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Narrowband composite two-qubit gates for crosstalk suppression
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We propose a method to construct composite two-qubit gates with narrowband profiles with respect to the
spin-spin coupling. The composite sequences are selective to the variations in the amplitude and duration of the
spin-spin coupling, and can be used for highly selective qubit addressing with greatly reduced crosstalk, quantum
logic spectroscopy, and quantum sensing.
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I. INTRODUCTION

Composite pulses (CPs) are a powerful quantum control
technique, which offers a large variety of excitation profile
features, such as high fidelity, robustness, sensitivity, etc. A
composite pulse is actually a sequence of pulses with well-
defined appropriately chosen relative phases, used as control
parameters to achieve a certain objective. First developed
in nuclear magnetic resonance (NMR) [1] and their analog
developed even earlier in polarization optics [2], their effi-
ciency was later broadly acknowledged in a variety of fields.
In the last two decades, they have been successfully applied
in areas such as trapped ions [3–10], neutral atoms [11,12],
quantum dots [13–18], nitrogen vacancy centers in diamond
[19], doped solids [20–23], superconducting qubits [24,25],
optical clocks [26], atom optics [27–29], magnetometry [30],
optomechanics [31], etc.

Traditionally, composite pulses are primarily used to
achieve broadband excitation profiles [25,32–34] with high fi-
delity, robust to deviations in certain experimental parameters,
such as the amplitude, frequency, and duration of the external
driving pulsed fields. Recently, composite pulses which are
robust to deviations in any parameter have been designed and
demonstrated [21]. However, one may also use composite
pulses to achieve narrowband (NB) profiles [25,33–35] for
highly selective excitation only within a narrow range of a
certain parameter value. A combination of broadband and
narrowband features is offered by passband composite pulses
[34,36], which lie between these two extremes.

The narrowband excitation profiles—an often overlooked
unique feature of composite pulses that no other quantum
control technique offers—finds interesting applications, e.g.,
in spatial localization of excitation for higher-resolution imag-
ing, as implemented already in the NMR age of composite
pulses [34,37]. In polarization optics, the equivalent of nar-
rowband pulses is used for polarization filters [38], where
frequency resolution can be pushed to the 1-nm scale. NB
pulses can be a very promising tool in selective spatial
addressing of tightly spaced trapped ions in one- or two-
dimensional ion crystals or atoms in optical lattices by tightly

focused laser beams [39]. In this manner, NB pulses can sig-
nificantly reduce the unwanted crosstalk to neighboring qubits
in a quantum register while implementing quantum gates on
the desired qubit(s). Therefore, because unwanted crosstalk is
one of the main contributors to the error budget, narrowband
composite pulses can improve the fidelity of the quantum
circuit.

Narrowband pulses have been designed for complete (X
gate) [33–35,39] and partial (Hadamard gate and general rota-
tions) population transfer [34,39,40] but narrowband versions
of a two-qubit gate have not been developed hitherto. The two-
qubit gates are an essential part of any quantum computing
protocol. In combination with a set of three single-qubit gates,
they can form a universal set of gates, capable of producing
any unitary operation, corresponding to a quantum algorithm,
over a register of arbitrarily many qubits. Some popular two-
qubit gates are the controlled-NOT (CNOT), controlled-phase
(CPHASE) or controlled-Z (CZ), and FSIM or ISWAP gates. The
CPHASE and CNOT gates are locally equivalent, while the CNOT

can be produced by a pair of FSIM gates plus a few single-qubit
gates [41].

Methods to generate broadband and passband two-qubit
gates by using composite sequences have been previously
presented in the literature [42,43]. In this paper, we introduce
a method to derive highly selective narrowband composite
controlled-phase gates by using sequences of two-qubit
σxσx interactions, interleaved with single-qubit phase gates
with appropriately chosen phases. These sequences are
specifically suitable for reducing the detrimental crosstalk,
a problem which is actually aggravated by the broadband
two-qubit gates. We derive such sequences of up to N = 11
pulses and perform simulations to test the profile of the
fidelity as a function of the deviation in the interaction
strength or duration. In this manner, by designing the hitherto
unavailable narrowband two-qubit quantum gate, we complete
the library of available composite gates (single-qubit and
two-qubit quantum gates, each with broadband, narrowband,
and passband fidelity profiles), thereby supplying the
experimenter with a variety of all possible choices suitable
for a particular experimental situation.
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II. DERIVATION METHOD

In this section, we describe the method we use to design a
gate of the type

U (θ ) = eiθσxσx , (1)

with a narrowband fidelity profile, by using a sequence of
(ordinary, non-narrowband) XX propagators of the type (1).
Here θ = JT is a rotation angle generated by a coupling
strength J acting for an interaction duration of T .

We note here that traditionally a CPHASE gate is de-
fined as diag[1, 1, 1, eiϕ], which is locally equivalent to the
exp(iθσzσz ) gate, with ϕ = 4θ . The original CPHASE gate can
be obtained from U (θ ) of Eq. (1) as

eiϕ/4e−i(ϕ/4)σz,1 e−i(ϕ/4)σz,2 ei(ϕ/4)σz,1σz,2 , (2)

and a Hadamard transformation between the Z and X bases,
where σz,k is the Pauli-Z operator, applied on qubit k. For
mathematical convenience, we are going to work in the rotated
X basis.

In our derivation, we are going to assume that the rotation
angle θ has some relative deviation ε from the perfect (nom-

inal) value �, and therefore θ = �(1 + ε). Furthermore, we
are going to assume two different values for the target angle,
namely, � = π/4, which is usually used to create a CZ (and
CNOT) gate, and � = π/2. A composite sequence of length N
produces the propagator

U(N )(θ ) = UφN (θN ) · · · Uφ2 (θ2)Uφ1 (θ1), (3)

where

Uφ (θ ) = F(−φ)U(θ )F(φ) (4)

is a phase-shifted propagator, and the single-qubit phase gate

F(φ) = exp(iφσz ) (5)

is applied on only one of the qubits. To be specific, we are
going to apply these phase shifts on qubit 1. Because two
adjacent phase gates (5) produce a phase gate with the sum
of their phases, we can write Eq. (3) as [cf. Eq. (4)]

U(N )(θ ) = F(−φN )U(θN )F(φN − φN−1)U(θN )

· · · F(φ3 − φ2)U(θ2)F(φ2 − φ1)U(θ1)F(φ1). (6)

These can be schematically depicted as

, (7)

where a rounded box means the single-qubit phase gate (5)
and a square box is the two-qubit XX gate (1). The first and
the last phase gates are not essential, but we keep them for the
sake of symmetry.

The narrowband CPs derived by our approach have the fol-
lowing property: they produce the target gate U(�) at ε = 0,
while producing the identity 1 for ε = ±1, and some vicinities
of these latter points, up to a certain order of accuracy. These
properties are achieved by imposing the conditions

[U (N )(θ ) − U (θ )]|ε=0 = 0, (8a)

∂ l

∂εl
[U (N )(θ ) − 1]|ε=±1 = 0 (l = 0, 1, . . . , n), (8b)

with n being the order of compression of the narrowband
pulses. The first of these equations guarantees that for zero
deviation (ε = 0), the composite gate will be the XX gate of
Eq. (1) with the nominal angle �. The second equation, which
is actually a set of n + 1 equations, defines the narrowband
nature of the fidelity profile—the higher the value of n, the
greater the squeezing of the profile, and the stronger the nar-
rowband effect.

The performed numerical simulations show that our se-
quences must be of the form of a π/4 gate, followed by a
sequence of an odd number of π/2 gates, and in the end
another π/4 gate:

U (N )(θ ) = UφN

(π

4

)
UφN−1

(π

2

)
· · · Uφ2

(π

2

)
Uφ1

(π

4

)
. (9)

By solving Eqs. (8) we derive the composite phases φk , form-
ing our narrowband composite gates.

In order to test the performance of our composite se-
quences, we define the fidelity of the composite gate as [44]

F = 1

d (d + 1)
[Tr(MM†) + |Tr(M )|2], (10)

where M = U †(�)U (N )(θ ) and d is the dimension of the
Hilbert space, d = 4. We proceed below by first explicitly
examining the simplest case of composite sequences of N = 3
segments, then N = 5 segments, and then the general case.

III. THREE-COMPONENT COMPOSITE SEQUENCES

For sequences of N = 3 gate segments Uφ (θ ) of Eq. (4)
and � = π/2, Eqs. (8) generate, up to the zeroth order (n = 0)
in ε, the set of equations

sin(φ1 − φ3) = 0, (11a)

e4iφ1−2iφ2 − e2iφ2 + 2 = 0, (11b)

e4iφ1 + e4iφ2 = 0, (11c)

and a set of complex conjugations of these equations, which
are omitted due to redundancy. These equations are readily
solved, and they have multiple solutions:

φ1 = (2k1 + 1)π

4
, (k1 = 0, 1, 2, 3), (12a)

φ2 = k2π, (k2 = 0, 1), (12b)

φ3 = φ1 + k3π, (k3 = 0, 1). (12c)

Similar results can be obtained for � = π/4.
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All of these solutions produce the same fidelity profile.
Unfortunately, three-component composite sequences do not
offer any squeezing of the profile, since they only set the
propagator to be identity at ε = ±1, without canceling any
derivatives.

IV. FIVE-COMPONENT COMPOSITE SEQUENCES

For sequences of N = 5 gate segments Uφ (θ ) of Eq. (4)
and target angle � = π/4, Eqs. (8) generate, up to the second
order in ε, the set of equations

e4i(φ2+φ4 ) − e2i(φ1+2φ3+φ5 ) +
√

2 e2i(φ2+φ3+φ4 ) = 0, (13a)

e4i(φ2+φ4 ) + e2i(φ1+2φ3+φ5 ) −
√

2 e2i(φ1+φ2+φ3+φ4 ) = 0, (13b)

sin(φ1 − φ5) = 0, (13c)

e2iφ1 + 2e2iφ2 + 2e2iφ3 + 2e2iφ4 + e2iφ5 = 0. (13d)

These equations have four solutions:

{φ1, φ2, φ3, φ4, φ5} = {
1
4 , 5

16 , 3
4 , 13

16 , 1
4 }π, (14a)

{φ1, φ2, φ3, φ4, φ5} = {
1
4 , 13

16 , 3
4 , 5

16 , 1
4

}
π, (14b)

{φ1, φ2, φ3, φ4, φ5} = {
1
4 , 13

16 , 3
4 , 21

16 , 1
4

}
π, (14c)

{φ1, φ2, φ3, φ4, φ5} = {
1
4 , 21

16 , 3
4 , 13

16 , 1
4

}
π. (14d)

The second and fourth solutions are the inverted first and
second solutions, respectively; all solutions produce the same
fidelity profile.

For N = 5 and � = π/2, Eqs. (8) generate the set of equa-
tions

e4i(φ2+φ4 ) − e2i(φ1+2φ3+φ5 ) + 2e2i(φ2+φ3+φ4 ) = 0, (15a)

e4i(φ2+φ4 ) + e2i(φ1+2φ3+φ5 ) = 0, (15b)

sin(φ1 − φ5) = 0, (15c)

e2iφ1 + 2e2iφ2 + 2e2iφ3 + 2e2iφ4 + e2iφ5 = 0. (15d)

These equations have two solutions:

{φ1, φ2, φ3, φ4, φ5} = {
1
4 , 3

8 , 3
4 , 7

8 , 1
4

}
π, (16a)

{φ1, φ2, φ3, φ4, φ5} = {
1
4 , 7

8 , 3
4 , 3

8 , 1
4

}
π. (16b)

The second solution is the inverted first solution and it pro-
duces the same fidelity profile.

The first solutions of the above sets (14a) and (16a) are
implemented with the following quantum circuits:

(17a)

(17b)

where, as before, a rounded box with a number φk means the
single-qubit phase gate (5) with the phase φk , and a square

FIG. 1. Fidelity of composite CPHASE gate as a function of devi-
ation ε of the target angle � for sequences of N = 1, 5, 7, 11 pulses.
The target angle is � = π/4 (top) and � = π/2 (bottom).

box means the two-qubit XX gate (1) with the value of �

inside.
Figure 1 shows the fidelity of Eq. (10) plotted versus the

deviation ε in the target angle � for a single XX gate (1) and a
few composite XX gates for both target angles � = π/4 (top)
and � = π/2 (bottom). Clearly, the five-component compos-
ite sequence shrinks the fidelity profile by about 1

3 , thereby
enhancing the selectivity of the gate.

V. LONGER COMPOSITE SEQUENCES

For longer sequences, the first and the last phase remain
equal to π/4, but it does not appear possible to find analytic
expressions for the other phases of the single-qubit phase
gates. However, the respective equations can be solved nu-
merically. As for N = 5 segments, there are multiple solutions
producing the same fidelity profiles. The values of the phases
for some representative composite sequences are given in
Table I.

In Fig. 1 we plot the fidelity of the composite sequences of
up to 11 components, producing a narrowband CPHASE gate,
as a function of the deviation parameter ε. We notice that we
have a CPHASE gate for ε = 0, while a robust identity is pro-
duced in the vicinities of ε = ±1. As expected, as the length
N of the composite sequence increases, the fidelity profiles
shrink ever more. In particular, for N = 11, the full width at
half maximum of the fidelity profile is about a factor of 3
more narrow than for a single gate. Moreover, the crosstalk is
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TABLE I. Phases of composite sequences for narrowband two-
qubit gates, in units of π . The target angle � is π/4 (top) and π/2
(bottom)

N Phases φ1, . . . , φN

5 0.25, 0.3125, 0.75, 0.8125, 0.25
7 −0.75, −0.5006, 0.6743, 1.2249, −0.0244, −0.1994, −0.75
9 0.25, −1.1584, 0.4493, 1.4203, 0.8155,

0.3416, −1.0507, −0.0797, 0.25
11 0.25, 0.7984, −0.1473, 0.4942, 0.1257, 1.2468,

0.6985, 0.6441, −0.9973, 0.3711, 0.25

5 0.25, 0.375, 0.75, 0.875, 0.25
7 0.25, −0.0475, −0.3857, −0.6763, −0.3789, −0.0407, 0.25
9 0.25, 0.9480, −0.8148, −1.3878, 0.7500,

0.4480, 0.6852, −0.8878, 0.25
11 0.25, 0.8690, 0.2018, 0.4679, −0.3659, −0.0021,

−0.6212, 0.0461, −0.2200, 0.6138, 0.25

essentially eliminated for ε ∈ [−1,−0.5], meaning that even
if a qubit “sees” up to 50% of the nominal value of the
coupling it will remain unchanged. We find this fact quite
remarkable because for 50% of the nominal value of XX
coupling the fidelity of the single XX gate is about 95% for
� = π/4 and about 80% for � = π/4. In other words, in
conditions in which an ordinary XX gate would induce large
unwanted changes in the neighboring qubits, the narrowband
sequences proposed here eliminate this effect almost com-
pletely, while performing the XX gate on the desired pair of
qubits. Even the shortest five-segment sequence can eliminate
the crosstalk for up to 10% of the coupling value. With the
seven-segment sequence this number increases to about 25%.

VI. CONCLUSION

In conclusion, we presented composite two-qubit gates
with narrowband fidelity profiles. Such composite sequences
produce the desired gate when perfect values for the interac-
tion strength and duration are selected, but leave the systems
unaffected in the wings of the fidelity profile. Therefore, these
gates can be used for quantum information processing in
quantum systems where high selectivity is needed, e.g., to
suppress unwanted crosstalk in laser-addressed trapped ions
and atoms. Due to their enhanced sensitivity, they can also be
useful in quantum logic spectroscopy and quantum sensing.

We note that the proposed CPs deal with crosstalk as a
dominant source of error. Regarding the central part of the
fidelity profile, the narrowband profile features the same sen-
sitivity to errors as the single gate for a Gaussian (or similar)
driving field, because the top is naturally flat as the first
derivative of the field vanishes (due to the maximum). In the
case when problems with pointing instability or amplitude
fluctuations on the targeted ion lead to fidelity drop, one can
use passband CPs, which combine the narrowband feature of
the proposed sequences with a flat peak transition probability.

Finally, in the derivation and simulation, we have neglected
decoherence effects, which demand short interaction duration.
If decoherence is present during the gate, the fidelity profiles
will suffer some distortion.
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