9/2 state. Here, the difference between theory and
experiment for electric quadrupole HFS constant B is signifi-
cant. In particular, it is 138% for the 4 f 116s2 4Io

9/2 state. This
is the same state which shows poor accuracy for the g factor,
which indicates that strong configuration mixing affects the
HFS as well. It should be mentioned that an earlier study
performed using the multiconfiguration Dirac-Fock (MCDF)
method also found that this state had a low level of accuracy
with a 117% deviation from the experimental result [13].

Note that our investigations of testing the accuracy of us-
ing the CIPT method on the Er atomic system, which has a
similar electronic structure, were previously performed [7].
All the above atomic properties, energies, g factors, and HFS
constants A and B for the stable isotope with nonzero spin,
167Er, have been calculated. There has been a good agreement
between measurements and our results (see Ref. [7], Tables 1
and 6). In the end, we expect that the results for Cf and Es will
be accurate as well.

IV. IONIZATION POTENTIALS

Calculating the ionization potential (IP) is a good way to
test the theoretical approach for the ground state. The IP is
obtained as a difference between the ground state energies of
the neutral atom and the ion. The CIPT method, which we
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TABLE V. Hyperfine structure constants A and B (in MHz) of the ground state of Es. Nuclear spin I , nuclear magnetic moment μ(μN ), and
nuclear electric quadrupole moment Q(b) values for the isotopes of the 253Es are taken from Ref. [24], while 254Es and 255Es parameters are
taken from Ref. [3]. gI = μ/I . The last column presents references for experimental data on A and B. The values of μ and Q obtained in this
work are extracted from a comparison of experimental and calculated HFS constants assuming 3% uncertainty in calculation of A and 16%
uncertainty in calculation of B.

Isotope This work Experimental results

Nuclear parameters Conf. Term A B μ Q A B Ref.

253Es
μ = 4.1(7), I = 7/2, Q = 6.7(8) 5 f 117s2 4Io

15/2 798 −5481 4.12(15) 4.8(1.0) 802(18) −3916(550) [3]
4.20(13) 5.3(8) 817.153(7) −4316.254(76) [1]

254Es
μ = 3.42(7), I = 7, Q = 9.6(1.2) 5 f 117s2 4Io

15/2 333 −7853 3.48(10) 7.6(1.3) 339(4) −6200(300) [3]
255Es

μ = 4.14(10), I = 7/2, Q = 5.1(1.7) 5 f 117s2 4Io
15/2 806 −4172 4.23(26) 3.7(1.8) 824(45) −3001(1400) [3]

use in the present calculations, has a feature of having good
accuracy for low-lying states, and it decreases while going
up on the energy scale. The best accuracy is expected for the
ground state. On the other hand, having HFS for the ground
state is sufficient to extract nuclear parameters μ and Q.
Therefore, we calculate the first ionization potential (IP1) for
all atoms considered in the present work. We calculate ground
state energies of neutral atoms and corresponding ions in the
same V N−1 potential and the same single-electron basis. This
ensures exact cancellation of the energies associated with core
electrons. The results are presented in Table III and compared
with available experimental data. As can be seen from the
table the accuracy of the results is 2.7% for Dy, 1.6% for Ho,
0.3% for Cf, and 0.8% for Es.

V. RESULTS FOR HFS

In Table IV, we present the results of our calculations of
the HFS constants of the ground states of Dy, Ho, Cf, and
Es. We have calculated both magnetic dipole HFS constant A
and electric quadrupole HFS constant B, which can be used
for the extraction of nuclear moments for any isotope with
nonzero spin. For a better understanding of the accuracy of the
calculations for heavy actinides, it is instructive to compare
electron structure factors for the HFS constants with those
of lighter atoms, Dy, Ho, and Er. The situation is different
for the HFS constants A and B. The electron structure factor
for the magnetic dipole constant A is almost the same for
heavy actinides and their lighter analogs; it varies within 3%.
The electron structure factors for the HFS constant B are
also similar, although the variation is larger. It goes from
about 20% for the Dy, Cf pair to 50% for the Ho, Es pair.
This justifies using lighter analogs of heavy actinides for the
estimation of the uncertainty of the calculations. We assume
3% uncertainty for the HFS constant A of all considered atoms
and 16% uncertainty for the HFS constant B (as the difference
between theory and experiment for the ground state of Ho).
This latter assumption is rather conservative. The difference
between theory and experiment for the HFS constant B of the
ground state of Dy is about 3% and it is about 10% for the
ground state of Er [7].

This high level of accuracy is a bit surprising for atoms
with open shells. Therefore, it is instructive to see how domi-
nating contributions are formed. First, we note that according
to numerical tests, configuration mixing gives a relatively
small contribution to the HFS constants. About 90% or more
comes from leading configurations which is 4 f n6s2 for Dy
and Ho and 5 f n7s2 for Cf and Es (n = 10, 11). In these
configurations s electrons form a closed shell and do not
contribute to the HFS. Therefore, all of the contribution comes
from f electrons. It is well known that in the case of excited
valence f states (e.g., 4 f state of Cs or 5 f state of Fr) the HF
value of the energy shift due to the HFS operator 〈4 f | f̂ |4 f 〉
is small and the dominating contribution comes from the core
polarization correction 〈4 f |δV f

core|4 f 〉 [see Eq. (9)]. The situa-
tion is different in atoms considered in the present work. The f
electron states are inside the core, localized at about the same
distances as other states with the same principal quantum
number, i.e., it is not even the outermost shell. For example,
〈4 f |r|4 f 〉 < 1aB for Dy, Ho, and Er, while 〈4 f |r|4 f 〉 ∼ 20aB

for Cs. Being inside the core, f states penetrate to short
distances near the nucleus, making a large value of the HF
matrix element 〈4 f | f̂ |4 f 〉. In contrast, the core polarization
correction 〈4 f |δV f

core|4 f 〉 is small (∼1%). In the end, zero-
order matrix elements are large while core polarization and
configuration mixing corrections are small. This is the key to
the high accuracy of the results.

Table V shows the results and analysis of the HFS for
three isotopes of Es (253–255Es). This table serves two pur-
poses. First, this is another confirmation of the accuracy of
the calculations. However, to compare the calculations to the
experiment we need to use nuclear moments, which are known
to have fairly poor accuracy (see the table). For example, the
uncertainty for the magnetic moment of the 253Es nucleus
is 17%. On the other hand, our estimated accuracy for the
HFS constant A is 3%. This means that we can improve the
accuracy of the nuclear moments by extracting them from a
comparison of the experimental data with our calculations.
The results are presented in the table. We see that real im-
provement is obtained for μ(253Es) only. For other nuclear
moments, the uncertainties are similar but the central points
are shifted. New and old values are consistent when error bars
are taken into account.
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VI. CONCLUSIONS

Magnetic dipole and electric quadrupole HFS constants A
and B were calculated for the ground states of heavy actinides
Cf and Es. Similar calculations were performed for the lighter
analogs of these atoms, Dy and Ho. To establish the accuracy
of the results, the comparison between theory and experiment
was done for HFS constants, energy levels, g factors, and the
ionization potential, everywhere where the experimental data
are available. We found an uncertainty of 3% for the HFS
constant A and about 16% uncertainty for the HFS constant
B. Using the calculated HFS constants of those heavy

elements considered, nuclear magnetic and electric
quadrupole moments can be extracted from the measurement
data.
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