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Complex-scaled ab initio QED approach to autoionizing states
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An ab initio method based on a complex-scaling approach and aimed at a rigorous QED description of
autoionizing states is worked out. The autoionizing-state binding energies are treated nonperturbatively in αZ and
include all the many-electron QED contributions up to the second order. The higher-order electron correlation,
nuclear recoil, and nuclear polarization effects are taken into account as well. The developed formalism is
demonstrated on the LL resonances in helium-like argon and uranium. The most accurate theoretical predictions
for the binding energies are obtained.
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Autoionizing states of atomic or ionic systems are the
excited states which can decay by virtue of the electron-
electron interaction via the emission of one or more electrons.
The high-precision energies of such states are in demand
for plasma diagnostics [1–4], e.g., in fusion facilities [5]
and astrophysical searches [6]. Furthermore, the possibil-
ity of using the autoionizing states as the energy-reference
standards at synchrotron-radiation facilities is currently inves-
tigated [7–10].

To obtain the energies of the autoionizing states with the
precision necessary for all these and many other applications,
accurate calculations of the electron-electron correlations and
quantum-electrodynamics (QED) corrections are required.
State-of-the-art QED calculations constitute an extremely dif-
ficult task, and previously they were performed only for
the ground and singly excited states, see Refs. [11–16] for
review. These calculations usually employ finite-basis-set
approaches, which fail when being applied to the compu-
tation of autoionizing-state energies. The failure originates
from the fact that the autoionizing states are embedded into
the positive-energy continuum, which is discretized in the
finite-basis-set approaches. Discretization leads to the prob-
lem of small denominators in certain many-electron QED
corrections as well as in correlation contributions treated
perturbatively. As a result, the convergence of the correla-
tion and QED corrections with respect to the size of the
basis set is weak or even absent that strongly limits the ac-
curacy. Moreover, the bases are often constructed from the
square-integrable functions that do not properly describe the
nonlocalized autoionizing states. This, in turn, limits the accu-
racy of the nonperturbative many-electron methods such as,
e.g., configuration-interaction (CI) and coupled-cluster (CC)
ones.

The problems associated with the embedding of the au-
toionizing states into the continuum can be naturally solved by
the complex-scaling (CS) approach in which the Hamiltonian
is dilated into the complex plane. The autoionizing states
corresponding to the dilated Hamiltonian detach from the con-
tinuum and admit description by square-integrable functions.
As a result, the CS provides an opportunity to utilize the stan-
dard well-established techniques with minor modifications. A

detailed description of the CS approach as well as its various
applications can be found in Refs. [17–20]. We note that, even
though the analysis of the spectral properties of the Dirac
Hamiltonian was studied almost five decades ago [21–23],
much less attention was paid to the application of the CS
approach to relativistic problems [24–31].

The CS approach combined with the perturbation
theory [10,32,33], Hylleraas [34], Hylleraas-CI [35–37],
CI [38–44], CC [45,46], and multiconfigurational self-
consistent field [47–49] methods has been successfully
applied to the evaluation of the autoionizing-state energies.
In all these calculations, the QED corrections were at best
only estimated or not even taken into account that strongly
limited the accuracy of the results. As far as we know, ab
initio QED description of the states being in resonance with
the continuum has not been undertaken. Here we combine
the rigorous QED treatment with the CS approach and cal-
culate the complete set of many-electron QED corrections
to the energies of autoionizing states. We also account for
the one- and two-loop QED contributions, nuclear recoil
effect, and higher-order correlation and QED corrections.
The developed approach is applied to the lowest nonmixing
autoionizing states of several helium-like ions, namely, to
the (2s2p1/2)0, (2p1/22p3/2)1, and (2s2p3/2)2 levels in Ar16+

and U90+.
We use the Dirac equation as a zeroth-order approximation

and utilize the Furry picture in which the electron-nucleus
interaction is treated nonperturbatively. The electron-electron
correlation and QED contributions are accounted for by per-
turbation series. We consider all the contributions to the
binding energies up to the second order that, to date, corre-
spond to the most advanced bound-state QED calculations.
Below we present the details of the method.

Let us start with the two-photon exchange contribution
whose evaluation causes the main difficulties for autoion-
izing states (the calculations for nonresonant states were
performed, e.g., in Refs. [50–60]). For two-electron system,
this correction is given by the Feynman diagrams shown in
Fig. 1.

The ladder contribution is naturally divided into the irre-
ducible and reducible parts [61,62]. For nonmixing states, the
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FIG. 1. Two-photon exchange diagrams: the ladder (left) and
crossed (right) contributions. The double line represents the electron
propagator in the nucleus field and the wavy line designates the
photon propagator.

irreducible part reads as (relativistic units, h̄ = c = me = 1
where me is the electron mass, are employed)

E lad
irr =

∑
P

(−1)P
∑
n1n2

′ i

2π

×
∫

dω
〈PaPb|I (� − ω)|n1n2〉〈n1n2|I (ω)|ab〉

[εa+ ω− εn1 (1− i0)][εb− ω− εn2 (1 − i0)]
,

(1)

where P is the permutation operator, (−1)P is its parity, I is
the interelectronic-interaction operator, εn is the Dirac energy
of the one-electron orbital |n〉, and � = εPa − εa. The summa-
tion over n1 and n2 is restricted by the condition εn1 + εn2 �=
εa + εb. For autoionizing states, εa + εb > ε1s + 1, and this
condition is fulfilled when one of the n1 and n2 states equals
1s and the other lies in the continuum. Nevertheless, such
intermediate states should be attributed to the summation in
Eq. (1). For the sake of simplicity, Eq. (1) is given for a
one-determinant state. The transition to the general case of a
many-determinant wave function is straightforward and does
not pose additional issues.

Let us discuss in detail the computational difficulties oc-
curring for the irreducible ladder contribution. In Fig. 2(a),
we present the pole structure for its direct part given by the
term (PaPb) = (ab) in Eq. (1). Upon the Wick’s rotation,
convenient from the practical point of view, the poles of the
electron Green’s function are picked up as residues. For au-
toionizing states, the residues embedded into the continuum
arise, see Fig. 2(a), that causes the failure of the conventional
finite-basis-set techniques. Indeed, in these approaches, the

continuum is discretized by the quasicontinuum states with
energies depending on the parameters of the basis set. As
a result, the energy difference εa + εb − ε1s − εn appearing,
e.g., in the denominator of the residue for the LL resonances
may become arbitrarily small, thus leading to large numerical
instabilities. The same difficulty takes place for the exchange
part as well. We note that the issue of arbitrarily small de-
nominators can be avoided in the approaches based on the
exact Dirac Green’s function. These approaches, however,
are much more complicated in implementation and are not
usually utilized for the evaluation of the two-photon exchange
diagrams.

We apply the CS approach to detach the poles from the
continuum and overcome the stated difficulties. We utilize the
simplest variant of the CS, namely, the uniform one, in which
the radial variable r is transformed according to

r → reiθCS , (2)

where θCS is the CS angle. This transformation allows us
to construct the analytic continuation of the Dirac Hamil-
tonian into the complex plane. The discrete spectrum of
the dilated Hamiltonian does not change, whereas the con-
tinuum spectrum “rotates.” As a result, the pole structure
of the integrand in Eq. (1) changes, as schematically de-
picted in Fig. 2(b). The CS separates the problematic poles
from the continuum and, therefore, eliminates the issue
of small denominators making the calculations numerically
stable.

In fact, the CS is required only for terms in Eq. (1) with
Dirac quantum numbers κn1 and κn2 that can form an inter-
mediate state into which the Auger decay is allowed. For
instance, the Auger-decay channel of the (2s2p1/2)0 state
is (2s2p1/2)0 → 1s + εp1/2 that corresponds to (κn1 , κn2 ) =
(−1, 1) and (κn1 , κn2 ) = (1,−1). Hereafter, we refer to such
terms as the resonant ones. When applying the CS, one needs
to take the CS angle from the range θcr < θCS < π/2, where
θcr is the critical angle defined by the parameters of the Auger-
decay channel [63–65]. For the complete basis set, the value of
θCS within this interval does not affect the computation results.
In practice, however, incomplete basis sets are used, and one
has to find an optimal θCS that minimizes the result-variation
rate [43,44].

We use the finite basis with the basis functions constructed
from the B splines [66,67] within the dual-kinetic-balance ap-
proach [68]. To investigate the dependence of the irreducible

(a) (b)

FIG. 2. Poles and branch cuts of the integrand and the integration contour for the direct part of the irreducible ladder contribution for
ε1s < εa � εb. The solid line representing the continuum turns into a set of poles for the finite basis. The dashed lines denote the cuts due to
the photon propagators.
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FIG. 3. The total resonant contribution, (κn1 , κn2 ) = (−1, 1) and
(κn1 , κn2 ) = (1, −1), for the state (2s2p1/2)0 in uranium as a function
of Nbspl being the number of the B splines.

ladder contribution on the parameters of the basis set with and
without the CS, in Fig. 3 we present the resonant terms for the
(2s2p1/2)0 state as a function of the B-spline number Nbspl for
various values of θCS.

It is seen that the direct approach with θCS = 0◦ fails. The
CS approach, meanwhile, allows us to obtain the results which
are free from the irregular dependence on Nbspl. We note also
that inaccuracy in the choice of θCS can be easily compensated
by extending the basis set and does not influence strongly
the accuracy of the results. Finally, we point out that the
reducible part of the ladder contribution, the crossed diagram,
and other second-order many-electron QED corrections do
not contain additional difficulties for autoionizing states and
can be evaluated directly. The relevant formulas can be found
in, e.g., Refs. [61,69–72]. The developed formalism can be

readily adapted for ions with more electrons as well as for the
mixing states.

In Table I we present the energies of the autoionizing
(2s2p1/2)0, (2p1/22p3/2)1, and (2s2p3/2)2 states in helium-
like argon and uranium. The nuclear-charge distribution is
described by the Fermi model. The values of the fundamental
constants are taken from Ref. [74], in particular, the in-
verse fine-structure constant α−1 = 137.035999084(21) and
mec2 = 0.51099895000(15). The interelectronic-interaction
and QED corrections are treated in the Furry picture. To zeroth
order, the energy equals the sum of the one-electron Dirac
energies. The contribution of the first order is provided by
the one-photon exchange and one-loop QED diagrams. We
also account for the complete set of the second-order cor-
rections. The two-photon exchange contribution is evaluated
within the ab initio QED approach combined with the CS as
described above. We divide it into the Breit and QED con-
tributions, see, e.g., Ref. [75]. The two-electron self-energy
and vacuum-polarization corrections (the row “ScrQED”) are
calculated using the approaches described in Ref. [72]. The
one- and two-loop one-electron QED contributions are taken
from Ref. [76]. The contribution arising from the exchange
by three and more photons are accounted for within the
Breit approximation. To this end, we utilize the CS version
of the Dirac-Coulomb-Breit (CS-DCB) Hamiltonian and cal-
culate the total energies by means of the CI approach, see
Ref. [43]. The desired higher-order contribution is extracted
following the procedure from Refs. [72,77,78]. The nuclear
recoil contribution is also divided into the Breit and QED
parts. Within the Breit approximation, it is treated by em-
ploying the mass-shift operator [79–82] included into the
CS-DCB Hamiltonian. We dilate the mass-shift operator into
the complex plane, which differs the present approach from
the one utilized in Ref. [43], where the conventional (Hermi-
tian) operator was used. This allows us to obtain considerably
more stable numerical results. The QED nuclear recoil con-
tribution is calculated to zeroth order in 1/Z , see, e.g.,

TABLE I. Individual contributions to the energies in eV of the autoionizing (2s2p1/2)0, (2p1/22p3/2)1, and (2s2p3/2)2 states in helium-like
argon (Z = 18) and uranium (Z = 92) ions. See the text for the details.

Z = 18 Z = 92

(2s2p1/2)0 (2p1/22p3/2)1 (2s2p3/2)2 (2s2p1/2)0 (2p1/22p3/2)1 (2s2p3/2)2

Dirac −2216.113946 −2211.309654 −2211.308511 −68388.842 −63860.911 −63827.605
1 ph 65.614133 80.880215 65.354183 440.134 492.711 379.773
1 loop 0.148270 0.001855 0.158836 56.630 15.639 58.568
2 ph (Br.) −0.766652 −1.095086 −0.762486 −1.318 −1.853 −0.974
2 ph (QED) 0.000033 0.000064 −0.000006 0.087 0.051 0.020
ScrQED −0.003329 −0.000044 −0.003828 −0.442 −0.215 −0.343
2 loop −0.000086 0.000009 −0.000103 −0.248 −0.018 −0.258
� 3 ph (Br.) 0.005489 0.003367 0.005577 −0.000 0.006 0.002
Recoil (Br.) 0.029503 0.029469 0.029440 0.146 0.141 0.135
Recoil (QED) 0.000044 −0.000004 0.000044 0.058 0.012 0.050
Nuc. Pol. −0.000025 0.000000 −0.000025 −0.044 −0.004 −0.039
ScrScrQED −0.000017 −0.000013 −0.000001 0.012 0.002 0.000

Total −2151.086583(82) −2131.489821(16) −2146.526880(97) −67893.833(97) −63354.439(19) −63390.654(95)
Reference [43] −2151.087(15) −2131.4900(19) −2146.527(15)
Reference [73] −67892.71(30) −63353.44(25) −63389.68(30)
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Refs. [79,80,82–87]. Finally, we account for the nuclear polar-
ization [76,88–90] and deformation [77] effects. To estimate
the higher-order QED corrections (the row “ScrScrQED”), we
use the model-QED operator [91] realized in the QEDMOD

package [92] and follow the procedure from Ref. [93]. For
argon, the dominant uncertainties arise from the uncalculated
higher-order QED corrections. In the case of uranium, the
largest uncertainty comes from the nuclear size effect and
two-loop QED correction [76].

In Table I, we also compare our results with the previous
calculations. For argon, an excellent agreement is observed
with the previous most-accurate results [43], but the present
ones are much more precise. For uranium, in contrast, the
obtained energies differ from the ones given in Ref. [73] by
3 to 4 standard deviations depending on the state. In Ref. [73],
the conventional CI approach with the basis constructed from
the B splines and supplemented with the continuum wave
functions was applied. The uncertainties in Ref. [73] were
determined from the dependence of the energies on the basis-
set parameters. As was shown in Ref. [43], this approach can
converge to an incorrect value due to improper accounting of

the interaction with the continuum, which, in turn, leads to an
incorrect estimation of the uncertainty.

To summarize, we worked out an effective and reliable
method based on the complex-scaling approach and aimed
at describing the autoionizing states within the ab initio
QED formalism. To demonstrate the developed approach,
we evaluated the energies of the autoionizing (2s2p1/2)0,
(2p1/22p3/2)1, and (2s2p3/2)2 states in helium-like argon and
uranium rigorously accounting for all the QED contributions
up to the second order of the perturbation theory. The obtained
energies are several orders of magnitude more precise than the
previous most-accurate values. Theoretical predictions of this
level of accuracy being supplemented with the experimental
data provide an altervative kind of opportunity to test bound-
state QED effects. Moreover, we believe that the combination
of the complex scaling with the rigorous QED theory can be
utilized for the evaluation of the QED effects in the external
and even supercritical electromagnetic fields.

This study was supported by the Russian Science Founda-
tion (Grant No. 22-22-00370).
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