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Quantum communication technologies will play an important role in quantum information processing in the
near future as we network devices together. However, their implementation is still a challenging task due to
both loss and gate errors. Quantum error-correcting codes are one important technique to address this issue.
In particular, the quantum Reed-Solomon codes well suited to communication tasks as photons can naturally
carry more than one qubit of information. The high degree of physical resources required, however, makes such
a code difficult to use in practice. A recent technique called quantum multiplexing has been shown to reduce
resources by using multiple degrees of freedom of a photon. In this work, we propose a method to decompose
multicontrolled gates using fewer controlled-x (CX) gates via this quantum multiplexing technique. We show
that our method can significantly reduce the required number of CX gates needed in the encoding circuits for the
quantum Reed-Solomon code. Our approach is also applicable to many other quantum error-correcting codes
and quantum algorithms, including Grovers and quantum walks.
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I. INTRODUCTION

Quantum communication systems utilizing the principles
of superposition and entanglement will provide new capabili-
ties that we cannot achieve in our current telecommunication
counterparts [1–5]. Such communication is expected to pro-
vide the basis for distributed quantum information processing
systems, including quantum key distribution [6,7], blind quan-
tum computation [8,9], distributed quantum computation [10],
quantum remote sensing [11], and the quantum internet
[12]. However, the fragile nature of quantum states as they
propagate through such channels will severely limit the per-
formance of the systems. Quantum error-correcting codes
(QECCs) are a fundamental tool to address these issues as
they can correct both channel loss and gate/general errors.

Since the first QECC was found by Shor [13], quite a
number of codes have been proposed, including stabilizer
codes [14], quantum low-density parity-check codes [15],
and Gottesman-Kitaev-Preskill (GKP) codes [16]. Further, the
Calderbank-Shor-Steane (CSS) codes [17] are widely studied
because they are quantum codes that can be constructed using
a variety of classical codes and inherit the nice properties of
the existing classical codes. For quantum computation, topo-
logical CSS codes, including surface codes [18], have known
useful properties such as high thresholds and capability for
performing practical transversal gates due to the locality of
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stabilizers. For quantum communication and quantum memo-
ries, the delay introduced in the decoding is not as critical as
it is in computation [19], meaning complex decoding circuits
are acceptable compared to those typically used in the compu-
tation. Therefore, for quantum communication and quantum
memory-related tasks, code rate and minimum distance are
more important than the locality of the stabilizers. It is known
that the quantum Reed-Solomon codes [20] are efficient codes
for quantum communication from that point of view. As re-
search on QECCs becomes more active, so does research on
efficient implementations of encoding [21,22] and decoding
circuits [23,24] for QECCs.

The classical Reed-Solomon (RS) code [25] has been used
in various communication systems [26,27] due to it being a
maximum distance separable (MDS) code [28]. MDS codes
are important because they can detect and correct the greatest
number of errors for a fixed code-word length n and message
length k. In the classical RS code, multiple consecutive bits
correspond to an element of the Galois field (GF) [25]. This
allows that code to be particularly resilient to burst errors
(errors occurring on consecutive bits) [26], where multiple
bits are used to represent a single element of the GF. Now
the quantum variant of these codes known as the quantum
Reed-Solomon (QRS) code [20] is an important CSS code due
to its ability to correct qudit loss errors, which are the most
critical issue in long-distance quantum communication [29].
However, quantum error-correcting codes require significant
physical sources (in terms of the numbers of both qubits and
photons in the communication) for their realization, making
their implementation quite challenging. It is well known that
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FIG. 1. The encoding circuit for the [[5, 1, 3]]5 quantum Reed-
Solomon code using five-dimensional qudits. The two qudit SUM
gates are defined by the black dot representing the control and the
target with a square box containing the “+” symbol. The discrete
Fourier transform gate is represented by the DFT labeled box.

a photon can carry multiple qubits encoded in its degrees
of freedom (DOF), such as polarization and time bin. Two-
qubit gates can be applied to those DOFs in a deterministic
fashion using simple optical elements, such as beam splitters
and optical switches. Recently, a technique that exploits those
DOFs, called quantum multiplexing, has been used to reduce
the number of quantum memories in a purification protocol
[30] and the number of physical resources [31,32] in the
redundancy code and small-scale QRS codes. Here we show
that by using such quantum multiplexing techniques, one can
drastically reduce the number of controlled gates, in particular
the controlled NOT (CX) gate required to implement the en-
coding circuit of QRS codes used in quantum communication
tasks.

Our paper is organized as follows. In Sec. II, we will re-
view the construction of QRS codes and their coding circuits.
We then briefly overview in Sec. III the quantum multiplex-
ing technique and propose a method to implement multiple
controlled gates (CkX gates) using fewer CX gates enabled by
quantum multiplexing. Section IV then shows the reduction
in the number of gates required that can be achieved when
quantum multiplexing is applied to the QRS codes encoding
circuit. The results and applications of our method to other
quantum tasks are discussed in Sec. V.

II. THE QUANTUM REED-SOLOMON CODE

Let us begin with a brief review of the quantum Reed-
Solomon code. The [[d, 2K − d, d − K + 1]]d QRS code
[20,33–35] is defined by the CSS construction [17] of the
classical RS code in which d (a prime number) is the di-
mension of the qudits used to encode the logic states. Then,
2K − d is the number of logical qudits encoded into the code,
while d − K + 1 is the minimum distance of the code. In our
work, we will consider the 2K − d = 1 case (meaning we are
only encoding one qudit), which has the ability to retrieve
the original encoded quantum information when (d − 1)/2 or
fewer physical qudits are lost. For qudit computation with d
being a prime number greater than or equal to 5, the universal
set of quantum gates is {DFT, Q[i], SUM} [36], which are
analogous to the {H, T, CX} gates for qubit computation. The
DFT gate can be considered the generalized Hadamard gate,
while the SUM gate is the generalized CX gate on the qudit.

Now the encoding quantum circuit for the QRS code (illus-
trated in Fig. 1 for the [[5, 1, 3]]5 code) can be implemented
using the discrete Fourier transform (DFT) gate [37,38] and

FIG. 2. Required number of SUM gates for encoding the
[[d, 1, (d + 1)/2]]d QRS codes versus qudit dimension d . The dots
represent the prime values of d .

a series of quantum SUM gates [16]. Noting that the DFT
gate is the generalization of the Hadamard gate, this gate,
when applied to a single qudit, creates a superposition of states
given by

DFT(| j〉) = 1√
d

d−1∑
k=0

e2π i( jk/d ) |k〉 ,

where |k〉 is the kth Fock state while | j〉 is the jth phase state.
Next, the SUM gate is the generalization of the CX gate for
d-dimensional qudit and is given by

SUM(|A〉 |B〉) = |A〉 |(A + B) [mod d]〉 ,

where A and B are integers less than or equal to d − 1.
This gate is essentially a modulo adder. To illustrate how
these operations can be used to establish the encoding cir-
cuit, Fig. 1 shows an example of the encoding circuit for
the [[5, 1, 3]]5 code. This encoding circuit construction is
a higher-dimensional generalization of the encoding circuit
for [[3, 1, 2]]3 QRS codes proposed in Ref. [39]. Further,
in Appendix A we have described the details of the cir-
cuit configuration for the general [[d, 1, (d + 1)/2]]d code.
It is important for performance and efficiency comparisons
to establish the number of gates required to implement these
codes. It is straightforward to show (with details given in
Appendix A) that the number of SUM gates required to cre-
ate the [[d, 1, (d + 1)/2]]d code using a d-dimensional qudit
is (d2 + d − 4)/2, which we plot in Fig. 2. This number
increases quadratically with the qudit dimension, but it is im-
portant to note that the number of CX gates used in each SUM
gate also increases with the qudit dimension (as we will show
later), making the implementation of the higher-dimensional
QRS codes more difficult. In order to show the advantage of
applying the technique of quantum multiplexing, it is more
convenient to encode each logical d-dimensional qudit with k
qubits, where 2k−1 < d < 2k .

There are several ways to implement SUM gates, but with
this insight that is effectively a modulo adder, we will decom-
pose our SUM gate into two parts. The first part is an adder
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TABLE I. The number of gates NRCA(NM) required for the RCA (modulo) operations in the SUM gate, respectively. Here HD(a, b) is a
function that returns the Hamming distance between the binary representations of the input vector a and b. See Appendix B for further details
about the HD(a, b) functions in the C1X gates.

Ck+1X CkX C2X C1X Condition

NRCA 3k − 2 2k − 1

NM d − 1
∑2(d−1)

i=d HD(i, i [mod d]) 2(d − 1) � 2k

2d − 2k

−1 2k − d
∑2(d−1)

i=d HD(i, i [mod d]) 2(d − 1) > 2k

circuit, of which the Ripple carry adder (RCA) [40] is a natu-
ral choice. That circuit performs the following transformation:

RCA(|A〉 , |B〉) = |A〉 |(A + B) [mod 2k]〉 ,

while the second part is a modulo conversion that performs
the following transformation:

Mod(|A〉 , |(A + B) [mod 2k]〉) = |A〉 |(A + B) [mod d]〉 .

In this case we use k qubits to encode d-dimensional qudits,
which means the RCA part adds two binary numbers having k
bits. This part utilizes auxiliary qubits called “carry” to store
the outcome of the addition of two qubits both having values
of 1. Further, the modulo conversion can also be split into
two distinct operations. In the first operation, a series of logic
gates are used to check whether the outcome of the RCA
exceeds d . In the case it exceeds d , the result will be stored
in an auxiliary qubit we label “check if.” To illustrate this, a
specific example of how these auxiliary qubits have been used
is presented in Appendix B. Next, the second operation, which
we label as a conversion element, transforms the output of
the RCA part in [mod 2k] representation to the desired output
of the SUM gate with [mod d] representation. We need to
consider this in a little more detail, so let us look at the various
outcomes of the RCA, which correspond to our three different
cases. In the first case, where the outcome of the RCA is less
than d , the second operation will not change this outcome,
meaning no further action is needed. In the second case, where
the outcome is greater than d − 1 but less than 2k , check-if
auxiliary qubits are used for storing each value. Those values
are then used to convert the outcome to the desired state. In the
third case, where the outcome is greater than or equal to 2k ,
check-if auxiliary qubits will be used to store each value, and
the biggest carry qubit is also used to distinguish the value
and the value minus 2k in the second operation. However,
the check-if qubit is not required when the outcome is 2k if
and only if 2(d − 1) = 2k . This is because the biggest can be
used as the check-if value since 2k is the only value that is
bigger than 2k . It is straightforward to observe that this SUM
gate construction requires k + d − 2 auxiliary qubits, where k
qubits are for the carry and d − 2 qubits are for the check if.

The total number of CX gates NSUM for each SUM gate
in a d-qudit system with 2k−1 < d � 2k is given by NSUM =
NRCA + NM, where NRCA(NM) are the number of gates for
the RCA (modulo) parts, respectively. The number of gates
required by those parts is presented in Table I, where CkX is
the X gate controlled by k qubits (C2X is controlled by 2 and
is the well-known Toffoli gate). Further, the Ck+1X gate is the
X gate controlled by k qubits + 1 carry auxiliary qubit.

In Fig. 3 we plot NRCA versus d , and since the RCA part
is a simple k bit ripple carry adder, NRCA depends only on
integer values of k for 2k−1 < d < 2k , which is shown as the
gray line. When d is sufficiently large, NRCA can be negligibly
small compared to NM, and so NSUM is dominated by NM. In
Appendix B, details of the modulo adder implementation are
described and we show how NRCA is explicitly determined.

In the modulo conversion part, the CkX gate can be de-
composed into 4(k − 2) C2X gates and the Ck+1X gate can be
decomposed into 4(k − 1) C2X gates as shown in Ref. [41].
Further, the C2X gate can be decomposed into 6 CX, 2 H,
3 T†, and 5 T gates. We will refer to this decomposition as a
“general decomposition” and compare it to our more efficient
multiplexing decomposition later on. In the next section, we
will show that applying quantum multiplexing can drastically
reduce the number of CX gates required to implement these
circuits. The details of the modulo adder implementation are
described in Appendix B.

III. QUANTUM MULTIPLEXING

It is useful to begin by reviewing the concept of quantum
multiplexing and how it can be used to save resources. The
key initial insight is that a single photon is able to encode
more than a single qubit of information onto it. The photon’s
multiple degrees of freedom can be used for this, as well as
higher-dimensional encoding available within many of those
degrees of freedom.

FIG. 3. The number of CX gates NRCA required to perform the
RCA part of the SUM gate for d-dimensional qudits. The vertical
gray lines correspond to the 2m integer values, while the dotted lines
between data points are used as a visual guide for the eye.
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(a)

(b)

(c)

FIG. 4. (a), (b) Quantum circuit showing the C2X gate between
two photons (left) and a multiplexing circuit in which the C2X gate
is realized by an optical switch (OS) and a CX gate (right). (c) The
Cn+m−1X gate between two photons (left) and its optical implemen-
tation (right).

Within one photon where two qubits are encoded in one
time-bin and one polarization degree of freedom, a controlled
unitary between the time-bin qubit (as control) and polariza-
tion qubit (as target) can be simply implemented using an
optical switch to convert the time-bin degree of freedom to
spatial-mode degrees of freedom. A unitary operation on the
polarization degree of freedom in the |1〉 basis state spatial
mode (that corresponded to the |1〉 basis state of the time
bin) followed by the use of a second optical switch (to con-
vert the spatial encoding back to time-bin encoding) finishes
the implementation of the controlled unitary gate. While no
direct two-qubit gate needed to be implemented, two optical
switches were required instead. This approach can be easily
extended to multiple control gates within that single photon as
well. If the multiple control qubits are all encoded in time bins,
multiple optical switches can be used to convert all those time-
bin qubits into spatial modes. Our polarization unitary is then
applied on the spatial mode corresponding to all control qubits
in their |1〉, followed by further optical switches to convert the
spatial modes back to time bin. Overall, two optical switches
are needed per time-bin qubit.

So far our discussion has only involved a single photon,
but this procedure can be applied to multiple photons as well
[41]. Here a direct two-qubit gate would be required. It has
been shown that the Toffoli gate can be decomposed into a
single CX gate and optical switches by splitting one DOF
of a photon into two separate spatial modes and applying a
CX gate directly on one mode [39], as shown in Fig. 4(a).
Consider another situation of a Toffoli gate (controlled NOT,
C2X), where two of the qubits are present on one photon (one
time-bin and one polarization qubit) and the remaining qubit
(the target polarization qubit, say) on the second photon [as

shown in Fig. 4(b)]. With the conventional set of quantum
gates, six CX gates would have been required. However, with
multiplexing these changes, we can use an optical switch to
convert the time-bin qubit into a spatial mode qubit, with
one mode each corresponding to the |0〉 (|1〉) time-bin basis
states. A single CX gate between the polarization qubit in
the |1〉 spatial mode of photon 1 and the polarization qubit
on photon 2 then implements our desired Toffoli gate. An
optical switch is needed on the spatial modes after that gate to
convert it back to its time-bin encoding. What we immediately
notice is that our Toffoli gate now requires one CX gate
and two optical switches—a significant improvement, assum-
ing that the optical switches are more efficient than control
gates.

This result can obviously be generalized in a natural way to
the situation when the first photon has n control qubits while
the second photon has m control qubits and one target qubit
and we want to implement an Cn+m−1X gate [as shown in
Fig. 4(c)]. For convenience, we will assume that the control
qubits are time-bin encoded and the target qubit polarization
(more on this later). In this case, n − 1 time-bin qubits for
the first photon and m time-bin qubits for the second photon
are converted to a spatial encoding (using n − 1 OS on the
first photon and m OS on the second). A CX gate is then
applied between the last time-bin qubit on the first photon
and the polarization qubit in the second on the spatial modes
associated with the n + m − 1 control qubits all being in the
|1〉 state. After the CX gate, OS is then used to convert the
spatial encoding back to a time-bin one (using n + m − 1 of
them). Overall, one observes that the Cn+m−1X gate requires
2(n + m − 1) OS and one CX gate. We have proved that we
can substitute CkX gates with a single CX gate alongside a
number of optical switches by using the induction principle
shown in Appendix D. Of course, the key issue becomes how
good the optical switches are, and this is where we need to be
careful. These switches need to be fast and low loss. Currently,
this is an issue, but there is a significant effort going into
the development of such devices, as they have many classical
applications. Further current OS are still much more efficient
than optical control gates.

In our examples so far, we have focused on the controlled
operations occurring for time-bin encoded qubits. This does
not have to be the case. Other degrees of freedom, including
frequency or angular orbital momentum (AOM), are alterna-
tives. In that case, the function of the optical switch is to
convert that encoding to spatial modes.

IV. PERFORMANCE

Our focus now will be to compare the number of gates
required to encode a QRS code versus its dimension when
single-mode photons and multiplexed photons are used. The
blue (red) curve of Fig. 5(a) shows the total number of
CX gates required to implement a single SUM gate for a
d-dimensional QRS code when single-mode (multiplexed)
photons are used. The blue curve increases rapidly with the
dimension of the code reaching 21 182 CX gates required for
d = 139, whereas the red curve increases modestly with the
code dimension (using only 1049 at d = 139). Thus, applying
quantum multiplexing has resulted in a significant reduction in
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(a)
(b)

(c) (d)

FIG. 5. (a) Plot of the required number of CX gates NSUM for the construction of a single SUM gate versus prime number d , the size of
the qudit. The blue curve is based on the general decomposition [41] while the magenta curve is based on Ralph et al. [42] and the red curve
uses the multiplexed decomposition shown in Fig. 4. (b) Plot of the total number of CX gates Ntot for constructing the whole encoder of the
[[d, 1, (d + 1)/2]]d QRS code versus d . (c) The ratio R between the blue curve and the magenta (red) curve plotted in (a), respectively. The
vertical gray lines correspond to 2m for integer values of m. (d) Plot of the required number of CX gates Ncheck-if for the check-if part versus d
using quantum multiplexing.

CX gates. Moreover, for the multiplexing case, at d = 67 and
d = 137 the number of CX gates is slightly less than d = 61
and d = 131, respectively. Although it seems an inconsistent
result, it can be explained by looking at the second case of
Table I. The number of CkX gates and the number of Ck+1X
gates are present in the check-if part of the modulo conversion
scheme. They reduce to CX and C2X gates when multiplexing
is applied. Therefore, the total number of CX gates will be
much more affected by NCk+1X than by NCkX. These numbers
depend on the number of qubits k used to encode the states
as well as on the dimension of the code, d . When d � 2k ,
we require several check-if auxiliary qubits to implement the
modulo addition, meaning NCk+1X will be high. On the other
hand, when d � 2k, NCkX will be the preponderant term, as
we can now use more qubits for the sum and fewer check-if
qubits. Although it is not clear from Fig. 5(a), we also have
that NCk+1X(d = 31) > NCk+1X(d = 37). This behavior is more
evident in Fig. 5(b), which shows the total number of CX gates
required to construct the whole encoder. The gate reduction by
quantum multiplexing is also significant in the overall cost of
the encoding circuit. Regardless of the value of d , we always
require a number of conversion gates proportional to the code
dimension. Thus, the number of conversion gates represented
by the Hamming distance in Table I is not a relevant term for
determining the behavior.

Next, Fig. 5(c) shows the ratio of NSUM of the nonmulti-
plexed case (blue) over the multiplexed case (red). It allows
us to quantify the improvement we have. Here we can see
that the curve jumps to a much higher ratio value when it

crosses the gray lines, which corresponds to 2k, with integer
k = 2 . . . 7. We label the prime numbers in which this hap-
pens by dcross. At d > dcross the ratio decreases as shown in
regions d = 32–63, 64–127, and 128–255) of Fig. 5(c). This
is due to the higher number of C2X required as d increases,
as already explained in the previous paragraph. However, at
d > 19 the ratio increases slightly until d = 31 due to the fact
that for this range of d the number of check if increases only
slightly, as shown in Fig. 5(d). We also compare our results
with the ones obtained by Ref. [42], shown by the magenta
curves in Fig. 5. In Ref. [42], the authors realize CkX gates by
introducing one k-dimensional qudit, 2k − 1 two-qubit gates,
and single-qudit gates they refer to as Xa and Xb. Our results
still show an advantage compared to the ones proposed in
Ref. [42] in terms of gate reductions. Furthermore, the system
proposed in Ref. [42] requires special gates Xa and Xb, which
might require more two-qubit gates when qubits representa-
tion is in use. We also determined that the encoding circuit for
[[d − 1, d − 2t, 2t + 1]]d QRS codes where d = 2m for inte-
gers m does not require Toffoli or CkX gates, hence quantum
multiplexing does not give any advantage in terms of gates
reduction for these special cases. We show in Appendix C an
example of an implementation of a QRS encoding circuit over
GF(2m).

There is a well-known method [21] for constructing effi-
cient encoding circuits for stabilizer codes, but this method
requires multiple-target gates but not multiple-controlled
gates. Therefore, the proposed method cannot be directly ap-
plied to such encoding circuits. The proposed method can be
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applied to the encoding circuit of quantum error-correcting
codes using multiple controlled gates.

V. CONCLUSION AND DISCUSSION

In this work we applied the quantum multiplexing tech-
nique to the encoding of a d-dimensional QRS code
([[d, 1, (d + 1)/2]]d ) to reduce the number of physical re-
sources required for its implementation. We first evaluate the
number of qudit gates that allows us to create an arbitrary
code word of the QRS code. We observe that this number
increases quadratically with the code dimension. We then
encode the d qudits of a conventional QRS using qubits. This
allows decomposing the main logic gate for the encoding,
which is a SUM gate, into a number of CkX gates having k
controls. These gates can be further decomposed into more
elementary CX gates using a general decomposition or into
a lower number of CX gates using the Ralph decomposition.
We then apply our quantum multiplexing method to the CkX
gates by splitting multiple qubits of the time-bin DOF of a
photon into an equivalent number of spatial modes. Thus, we
can apply a single CX gate between the relevant split mode of
a multiplexed photon and the DOF of another photon. Finally,
we compare the total number of CX gates required for the
general decomposition [41], for the Ralph method [42], and
when quantum multiplexed is in use versus the dimension
of the QRS code. We observe that using multiplexing allows
reducing drastically the number of CX gates compared to
the other two methods. When d = 131 the improvement is
expected to be more than 24 times better compared to the
general decomposition, and approximately three times better
than the Ralph method. Also, our method is more effective for
the case when the qudit dimension d is close to 2k , where d is
a prime number and k is greater than 6. Applying quantum
multiplexing requires optical switches that might affect the
performance of the system due to imperfection. However,
optical switches are a fundamental tool for quantum com-
putation, and we are confident that the efficiency of such
systems will reach fault tolerance levels (99%+). The biggest
challenge for large-scale quantum information processing in
the near future will be errors, and the use of quantum error-
correcting codes may partially solve this problem. QRS codes
are expected to be an effective countermeasure against pho-
ton loss in quantum communication channels. Therefore, our
work proposed an implementation method of the encoding
circuit for QRS codes.

The quantum multiplexing approach allows us to substi-
tute operations having multiple-control qubits with multiple
spatial modes and optical switches by encoding multiple con-
trolled qubits into DOFs of a single photon. In this case, the
number of gates required for the circuit will vary significantly
depending on which photon the DOFs are encoded to. There-
fore, this decomposition provides a guideline for efficiently
encoding DOFs. This has an impact on the compilation pro-
cess for quantum computers. Thus, when mapping the DOFs
to a particular physical system, it is practical to use a strategy
matching the physical system’s nature to utilize the computa-
tion time and computational space efficiently. Another method

of realizing CkX gates is to decompose the CkX gates directly
into optical elements instead of CX or C2X gates, which has
been proposed in Ref. [43]. This method requires beam split-
ters with transmittance, mirrors, and phase shift for realizing
multiple controlled-phase gates. For realizing CkX gates in
real physical systems, it is necessary to quantitatively eval-
uate various resources and compare multiple implementation
methods.

Next, our approach can be applied to other error correction
codes and quantum algorithms that require a large number
of gates. For example, the implementation of a discrete-time
quantum walk algorithm [44] requires a large number of shift
operators [45], i.e., a unitary operator that walks a “quantum
walker” in a certain space. The circuit construction of the shift
operator depends on the space in which the quantum walk
is performed (for instance, in a graph [46], one-dimensional
space [47], or a hypercube [48]), but in many cases, they con-
sist of multiple controlled quantum gates [49] similar to the
ones considered in this work. This is because the shift operator
depends on the state of the quantum walker at a certain time
and transitions to the quantum state of the quantum walker
at the next time step, and such dependence on the previous
time is realized by control gates. Therefore, applying quantum
multiplexing to this system can also reduce the total number
of CX gates. Our approach can also be applied to Grover’s
algorithm [50], in which CN−1X gates are commonly used in
the diffusion operator (inversion about the average) when the
dimension of the search space of N qubits is 2N [51]. Our
gate decomposition to create an encoded logic state finds a
natural way of being implemented through the quantum multi-
plexing technique. Quantum multiplexing allows for reducing
the number of elementary CX gates, thus having a profound
impact on the compilation process for quantum computers by
optimizing efficiently the computational time and space.

ACKNOWLEDGMENTS

S.N. acknowledges Min-Hsiu Hsieh from Foxconn Quan-
tum Computing Center for useful discussions throughout this
project. This work was supported by JSPS KAKENHI Grants
No. JP21H04880 and No. JP22J20882, the MEXT Quan-
tum Leap Flagship Program (MEXT Q-LEAP) Grant No.
JPMXS0118069605, and the JST Moonshot R&D Grant No.
JPMJMS2061.

APPENDIX A: THE ENCODING CIRCUIT
FOR THE [[d, 1, (d + 1)/2]] d QRS CODES

Here we consider the encoding circuit of the [[d, 1, (d +
1)/2]] d QRS code. The generator matrix for this code is given
by

G =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1
0 α α2 . . . αd−2 1
0 α2 α4 . . . α2(d−2) 1
...

...
...

...
...

...

0 αd−k−1 α2(d−k−1) . . . α(d−2)(d−k−1) 1

⎞
⎟⎟⎟⎟⎟⎠

,

(A1)

032620-6



RESOURCE REDUCTION IN MULTIPLEXED … PHYSICAL REVIEW A 107, 032620 (2023)

where α is the primitive element of the Galois field GF(d ).
The second row of this matrix G can be used for deriving
a logical operator for the code word. The logical X gate XL

can be realized by applying the X gate the number of times
corresponding to an element to the corresponding qubit. As
such, the logical operator XL is given by

XL = X0XαXα2
. . . X

αd−2

X1

= IXαXα2
. . . X

αd−2

X. (A2)

Then, the code words for the code can be expressed as

|i〉L = Xi
L

d−1∑
j=0

| j j j . . . j〉 , (A3)

where | j j j . . . j〉 are the basis states of the d qudits.
In order to evaluate the number of SUM gates required to

create the code-word state |i〉L, let us consider the initial state
given by the tensor products of |ψ〉 ≡ ∑d−1

k=0 αk |i〉 with d − 1
qudits initialized in the |0〉 state. First, we apply the DFT gate
on the dth |0〉 state, giving

|ψ〉 ⊗ |00 . . . 0〉 DFTd−−→ |ψ〉 ⊗ |00 . . . 0〉 ⊗ |+〉 . (A4)

Then we apply αi times the SUM gate on the target qubits,
which are the ones initialized to |0〉 and the control qubit |ψ〉.
Therefore, the total number of SUM gates will be given by

d−1∑
l=0

αi = d2 − d − 2

2
. (A5)

If we denote the gate used to perform such an operation as
C-XL, using the same notation as in (6), we have

|ψ〉 ⊗ |00 . . . 0〉 ⊗ |+〉 C-XL−−→
d−1∑
k=0

akX k
L |00 . . . 0〉 ⊗ |+〉 .

(A6)
We then apply a SUM gate between the state |+〉 and each of
the other states, giving in total d − 1 SUM gates. As before,
by denoting D the gate used to perform the above operation,
we have

d−1∑
k=0

akXk
L |00 . . . 0〉 ⊗ |+〉 D−→

d−1∑
k=0

akXk
L

d−1∑
j=0

| j j . . . j〉 , (A7)

which gives the encoded initial logic state |ψ〉L. In summary,
this encoding circuit requires one DFT gate and (d2 + d −
4)/2 SUM gates.

As an example, let us consider the d = 5 case, where we
start with the initial state

|ψ〉⊗|0000〉 = (a |0〉+ b |1〉 + c |2〉+ d |3〉 + e |4〉)⊗|0000〉 .

(A8)

Following the steps described above, we first apply the DFT
gate on the last qudit |0〉 state. This will give

|ψ〉⊗|0〉⊗|0〉⊗|0〉 ⊗ |0〉 DFT−−→ |ψ〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |+〉 ,

(A9)

FIG. 6. Input and output of the RCA operation. Carry qubits are
used to store the overflow of each place for 4, 2, and 1. Check-if
qubits are not used here.

where we define |+〉 ≡ (|0〉 + |1〉 + |2〉 + |3〉 + |4〉)/
√

5 as
the equally weighted superposition. We then apply the C-XL

gate on four qudits (with the first qudit as the control), giving

|ψ〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |+〉 C-XL−−→ a |0000+〉 + b |1423+〉
+ c |2341+〉 + d |3214+〉 + e |4132+〉 . (A10)

Finally, we apply the D gate (four SUM gates on first through
fourth qudits as targets, with the fifth qudit being used as the
control). That will give the initial logic state for the d = 5
case:

a |0000+〉 b |1423+〉 + c |2341+〉 + d |3214+〉 + e |4132+〉
D−→ a(|00000〉 + |11111〉 + |22222〉 + |33333〉 + |44444〉)

+ b(|14230〉 + |20341〉 + |31402〉 + |42013〉 + |03124〉)

+ c(|23410〉 + |34021〉 + |40132〉 + |01243〉 + |12304〉)

+ d (|32140〉 + |43201〉 + |04312〉 + |10423〉 + |21034〉)

+ e(|41320〉 + |02431〉 + |13042〉 + |24103〉 + |30214〉).

The quantum circuit for this encoding is shown in Fig. 1.

APPENDIX B: CIRCUIT IMPLEMENTATION
OF THE SUM GATES (THE MODULO ADDER)

This Appendix describes the construction of a quantum
circuit for a d-dimensional SUM gate. The inputs of this gate
are the pair of k qubits A and B corresponding to the pair
of d-dimensional qudits, and the output is the modulo with
respect to d of the sum of the two inputs.

As described in Sec. II, the circuit consists of an RCA part
and a modulo part. The RCA part adds the numbers of the
same place in inputs A and B and stores the overflow of the
place in the carry qubits for use in calculating the next digit.
Figure 6 shows what information is stored in which qubit
during the calculation of the RCA part for d = 5.

It is important for us to provide the details of how the
RCA circuit is constructed and the number of CX gates it uses
to achieve that. We will consider the addition of two binary
numbers, A and B, each represented by k qubits. We denote
with Ai (Bi) the ith qubit of the number A(B), respectively.
Now the RCA module is given by the sequential adder of two
digits, Ai and Bi, with an ancilla qubit (C2i , which we will
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refer to as the carry qubit), that stores the possible overflow of
the sum of Ai−1 and Bi−1. This sequential adder unit will then
be made by a sequence of smaller adders subunits. The entire
RCA circuit is then made by k ancillae, one for each digit
of the numbers A and B. Next, let us discuss the gates used in
these subunits. First, one C2X gate is used to calculate whether
(Ai + Bi), (Ai + C2i ), or (Bi + C2i ) equals 2, respectively, and
write this information into the carry qubit C2i+1 . This ancilla
will be an input in the computation of the next digit. Then, Ai

and C2i add to Bi using one CX gate each. Thus, three C2X
gates and two CX gates are needed for each subunit. One
can think of the C2X gate as a gate needed to propagate the
information of overflow to the next subunit, whereas the CX
gate is used to calculate the sum. We note that the number
of gates required for the first subunit can be optimized and
reduced to only two CX gates since the smallest digit has
no carry. In such a case, one CX gate is used to calculate
the possible overflow, and the other CX gate adds A1 and
B1. Summarizing, a k-digit RCA quantum circuit requires one
C2X, one CX, 3(k − 1) C2X, and 2(k − 1) CX, giving NRCA

as the result of the general decomposition of 3k − 2 C2X gates
and 2k − 1 CX gates.

Next the modulo circuit converts the |(a + b) [mod 2k]〉
state stored in B to the |(a + b) [mod d]〉 state. Such a con-
version is necessary for the case in which the sum of the
inputs is between d and 2(d − 1). To achieve this, we prepare
a check-if qubit for each of the numbers from d to 2(d − 1),
and then the check-if qubit is flagged (flipped from |0〉 to |1〉)
when the sum of the inputs in each corresponding values is
between d and 2(d − 1). In order to perform such an oper-
ation, we perform a CkX gate with the data qubits B as the
control qubits, with the corresponding checkif qubit as the
target qubit. It is important to mention that we have chosen
our control and 0-control based on the binary representation
of each number. For normal controls, the gate is applied to
the target when the control qubit is |1〉, but for 0-controlled
operations, the gate is applied when the control is |0〉. If one
wants to invert the check-if qubit for 5 (101), use the control,
0-control, and control for CkX. Next, when the sum cannot
be a number greater than 2k , the most significant carry can be
used as the check-if qubit of 2k . In this case, the CkX gate for
check-if qubit inversion is also unnecessary.

It is now useful to consider an explicit example. If d = 5,
then a conversion is required when the sum of the inputs is
between 5 and 8. Since 0 [mod 8] = 0 [mod 5],..., 4 [mod 8] =
4 [mod 5], no conversion is required for d = 0–4. Further, one
can also substitute Carry8 as a check-if qubit of 8 in this
case. After the flip of the check-if qubits, multiple-target
controlled gates convert the data qubits B based on the
check-if qubit. For instance, for d = 5, we apply controlled
XIX, XXX, XIX, IXX gates with a check-if qubit as the
control qubit. This works as the conversion from 5 (101 in
binary), 6 (110), 7 (111), 8 (000 and 1 in carry) to 0 (000),
1 (001), 2 (010), 3 (011). The number of target qubits of the
controlled gates for each conversion (5 → 0, 6 → 1, 7 → 2,
and 8 → 3) is the hamming distance between binary represen-
tation of in/out numbers. [As an example, HD(6, 1) = 3 since
the binary representation of 6 is 110 and 1 is 001.] Therefore,
NM requires

∑2(d−1)
i=d HD(i, i [mod d]) CX gates.

(a)

(b)

FIG. 7. Circuit layout for the SUM gate for the five-dimensional
(a) and seven-dimensional (b) qudit in the qubit system. It consists
of a RCA and a modulo part, where the black dots represent control
qubits and the white dots represent 0-control qubits. Circuit (b) also
includes the CK+1X = C4X gates which have a control qubit in
Carry8.

It is important to note that when the maximum value that
the sum can take 2(d − 1) is greater than 2k , the largest carry
qubit must be used as a control qubit at the same time. For
example, in the d = 7 case, the mod 2k → mod d transforma-
tion is needed when the sum is between 7 and 14. However, to
determine that the sum is 8,9,10,11,12, not only must the data
qubit be 000,001,010,011,100, but Carry8 must be 1. This
makes it necessary to use the Ck+1X gate instead of CkX. Such
Ck+1X gates can only be decomposed up to C2X gates when
multiplexing decomposition is used since the control qubits
are in two qudits (data and carry). For the decomposition of
C2X gates to CX gates, we need to use the general method.

The case of constructing a modulo adder for the five-
and seven-dimensional qudit using 23 multiplexed photon is
shown in Fig. 7.

APPENDIX C: THE ENCODING CIRCUIT
FOR THE GF(2m) QRS CODES

Let us consider the [[d − 1, 1, D � N+1
2 ]]d QRS code on

GF(2m) with d = 2m. This code construction is based on
[[kN, k(N − 2K ), d � K + 1]] (written in binary form) for
N − 2K = 1. To illustrate how this works, let us take the
GF(22) code as a simple example. The Galois field for the
code is represented as

GF(22) = {0, 1, α, α2}, (C1)
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(a)

(b)

FIG. 8. (a) The encoding circuit of [[3, 1, D � 2]]4 quantum
Reed-Solomon code. Each horizontal line represents a four-
dimensional qudit (ququart). The two qudit gates defined by the
black dot representing the control and the target with a square box
containing the “1” (α, α2) symbol represent the C1 (Cα, Cα2) gates
defined in (C5)–(C7). (b) Qubit implementation of the C1, Cα, and
Cα2 gates.

where we have chosen x2 + x + 1 = 0 as the primitive poly-
nomial. Then, the elements of the field can be written in
polynomial and vector representations as

GF(4) = {0, 1, α, α2} exponential representation

= {0, 1, α, α + 1} polynomial representation

= {00, 01, 10, 11} vector representation

We use the classical code C = [3, 2, 2]4 and its dual C⊥ for
our CSS construction in this specific instance. The generator
polynomial for the code is given as

g⊥(x) = (x − 1)(x − α) = x2 + (1 + α)x + α, (C2)

from which we get the generator and parity check matrices:

G = H⊥ =
(

1 0 α

0 1 α2

)
, (C3)

H = G⊥ = (α α2 1). (C4)

We also show in Fig. 8(a) the quantum circuit for the encoder.
Now we denote the qudit gates required for our implemen-

tation as C1, Cα, and Cα2, defining them as follows:

C1(|a〉 |b〉) = |a〉 |a + b〉 , (C5)

Cα(|a〉 |b〉) = |a〉 |αa + b〉 , (C6)

Cα2(|a〉 |b〉) = |a〉 |α2a + b〉 . (C7)

These gates correspond to the addition and multiplication of
Galois elements for the calculation of coefficients of poly-
nomials in the quantum Reed-Solomon codes. They can be
implemented in a multiplexing system as shown in Fig. 8(b).
As such, the gates of GF(2m ) can be constructed using only
CX gates.

By generalizing the above method, we can calculate the
cost of the gates we will need for implementing the [[d −
1, 1, D � (N + 1)/2]]d QRS code. First, the C1 gate can be
achieved with k CX gates, while the Cαn gates can be imple-
mented with

∑k−1
p=0 Hw(αn+p) CX gates for the GF(2k ) system,

(a) (b)

(c) (d)

FIG. 9. (a) The C2X gate with a photon having as control two
time bins and another photon having as the target with the polar-
ization DOF. (b) Optical implementation of (a). (c) Ck+1X between
two photons. (d) The circuit implementation for (a). Optical switches
divide the (k + 1)th time-bin qubit.

where Hw() is a function whose input is an exponential repre-
sentation of an element of the Galois field and whose output is
a Hamming weight of the vector representation of the element.
In this case, we do not need the CkX gate to implement the
encoding circuit of the code. Therefore, the application of
quantum multiplexing does not lead to any advantage in terms
of the reduction of the number of gates.

APPENDIX D: PROOF FOR THE MULTIPLEXED
DECOMPOSITION

Theorem. A CkX gate, which has k ∈ Z+ control time-bin
qubits in a photon and a target qubit in another photon, can
be decomposed into a single CX gate alongside a number of
optical switches.

Proof. Let S(k) be the statement that the CkX gate in the
theorem can be decomposed into one CX gate and a number
of optical switches, which we will now prove by induction,
beginning with k = 1. Since C1X gate is the CX gate from
a control photon to a target photon, it holds by definition.
Next, as shown explicitly by construction in Figs. 9(a) and
9(b), C2X can be implemented with two optical switches and
one CX gate, therefore S(2) holds. Now assume the induction
hypothesis S(k) is true. Since the Ck+1X gate can be realized
by controlling the CkX gate with the (k + 1)th time-bin qubit,
it can be decomposed as shown in Figs. 9(c) and 9(d). From
S(k), the CkX gate can be implemented with one CX and
several OSs, therefore S(k + 1) holds. �

Note that, using the implementation of CX gate in Ap-
pendix C of Ref. [39], the target qubit can be either
polarization or time bin. We now determine the number of

FIG. 10. A quantum circuit involving two C3X gates (left) and an
optimal way to implement that circuit with the multiplexed system
(right).
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OSs that would be required for the multiplexed decompo-
sition. In the simplest case (OS has a one-input/two-output
mode or two-input/one-output mode), Ck+1X can be realized
recursively with a CkX gate and two OSs, hence a CkX gate
can be realized with a CX gate and 2(k − 1) OSs. Some OSs
can be used to split a multiplexed photon into multiple spatial
modes. If the OS has more than two inputs/outputs then the
number of OSs can be significantly reduced. This gives us an
upper bound for the number of OSs required to implement a
single CkX gate. In general, k − 1 OSs are used for splitting
the components of the DOFs of the photon into multiple

spatial modes, and other k − 1 OSs are used for combining
those into a single spatial mode. We want to highlight here
that if a series of CkX is executed, the number of OSs per
CkX can be further reduced. For example, we can realize
the circuit of Fig. 10 using only six OSs. Here three OSs
are used to decompose the time-bin modes of photon 1 into
three corresponding spatial modes. Then, the relevant CX
gates are successively performed before the other OSs re-
combine the time-bin modes into a single spatial mode. This
procedure allows realizing the two C3X gates shown on the
left side of Fig. 10.
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