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In recent years, quantum state engineering and quantum information processing using microwave fields and
photons have received increasing attention. In addition, multiqubit gates play an important role in quantum
information processing. In this work, we propose to encode a photonic qubit via two arbitrary orthogonal
eigenstates (with eigenvalues ±1, respectively) of the photon-number parity operator. With such encoding, we
then present a single-step method to realize a multi-target-qubit controlled-phase gate with one photonic qubit
simultaneously controlling n − 1 target photonic qubits, by employing n microwave cavities coupled to one
superconducting flux qutrit. This proposal can be applied not only to implement nonhybrid multi-target-qubit
controlled-phase gates using photonic qubits with various encodings, but also to realize hybrid multi-target-qubit
controlled-phase gates using photonic qubits with different encodings. The gate realization requires only a
single-step operation. The gate operation time does not increase with the number of target qubits. Because the
qutrit remains in the ground state during the entire operation, decoherence from the qutrit is greatly suppressed.
As an application, we show how to apply this gate to generate a multicavity Greenberger-Horne-Zeilinger (GHZ)
entangled state with general expression. Depending on the specific encodings, we further discuss the preparation
of several nonhybrid and hybrid GHZ entangled states of multiple cavities. We numerically investigate the
circuit-QED experimental feasibility of creating a three-cavity spin-coherent hybrid GHZ state. This proposal
can be extended to accomplish the same tasks in a wide range of physical systems, such as multiple microwave
or optical cavities coupled to a three-level natural or artificial atom.
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I. INTRODUCTION AND MOTIVATION

Quantum computing has attracted much interest as quan-
tum computers can in principle solve hard computing
problems much more efficiently than classical computers.
Multiqubit gates are particularly attractive and have been con-
sidered as appealing building blocks for quantum computing.
As is well known, there exist two kinds of important multi-
qubit gates, namely, multi-control-qubit gates with multiple
control qubits acting on a single target qubit, and multi-target-
qubit gates with a single qubit simultaneously controlling
multiple target qubits. These two kinds of multiqubit gates
have many applications in quantum information processing
(QIP). For instance, they are key elements in quantum algo-
rithms [1–3], quantum Fourier transform [4], quantum cloning
[5], error correction [6–8], and entanglement preparation [9].
Therefore, it is necessary and important to implement these
two kinds of multiqubit gates.

A multiqubit gate can in principle be constructed by using
single-qubit and two-qubit fundamental gates. However, when
the conventional gate-decomposition protocols are used to
construct a multiqubit gate [10–13], the number of funda-
mental gates increases substantially and the procedure usually
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becomes complicated with increasing the number of qubits.
As a result, the operation time required to implement a mul-
tiqubit gate will be quite long and thus the fidelity will
be significantly deteriorated by decoherence. Therefore, it is
worth seeking efficient ways to directly implement multiqubit
gates. In the past years, a number of proposals have been
put forward for directly realizing multi-control-qubit gates
and multi-target-qubit gates using matter qubits (e.g., atoms,
trapped ions, superconducting qubits, quantum dots, nitrogen-
vacancy centers, etc.) [14–33].

Circuit quantum electrodynamics (QED), composed of
microwave cavities and superconducting (SC) qubits, has
been considered as one of the best platforms for quan-
tum computing [34–43]. SC qubits (such as flux qubits,
transmon qubits, Xmon qubits, and fluxonium qubits) and
microwave resonators (a.k.a. cavities) can be fabricated using
modern integrated circuit technology. Because their energy-
level spacings can be rapidly adjusted in situ [44–46] and
their coherence time has been much improved [47–51], SC
qubits play an important role in QIP. In addition, due to
the high-quality factors of microwave cavities demonstrated
in experiments [52–56], the microwave photons contained
in microwave cavities or resonators can have a long life-
time [57]. Recently, quantum state engineering and QIP
using microwave fields and photons have received increasing
attention. In this fast-growing field, photonic qubits, which
are encoded via discrete-variable or continuous-variable states
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of microwave cavity fields, have been adopted as information
carriers for quantum computing and communication.

Compared to SC qubits or other matter qubits, photonic
qubits can have various encodings. Each encoding pattern has
its own advantage and can be applied in different tasks of QIP.
For example, photonic qubits, encoded via coherent states, are
tolerant to single-photon loss [58]; the lifetime of photonic
qubits encoded via cat states can be greatly enhanced by quan-
tum error correction [59]; and photonic qubits encoded via the
vacuum state and the single photon state are relatively easy to
manipulate [60]. Over the past years, a number of proposals
have been presented for directly realizing single-qubit gates,
two-qubit gates, multi-control-qubit gates, and multi-target-
qubit gates, by using photonic qubits which are specifically
encoded via (i) coherent states [61,62], (ii) cat states [63–68],
(iii) the vacuum and single-photon states [69–73], or (iii)
polarization, spatial, and temporal degrees of freedom (DOFs)
of photons [74–80], etc. The previous works have made great
contributions to quantum computing and QIP with photonic
qubits. Generally speaking, different encodings of photonic
qubits may require different methods in implementing quan-
tum gates with photonic qubits. In other words, methods for
realizing quantum gates using photonic qubits with specific
encodings may not be applied to implement quantum gates
using photonic qubits with various encodings.

Motivated by the above, in this work, our goal is to propose
an idea to encode photonic qubits, i.e., encoding a photonic
qubit via two arbitrary orthogonal eigenstates |ϕe〉 and |ϕo〉
of the photon-number parity operator π̂ = eiπ â+â. Here, for
the state |ϕe〉, the photon-number parity operator π̂ has an
eigenvalue 1, while for the state |ϕo〉, the photon-number
parity operator π̂ has an eigenvalue −1. After a deep search
of literature, we find no indication that this idea for encoding
the photonic qubit has been reported yet.

With such encoding, we then propose a one-step method
to implement a multi-target-qubit controlled-phase gate with
one photonic qubit simultaneously controlling (n − 1) target
photonic qubits, based on circuit QED. This gate is realized
by employing n cavities coupled to a superconducting qutrit.
As discussed in Sec. III C below, this proposal can be applied
to photonic qubits with various encodings. More remarkably,
as discussed in Sec. III D below, the proposal can be used to
realize multi-target-qubit hybrid controlled-phase gates using
photonic qubits with different encodings. Hybrid quantum
gates are of fundamental interest in quantum physics and have
significant applications in hybrid quantum communication
and quantum computation.

Greenberger-Horne-Zeilinger (GHZ) entangled states are
of great interest in the foundations of quantum mechan-
ics [81], and have many important applications in QIP
[82], quantum communications [83], quantum metrology
[84], error-correction protocols [85], and high-precision spec-
troscopy [86]. On the other hand, hybrid entangled states play
a key role in QIP and quantum technology. They can serve as
important quantum channels and intermediate resources for
quantum technologies, covering the transmission, operation,
and storage of quantum information between different formats
and encodings [87–89]. In this work, as an application of the
proposed gate, we further discuss how to generate a multicav-
ity GHZ entangled state with general expression. Depending

on the specific encodings |ϕe〉 and |ϕo〉, we also discuss the
preparation of several nonhybrid and hybrid GHZ entangled
states of multiple cavities. Furthermore, we numerically inves-
tigate the circuit-QED experimental feasibility of preparing a
spin-coherent hybrid GHZ state of three cavities.

We believe that this work is interesting and important from
these aspects: First, the proposal can be applied not only
to implement nonhybrid multi-target-qubit controlled-phase
gates using photonic qubits with various encodings, but also to
realize hybrid multi-target-qubit controlled-phase gates using
photonic qubits with different encodings. Second, the gate
implementation is very simple because it requires only a
single-step operation that is independent of the number of
target qubits, while the gate realization becomes complicated
(especially for a large number of target qubits) by the use
of the conventional gate-decomposition protocols [10–13].
Third, the gate operation time does not depend on the number
of target qubits and thus does not increase with the number of
target qubits; however, the operation time required to realize
this multi-target-qubit gate will increase with the number of
target qubits when the conventional gate-decomposition pro-
tocols [10–13] are applied. Last, the qutrit stays in the ground
state during the entire gate operation, thus decoherence from
the qutrit is significantly suppressed.

This paper is organized as follows. In Sec. II, we give a
brief introduction to the multi-target-qubit gate considered in
this work. In Sec. III, we explicitly show how to realize this
multi-target-qubit gate, introduce concrete examples for the
photonic-qubit encodings, and give a brief discussion on the
nonhybrid and hybrid multi-target-qubit gates. In Sec. IV, we
show how to apply this gate to generate a multicavity GHZ
entangled state with general expression. Depending on the
specific encodings |ϕe〉 and |ϕo〉, we further show the gener-
ation of several nonhybrid and hybrid GHZ entangled states
of multiple cavities. In Sec. V, we numerically analyze the
circuit-QED experimental feasibility of creating a three-cavity
spin-coherent hybrid GHZ state. A concluding summary is
given in Sec. VI.

II. THE MULTI-TARGET-QUBIT
CONTROLLED-PHASE GATE

For n qubits, there exist 2n computational basis states,
which form a set of complete orthogonal bases in a 2n-
dimensional Hilbert space of the n qubits. An n-qubit
computational basis state is denoted as |i1〉|i2〉|i3〉 · · · |in〉,
where subscripts 1, 2, ..., n represent qubits 1, 2, ..., n, respec-
tively, and i j ∈ {0, 1} ( j = 1, 2, ..., n). The multi-target-qubit
gate considered in this work (Fig. 1) is described by

|01〉|i2〉|i3〉 · · · |in〉 → |01〉|i2〉|i3〉 · · · |in〉,
|11〉|i2〉|i3〉 · · · |in〉 → |11〉(−1)i2 (−1)i3 · · ·

(−1)in |i2〉|i3〉 · · · |in〉, (1)

which shows that if the control qubit (qubit 1) is in state
|0〉, the states of each of the (n − 1) target qubits (qubits
2, 3, ..., n) remain unchanged, while if the control qubit is in
state |1〉, state |1〉 of each target qubit undergoes a phase flip
from sign + to −.
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FIG. 1. Circuit of a multi-target-qubit controlled phase gate with

one control qubit (qubit 1) simultaneously controlling n − 1 target
qubits (2, 3, ..., n). When the control qubit (on the filled circle) is
in state |1〉, state |1〉 at Z for each target qubit is phase flipped as
|1〉 → −|1〉 but nothing happens to state |0〉 at Z for each target
qubit. In this work, each qubit is a photonic qubit, for which the two
logic states are encoded through two arbitrary orthogonal eigenstates
(with eigenvalues ±1, respectively) of the photon-number parity
operator.

In this work, the n qubits involved in this multiqubit gate
are photonic qubits. For photonic qubit k (k = 1, 2, ..., n), the
two logical states |0k〉 and |1k〉 are encoded with two arbitrary
orthogonal eigenstates |ϕe〉ck (with eigenvalue 1) and |ϕo〉k

(with eigenvalue −1) of the photon-number parity operator
π̂k = eiπ â+

k âk of cavity k (k = 1, 2, ..., n), i.e.,

|0k〉 = |ϕe〉ck =
∑

pk

dpk |pk〉,

|1k〉 = |ϕo〉ck =
∑

qk

dqk |qk〉, (2)

where the subscript ck represents cavity k (k = 1, 2, ..., n),
|pk〉 is a Fock state of cavity k with any even number pk

of photons, while |qk〉 is a Fock state of cavity k with any
odd number qk of photons. The sum

∑
pk

is taken over
all Fock states with even-number photons, while the sum∑

qk
is taken over all Fock states with odd-number photons.

The coefficients dpk and dqk satisfy the normalization condi-
tions

∑
pk

|dpk |2 = ∑
qk

|dqk |2 = 1. Obviously, the two states
|ϕe〉ck and |ϕo〉ck are orthogonal to each other. One can eas-
ily check π̂k|ϕe〉ck = |ϕe〉ck and π̂k|ϕo〉ck = −|ϕo〉ck , namely,
the two states |ϕe〉ck and |ϕo〉ck are the eigenstates of the
photon-number parity operator π̂k with eigenvalues 1 and −1,
respectively. Please keep in mind that, in Eq. (2), pk is a
nonnegative even number while qk is a positive odd number,
which will apply in the next section.

III. IMPLEMENTATION OF THE MULTI-TARGET-QUBIT
CONTROLLED-PHASE GATE

In this section, we will show how to implement the multi-
target-qubit controlled-phase gate described by Eq. (1). We
then discuss some issues related to the gate implementation,
provide examples for the photonic qubit encodings, and give
a brief discussion on the nonhybrid and hybrid multi-target-
qubit gates.

A

)a( )b(

f

e
g

1n

43

2

1 n

FIG. 2. (a) Schematic circuit of n microwave cavities coupled to
a SC flux qutrit. Each square represents a one-dimensional (1D) or
three-dimensional (3D) microwave cavity. The circle A represents the
flux qutrit, which is inductively or capacitively coupled to each cav-
ity. (b) Level configuration of the flux qutrit, for which the transition
between the two lowest levels can be made weak by increasing the
barrier between two potential wells.

A. The gate realization

Consider a physical system consisting of n microwave
cavities (1, 2, ..., n ) coupled to a SC flux qutrit [Fig. 2(a)].
The three levels of the qutrit are labeled as |g〉, |e〉, and | f 〉
[Fig. 2(b)]. The |g〉 ↔ |e〉 transition can be made weak by in-
creasing the barrier between the two potential wells. Suppose
that cavity 1 is dispersively coupled to the |g〉 ↔ | f 〉 transition
with coupling constant g1 and detuning δ1 but highly detuned
(decoupled) from the |e〉 ↔ | f 〉 transition of the qutrit. In
addition, assume that cavity l (l = 2, 3, ..., n ) is dispersively
coupled to the |e〉 ↔ | f 〉 transition with coupling constant
gl and detuning δl but highly detuned (decoupled) from the
|g〉 ↔ | f 〉 transition of the qutrit (Fig. 3). These conditions
can be met by prior adjustment of the level spacings of the
qutrit or the frequencies of the cavities. Note that both of
the level spacings of a SC qutrit and the frequency of a mi-
crowave cavity can be rapidly tuned within a few nanoseconds
[44–46,90,91].

FIG. 3. Cavity 1 is dispersively coupled to the |g〉 ↔ | f 〉 transi-
tion of the qutrit with coupling strength g1 and detuning δ1, while
cavity l (l = 2, 3, ..., n) is dispersively coupled to the |e〉 ↔ | f 〉
transition of the qutrit with coupling strength gl and detuning δl .
Here, �1l = δl − δ1 (l = 2, 3, ..., n).
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After the above considerations, the Hamiltonian of the
whole system in the interaction picture and under the rotating-
wave approximation is given by (in units of h̄ = 1)

HI = g1(e−iδ1t â+
1 σ−

f g + H.c.) +
n∑

l=2

gl (e
−iδl t â+

l σ−
f e + H.c.),

(3)

where â1 (âl ) is the photon annihilation operator of cavity
1 (l ), σ−

f g = |g〉〈 f |, σ−
f e = |e〉〈 f |, δ1 = ω f g − ωc1 > 0, and

δl = ω f e − ωcl > 0 (Fig. 3). Here, ω f g (ω f e) is the | f 〉 ↔ |g〉
(| f 〉 ↔ |e〉) transition frequency of the qutrit, while ωc1 (ωcl )
is the frequency of cavity 1 (l).

Under the large detuning conditions δ1 � g1 and δl � gl

(l = 2, 3, ..., n), the energy exchange between the coupler
qutrit and the cavities is negligible. In addition, under the
condition of

|δp − δq|
δ−1

p + δ−1
q

� gpgq (4)

(where p, q ∈ {2, 3, ..., n} and p 	= q), the interaction between
the cavities (2, 3, ..., n), induced by the coupler qutrit, is neg-
ligible. Therefore, the Hamiltonian (3) becomes [92–94]

He = − λ1n̂1|g〉〈g| + λ1(1 + n̂1)| f 〉〈 f |

−
n∑

l=2

λl n̂l |e〉〈e| +
n∑

l=2

λl (1 + n̂l )| f 〉〈 f |

−
n∑

l=2

λ1l (e
i�1l t â+

1 âlσ
−
eg + H.c.), (5)

where σ−
eg = |g〉〈e|, λ1 = g2

1/δ1, λl = g2
l /δl , λ1l =

(g1gl/2)(1/δ1 + 1/δl ), and �1l = δl − δ1 = ωc1 − ωcl −
ωeg > 0. In Eq. (5), the terms in the first two lines describe
the photon-number-dependent stark shifts of the energy levels
|g〉, |e〉, and | f 〉, while the terms in the last line describe the
|g〉 ↔ |e〉 coupling caused due to the cooperation of cavities
1 and l (l = 2, 3, ..., n). For �1l � {λ1, λl , λ1l}, the effective
Hamiltonian He turns into [92–94]

He = − λ1n̂1|g〉〈g| + λ1(1 + n̂1)| f 〉〈 f |

−
n∑

l=2

λl n̂l |e〉〈e| +
n∑

l=2

λl (1 + n̂l )| f 〉〈 f |

+
n∑

l=2

χ1l n̂1(1 + n̂l )|g〉〈g| −
n∑

l=2

χ1l (1 + n̂1)n̂l |e〉〈e|,

(6)

where χ1l = λ2
1l/	1l . In the case of the levels |e〉 and | f 〉

being initially not occupied, these levels will not be populated
because neither |g〉 → |e〉 transition nor |g〉 → | f 〉 transition
is induced by the Hamiltonian (6). Therefore, the Hamiltonian
(6) reduces to

He = −λ1n̂1|g〉〈g| +
n∑

l=2

χ1l n̂1(1 + n̂l )|g〉〈g|. (7)

In the following, we assume that the qutrit is initially in
the ground state |g〉. Note that the qutrit will remain in this
state because none of interlevel transitions of the qutrit can

be induced by the Hamiltonian (7). The Hamiltonian (7) thus
reduces to

H̃e = ηn̂1 +
n∑

l=2

χ1l n̂1n̂l , (8)

where η = −λ1 + ∑n
l=2 χ1l . The effective Hamiltonian H̃e

characterizes the dynamics of the cavity system. Under this
Hamiltonian, the unitary operator U = e−iH̃et describing the
state time evolution of the cavity system can be expressed as

U = U1 ⊗
n∏

l=2

U1l , (9)

with

U1 = exp (−iηn̂1t ), (10)

U1l = exp (−iχ1l n̂1n̂l t ), (11)

where U1 is a unitary operator on cavity 1 while U1l is a
unitary operator on cavities 1 and l (l = 2, 3, ..., n).

As stated in the previous section [see Eq. (2) and the
discussion there], for photonic qubit k (k = 1, 2, ..., n), the
two logical states |0k〉 and |1k〉 are encoded with two arbitrary
orthogonal eigenstates |ϕe〉ck and |ϕo〉k of the photon-number
parity operator π̂k = eiπ â+

k âk of cavity k. For two photonic
qubits 1 and l (l = 2, 3, ..., n), there are four computational
basis states, denoted by |010l〉, |011l〉, |110l〉, and |111l〉.
According to Eqs. (11) and (2), it is easy to verify that the
unitary operator U1l acting on the four basis states results in
the following state transformation:

U1l |010l〉 =
∑
p1,pl

exp (−ip1 plχ1l t )dp1 dpl |p1〉|pl〉,

U1l |011l〉 =
∑
p1,ql

exp (−ip1qlχ1l t )dp1 dql |p1〉|ql〉,

U1l |110l〉 =
∑
q1,pl

exp (−iq1 plχ1l t )dq1 dpl |q1〉|pl〉,

U1l |111l〉 =
∑
q1,ql

exp (−iq1qlχ1l t )dq1 dql |q1〉|ql〉. (12)

Note that p1 and pl are nonnegative even numbers while
q1 and ql are positive odd numbers. Accordingly, p1 pl ,

p1ql , and q1 pl are nonnegative even numbers but q1ql

are positive odd numbers. Thus, for χ1l t = π, we have
exp(−ip1 plχ1l t ) = exp(−ip1qlχ1l t ) = exp(−iq1 plχ1l t ) = 1
but exp(−iq1qlχ1l t ) = −1. Hence, the state transformation
(12) becomes

U1l |010l〉 = |010l〉, U1l |011l〉 = |011l〉,
U1l |110l〉 = |110l〉, U1l |111l〉 = −|111l〉. (13)

This result (13) indicates that by applying a unitary opera-
tor U1l , a universal controlled-phase gate on two photonic
qubits 1 and l , described by |010l〉 → |010l〉, |011l〉 → |011l〉,
|110l〉 → |110l〉, and |111l〉 → −|111l〉, is implemented. Note
that the state transformation (13) can be simplified as

U1l |01il〉 = |01il〉, U1l |11il〉 = (−1)il |11il〉, (14)

where il ∈ {0, 1}.
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Based on Eq. (14), it is straightforward to get the following
state transformation:

n∏
l=2

U1l |01〉|i2〉|i3〉 · · · |in〉 = |01〉|i2〉|i3〉 · · · |in〉,

n∏
l=2

U1l |11〉|i2〉|i3〉 · · · |in〉 = |11〉(−1)i2 (−1)i3 · · ·

(−1)in |i2〉|i3〉 · · · |in〉. (15)

On the other hand, based on Eqs. (10) and (2), the unitary
operator U1, acting on the two logic states |01〉 and |11〉 of
photonic qubit 1, results in the following state transformation:

U1|01〉 =
∑

p1

exp (−ip1ηt )dp1 |p1〉,

U1|11〉 =
∑

q1

exp (−iq1ηt )dq1 |q1〉. (16)

For ηt = 2sπ (s is an integer), we have exp(−ip1ηt ) =
exp(−iq1ηt ) = 1. Thus, it follows from Eq. (16) that

U1|01〉 = |01〉, U1|11〉 = |11〉. (17)

By combining Eq. (15) with Eq. (17), one can have the fol-
lowing state transformation:

U1

n∏
l=2

U1l |01〉|i2〉|i3〉 · · · |in〉 = |01〉|i2〉|i3〉 · · · |in〉,

U1

n∏
l=2

U1l |11〉|i2〉|i3〉 · · · |in〉 = |11〉(−1)i2 (−1)i3 · · ·

(−1)in |i2〉|i3〉 · · · |in〉. (18)

Because of U = U1 ⊗ ∏n
l=2 U1l [see Eq. (9)], Eq. (18) can be

simplified as

U |01〉|i2〉|i3〉 · · · |in〉 = |01〉|i2〉|i3〉 · · · |in〉,
U |11〉|i2〉|i3〉 · · · |in〉 = |11〉(−1)i2 (−1)i3 · · ·

(−1)in |i2〉|i3〉 · · · |in〉, (19)

which implies that if the control photonic qubit 1 is in state
|0〉, the states of each of target photonic qubit (2, 3, ..., n)
remain unchanged, while, if the control photonic qubit 1
is in state |1〉, a phase flip (from sign + to − ) happens to
state |1〉 of each of target photonic qubit (2, 3, ..., n). Hence, a
multi-target-qubit controlled phase gate, described by Eq. (1),
is realized with n photonic qubits (1, 2, ..., n ), after the above
operation.

B. Discussion

From the description given above, one can see that:
(i) The unitary operator U was obtained by starting the

original Hamiltonian (3). Thus, the gate is implemented
through a single-step operation which is described by U .

(ii) During the gate operation, the qutrit stays in the
ground state. Thus, decoherence from the qutrit is greatly
suppressed.

(iii) In the above, we have set χ1l t = π (independent of l),
ηt = 2sπ, and η = −λ1 + ∑n

l=2 χ1l , which turn out to

−λ1t + (n − 1)π = 2sπ. (20)

For even-number target qubits (i.e., n − 1 is even), one can
choose λ1t = 2mπ (m is a positive integer) in order to meet
the condition given by Eq. (20). In this case, combining χ1l t =
π and λ1t = 2mπ results in χ1l = λ1/(2m), which turns into

gl = δl

δ1 + δl

√
2	1lδ1/m. (21)

On the other hand, for odd-number target qubits, one can se-
lect λ1t = (2m′ + 1)π (m′ is a nonnegative integer) to satisfy
Eq. (20). In this case, combining χ1l t = π and λ1t = π results
in χ1l = λ1/(2m′ + 1), which leads to

gl = 2δl

δ1 + δl

√
	1lδ1/(2m′ + 1). (22)

The condition (21) or (22) can be readily met by adjust-
ing gl or δl or both, given δ1. It is noted that the detuning
δl = ω f e − ωcl can be tuned by changing the frequency ωcl of
cavity l (l = 2, 3, ..., n). In addition, the coupling strength gl

can be adjusted by a prior design of the sample with appropri-
ate capacitance or inductance between the coupler qutrit and
cavity l (l = 2, 3, ..., n) [95,96].

C. Examples of photonic-qubit encodings

As stated previously, the two logic states of a photonic
qubit are encoded with two arbitrary orthogonal eigenstates
|ϕe〉 and |ϕo〉 of the photon-number parity operator π̂ = eiπ â+â

of a cavity. Namely, to have the encoding be effective, the
orthogonality between the two states |ϕe〉 and |ϕo〉 needs to
hold, i.e.,

〈ϕe |ϕo〉 = 0. (23)

In the following, we will provide a few examples of the
encodings, for which the encoding condition (23) satisfies the
following:

(i) The two logic states of each photonic qubit are encoded
by the vacuum state |0〉 and the single-photon state |1〉, i.e.,
|ϕe〉 = |0〉 and |ϕo〉 = |1〉.

(ii) The two logic states of each photonic qubit are en-
coded by a Fock state |2m〉 with even-number photons and
a Fock state |2n + 1〉 with odd-number photons, i.e., |ϕe〉 =
|2m〉 and |ϕo〉 = |2n + 1〉 (m and n are nonnegative integers).

(iii) The two logic states of each photonic qubit are en-
coded by one superposition of Fock states with even-number
photons and one superposition of Fock states with odd-
number photons, i.e., |ϕe〉 = c0|0〉 + c2|2〉 + · · · + c2m|2m〉
and |ϕo〉 = c1|1〉 + c3|3〉 + · · · + c2n+1|2n + 1〉 (m and n are
nonnegative integers).
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(iv) The two logic states of each photonic qubit are en-
coded by two cat states, e.g., |ϕe〉 = |α〉 + | − α〉 and |ϕo〉 =
|α〉 − | − α〉. Here, the cat state |α〉 + | − α〉 is an even-
number-photon coherent state while the cat state |α〉 − | − α〉
is an odd-number-photon coherent state.

(v) The two logic states of each photonic qubit are en-
coded by one superposition of a Fock state and a cat state,
each with even-number photons, and one superposition of a
Fock state and a cat state, each with odd-number photons,
e.g., |ϕe〉 = c0|2m〉 + c1(|α〉 + | − α〉) and |ϕ0〉 = d0|2n +
1〉 + d1(|α〉 − | − α〉) (m and n are nonnegative integers).

(vi) The two logic states of each photonic qubit are en-
coded by a squeezed vacuum state |ξ 〉 and a cat state |α〉 −
| − α〉, i.e., |ϕe〉 = |ξ 〉 and |ϕo〉 = |α〉 − | − α〉. Note that the
squeezed vacuum state is a superposition state of Fock states
with even-number photons, while the cat state |α〉 − | − α〉 is
an odd-number-photon coherent state.

(vii) The two logic states of each photonic qubit are en-
coded by two multicomponent cat states, e.g., |ϕe〉 = c0(|α〉 +
| − α〉) + c1 (|iα〉 + | − iα〉) and |ϕo〉 = d0(|α〉 − | − α〉) +
d1 (|iα〉 − | − iα〉).

One can verify that for the examples above, the two states
|ϕe〉 and |ϕo〉 are the eigenstates of the photon-number par-
ity operator eiπ â+â (with eigenvalues ±1, respectively), and
they satisfy the orthogonality condition (23). For simplic-
ity, the states |ϕe〉 and |ϕo〉 given above for some examples
are not normalized, which does not affect their orthogonal-
ity. The normalization of |ϕe〉 or |ϕo〉 can be easily made
by adding a normalization coefficient. We should point out
that, apart from the above examples, there are other possible
encodings that satisfy the encoding condition (23). There-
fore, the present proposal is quite general and can be used
to implement the multi-target-qubit controlled-phase gate by
using photonic qubits with various encodings, for which
the two logic states used to encode photonic qubits can be
any two orthogonal eigenstates of the photon-number parity
operator.

D. Nonhybrid and hybrid gates

The multi-target-qubit gate (19) or (1), whose implementa-
tion as shown in the preceding Sec. III A, can be a nonhybrid
gate or a hybrid gate. In the case when the two logic states |0〉
and |1〉 of each photonic qubit are encoded by the same two
arbitrary orthogonal eigenstates |ϕe〉 and |ϕo〉, i.e., |ϕe〉c1 =
|ϕe〉c2 = · · · = |ϕe〉cn and |ϕo〉c1 = |ϕo〉c2 = · · · = |ϕo〉cn , the
gate (19) or (1) is a nonhybrid gate. Since the states |ϕe〉 and
|ϕo〉 can take various quantum states, the present proposal can
be used to implement nonhybrid multi-target-qubit gates using
photonic qubits with various encodings.

On the other hand, if there exists at least one photonic
qubit whose encoding is different from the encodings of other
photonic qubits, the gate (19) or (1) is a hybrid gate. When the
encodings of all photonic qubits are different, i.e., |ϕe〉c1 	=
|ϕe〉c2 	= · · · 	= |ϕe〉cn and |ϕo〉c1 	= |ϕo〉c2 	= · · · 	= |ϕo〉cn , we
say that the multi-target-qubit gate (19) or (1) has a maximal
hybridization. Because the states |ϕe〉 and |ϕo〉 can take vari-
ous quantum states, the present proposal can also be applied to
realize hybrid multi-target-qubit gates using photonic qubits
with different encodings.

IV. GENERATION OF MULTICAVITY
GHZ ENTANGLED STATES

In this section, we discuss how to apply the gate (19)
or (1) to generate a multi-cavity GHZ entangled state with
general expression. Depending on the specific encodings |ϕe〉
and |ϕo〉, we then discuss the preparation of a few non-hybrid
and hybrid GHZ entangled states of multiple cavities.

A. Preparation of GHZ entangled state with general expression

Let us return to the physical system depicted in Fig. 2. As-
sume that the coupler SC qutrit is initially in the ground state
|g〉 and each cavity is initially in the state (|ϕe〉 + |ϕo〉)/

√
2.

Here, the states |ϕe〉 and |ϕo〉 are normalized. The initial state
of the whole system is thus given by

|ψ (0)〉 = 2−n/2
(|ϕe〉c1 + |ϕo〉c1

) n∏
l=2

(|ϕe〉cl + |ϕo〉cl

) ⊗ |g〉.

(24)

Here and after, the subscript c1 represents cavity 1 while the
subscript cl represents cavity l (l = 2, 3, ..., n). In view of
Eq. (2), i.e., based on the encoding |0k〉 = |ϕe〉ck and |1k〉 =
|ϕo〉ck , the state |ψ (0)〉 can be rewritten as

|ψ (0)〉 = 2−n/2(|01〉 + |11〉)
n∏

l=2

(|0l〉 + |1l〉) ⊗ |g〉, (25)

where states |01〉 and |11〉 are the two logic states of photonic
qubit 1, while states |0l〉 and |1l〉 are the two logic states of
photonic qubit l (l = 2, 3, ..., n).

Now apply the multi-target-qubit controlled-phase gate
(19), i.e., the gate described by Eq. (1). One can easily see
that after this gate operation, the state (25) changes to

2−n/2

[
|01〉

n∏
l=2

(|0l〉 + |1l〉) + |11〉
n∏

l=2

(|0l〉 − |1l〉)

]
⊗ |g〉.

(26)

According to the encoding (2), i.e., |0k〉 = |ϕe〉ck and |1k〉 =
|ϕo〉ck , the state (26) can be written as

2−n/2

[
|ϕe〉c1

n∏
l=2

(|ϕe〉cl + |ϕo〉cl

)
+ |ϕo〉c1

n∏
l=2

(|ϕe〉cl − |ϕo〉cl

)] ⊗ |g〉, (27)

which shows that the cavity system is prepared in the follow-
ing GHZ entangled state with general expression

|GHZ〉 = 1√
2

[
|ϕe〉c1

n∏
l=2

1√
2

(|ϕe〉cl + |ϕo〉cl

)
+ |ϕo〉c1

n∏
l=2

1√
2

(|ϕe〉cl − |ϕo〉cl

)]
. (28)

One can verify that for cavity l (l = 2, 3, ..., n), the two
rotated states (|ϕe〉l + |ϕo〉l )/

√
2 and (|ϕe〉l − |ϕo〉l )/

√
2 are

orthogonal to each other.
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From the descriptions given above, it can be seen that,
independent of |ϕe〉l and |ϕo〉l , the GHZ entangled state (28)
of n cavities (1, 2, ..., n), which takes a general form, can be
straightforwardly generated by applying the multi-target-qubit
controlled-phase gate (19) or (1). Thus, given that the initial
state (|ϕe〉 + |ϕo〉)/

√
2 of each cavity is ready, the Hamiltoni-

ans and the operation used for preparing the GHZ state (28)
are the same as those for implementing the gate (19) or (1).
Moreover, as shown above, the gate is implemented with a
single-step operation. Thus, the GHZ state (28) can be created
through a single-step operation, given that the initial state of
each cavity is ready.

B. Preparation of nonhybrid and hybrid GHZ entangled states

In the following, we will show that, according to Eq. (28),
which gives a general expression of the prepared GHZ entan-
gled state of n cavities, several nonhybrid and hybrid GHZ
entangled states of n cavities can be created by choosing
appropriate encodings of |ϕe〉l and |ϕo〉l .

To begin with, we define the following:

|+〉ck
= (|0〉ck

+ |1〉ck

)
/
√

2,

|−〉ck
= (|0〉ck

− |1〉ck

)
/
√

2, (29)

where |+〉ck and |−〉ck are the two rotated states of cavity k
(k = 1, 2, ..., n). Note that |0〉ck and |1〉ck are the vacuum state
and the single-photon state of cavity k, which are different
from the two logic states |0k〉 and |1k〉 of photonic qubit k
(k = 1, 2, ..., n ). In addition, we define

|cat〉ck
= N

(|α〉ck
+ |−α〉ck

)
,∣∣cat

〉
ck

= N
(|α〉ck

− |−α〉ck

)
, (30)

where |cat〉ck and |cat〉ck are the two cat states of cav-
ity k (k = 1, 2, ..., n ), with a normalization coefficient
N =1/

√
2(1 + e−2|α|2 ).

1. Preparation of nonhybrid GHZ entangled state

Consider |ϕe〉ck = |0〉ck and |ϕo〉ck = |1〉ck (k = 1, 2, , ...n).
In this case, according to Eq. (29), it follows from Eq. (24)
that the initial state of the system is

|ψ (0)〉 = |+〉c1
|+〉c2

· · · |+〉cn
⊗ |g〉. (31)

According to Eq. (28), the n cavities are prepared in the
following GHZ entangled state:

|GHZ〉 = 1√
2

(
|0〉c1

n∏
l=2

|+〉cl
+ |1〉c1

n∏
l=2

|−〉cl

)
. (32)

By performing a local operation on cavity l and the coupler
qutrit or applying a local operation on cavity l and an auxil-
iary two-level SC qubit (placed in cavity l ), one can achieve
the state transformation |+〉cl → |0〉cl and |−〉cl → |1〉cl [16].
Thus, the GHZ state (32) turns into

|GHZ〉 = 1√
2

(|0〉c1
|0〉c2

· · · |0〉cn
+ |1〉c1

|1〉c2
· · · |1〉cn

)
, (33)

which is a nonhybrid GHZ entangled state of n cavities
(1, 2, ..., n).

2. Preparation of cat-coherent hybrid GHZ entangled state

Consider |ϕe〉ck = |cat〉ck and |ϕo〉ck = |cat〉ck (k =
1, 2, ..., n). In this case, according to Eq. (30), it follows
from Eq. (24) that the initial state of the system is

|ψ (0)〉 = |α〉c1
|α〉c2

· · · |α〉cn
⊗ |g〉, (34)

i.e., each cavity is initially in a coherent state |α〉. According
to Eq. (28), the n cavities are prepared in the following cat-
coherent hybrid GHZ entangled state:

|GHZ〉 = 1√
2

(
|cat〉c1

n∏
l=2

|α〉cl
+ ∣∣cat

〉
c1

n∏
l=2

|−α〉cl

)
. (35)

3. Preparation of cat-spin hybrid GHZ entangled state

For cavity 1, consider |ϕe〉c1 = |cat〉c1 and |ϕo〉c1 = |cat〉c1 .

For cavity k (k = 2, 3, ..., n), consider |ϕe〉ck = |0〉ck and
|ϕo〉ck = |1〉ck . In this case, according to Eqs. (29) and (30),
it follows from Eq. (24) that the initial state of the system is

|ψ (0)〉 = |α〉c1

n∏
k=2

|+〉ck
⊗ |g〉. (36)

According to Eq. (28), the n cavities are prepared in the
following cat-spin hybrid GHZ entangled state:

|GHZ〉 = 1√
2

(
|cat〉c1

n∏
k=2

|+〉ck
+ ∣∣cat

〉
c1

n∏
k=2

|−〉ck

)
, (37)

where the two rotated states |+〉 = (|0〉 + |1〉)/
√

2 and |−〉 =
(|0〉 − |1〉)/

√
2 correspond to the spin left-hand circular mo-

tion and the spin right-hand circular motion, respectively.

4. Preparation of spin-coherent hybrid GHZ entangled state

Consider |ϕe〉c1 = |0〉c1 , |ϕo〉c1 = |1〉c1 , |ϕe〉cl = |cat〉cl ,

and |ϕo〉cl = |cat〉cl (l = 2, 3, ..., n). In this case, according to
Eqs. (29) and (30), it follows from Eq. (24) that the initial state
of the system is

|ψ (0)〉 = |+〉c1
|α〉c2

|α〉c3
· · · |α〉cn

⊗ |g〉. (38)

According to Eq. (28), the n cavities are prepared in the
following spin-coherent hybrid GHZ entangled state:

|GHZ〉 = 1√
2

(
|0〉c1

n∏
l=2

|α〉cl
+ |1〉c1

n∏
l=2

|−α〉cl

)
. (39)

Note that the vacuum state and the single-photon state of
cavity 1 here correspond to the spin up and down, respectively.

To ensure that the prepared states (33), (35), (37), and (39)
above are GHZ states, the two states |cat〉 and |cat〉, |+〉 and
|−〉, |0〉 and |1〉, or |α〉 and | − α〉 of each cavity are required
to be orthogonal or quasi-orthogonal to each other. Note that
the two cat states |cat〉 and |cat〉 are orthogonal, the two
rotated states |+〉 and |−〉 are orthogonal, and the two states
|0〉 and |1〉 are orthogonal. In addition, the two coherent states
|α〉 and | − α〉 can be made to be quasi-orthogonal for a large
enough α (e.g., |〈α| − α〉|2 = e−4|α|2 � 10−2 for α = 1.1).
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FIG. 4. Diagram of three 1D microwave cavities capacitively
coupled to a SC flux qutrit. Each cavity here is a one-dimensional
transmission line resonator. The flux qutrit consists of three Joseph-
son junctions and a superconducting loop.

Before ending this section, we should mention that, in
addition to the above GHZ states (33), (35), (37), and (39),
other types of nonhybrid or hybrid GHZ entangled states of
multiple cavities can be created according to Eq. (28), be-
cause there exist other possible encodings of |ϕe〉 and |ϕo〉.
The multi-target-qubit controlled-phase gate considered in
this work can be used to prepare various nonhybrid and hybrid
GHZ entangled states of multiple cavities.

V. POSSIBLE EXPERIMENTAL IMPLEMENTATION

In this section, as an example, we investigate the exper-
imental feasibility for creating a hybrid GHZ state of three
cavities (1,2,3), by using three 1D microwave cavities coupled
to a SC flux qutrit (Fig. 4). The hybrid GHZ state to be
prepared is

|GHZ〉 = 1√
2

(|0〉c1
|α〉c2

|α〉c3
+ |1〉c1

|−α〉c2
|−α〉c3

)
, (40)

i.e., a spin-coherent hybrid GHZ state, given by Eq. (39) for
n = 3. From Eq. (38), one can see that the initial state of the
whole system is

|ψ (0)〉 = |+〉c1
|α〉c2

|α〉c3
⊗ |g〉. (41)

A. Full Hamiltonian

As discussed in Sec. IV A, one can see that the GHZ state
(40) here is prepared by applying the gate (19) or (1) with
n = 3 (i.e., a three-qubit gate with one qubit simultaneously
controlling two target qubits). Thus, the Hamiltonian used for
the generation of the GHZ state (40) is the effective Hamil-
tonian (7) with n = 3. This Hamiltonian was derived from
the original Hamiltonian (3) with n = 3, which only includes
the coupling between cavity 1 and the |g〉 ↔ | f 〉 transition as
well as the coupling between other cavities and the |e〉 ↔ | f 〉
transition of the SC qutrit. In a realistic situation, there is
the unwanted coupling between cavity 1 and the |e〉 ↔ | f 〉
transition, the unwanted coupling between cavity 2 and the
|g〉 ↔ | f 〉 transition, as well as the unwanted coupling be-
tween cavity 3 and the |g〉 ↔ | f 〉 transition of the SC qutrit.
Besides, there is the unwanted intercavity crosstalk between
the three cavities.

When the unwanted couplings and the unwanted intercav-
ity crosstalk are taken into account, the Hamiltonian (3), with

FIG. 5. Illustration of the required coupling between cavity 1
and the |g〉 ↔ | f 〉 transition of the qutrit (with coupling constant
g1 and detuning δ1), the required coupling between cavity 2 and
the |e〉 ↔ | f 〉 transition of the qutrit (with coupling constant g2 and
detuning δ2), and the required coupling between cavity 3 and the
|e〉 ↔ | f 〉 transition of the qutrit (with coupling constant g3 and de-
tuning δ3). In addition, illustration of the unwanted coupling between
cavity 2 and the |g〉 ↔ | f 〉 transition of the qutrit (with coupling
constant g′

2 and detuning δ′
2), the unwanted coupling between cavity

1 and the |e〉 ↔ | f 〉 transition of the qutrit (with coupling constant
g′

1 and detuning δ′
1), the unwanted coupling between cavity 2 and

the |g〉 ↔ | f 〉 transition of the qutrit (with coupling constant g′
2 and

detuning δ′
2), as well as the unwanted coupling between cavity 3 and

the |g〉 ↔ | f 〉 transition of the qutrit (with coupling constant g′
3 and

detuning δ′
3). Note that the coupling of each cavity with the |g〉 ↔ |e〉

transition of the qutrit is negligible because of the weak |g〉 ↔ |e〉
transition. Red, blue, and purple lines correspond to cavities 1, 2,
and 3, respectively.

n = 3 for the present case, is modified as

H ′
I = g1(e−iδ1t â+

1 σ−
f g + H.c.) +

3∑
l=2

gl (e
−iδl t â+

l σ−
f e + H.c.)

+g′
1(e−iδ′

1t â+
1 σ−

f e + H.c.) +
3∑

l=2

g′
l (e

−iδ′
l t â+

l σ−
f g + H.c.),

+(̃g12ei	̃12t â+
1 â2 + g̃13ei	̃23t â+

2 â3

+g̃23ei	̃13t â+
1 â3 + H.c.), (42)

where the terms in line one represent the required coupling
between cavity 1 and the |g〉 ↔ | f 〉 transition as well as
the required coupling between cavity 2 (cavity 3) and the
|e〉 ↔ | f 〉 transition of the SC qutrit (Fig. 5), the first term
in line two represents the unwanted coupling between cavity
1 and the |e〉 ↔ | f 〉 transition of the SC qutrit with coupling
constant g′

1 and detuning δ′
1 = ω f e − ωc1 (Fig. 5), the second

term in line two represents the unwanted coupling between
cavity 2 (cavity 3) and the |g〉 ↔ | f 〉 transition of the SC qutrit
with coupling constant g′

2 (g′
3) and detuning δ′

2 = ω f g − ωc2

(δ′
3 = ω f g − ωc3 ) (Fig. 5), while the terms in the last line

represent the unwanted intercavity crosstalk among the three
cavities, with g̃kl (	̃kl = ωck − ωcl ) the crosstalk strength (the
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TABLE I. Parameters used in the numerical simulation. ωeg, ω f e, and ω f g are the |g〉 ↔ |e〉, |e〉 ↔ | f 〉, and |g〉 ↔ | f 〉 transition frequencies
of the flux qutrit, respectively. ωc j is the frequency of cavity j ( j = 1, 2, 3). δ1 (δ′

1) is the detuning between the frequency of cavity 1 and the
|g〉 ↔ | f 〉 (|e〉 ↔ | f 〉) transition frequency of the flux qutrit. δ2 (δ′

2) is the detuning between the frequency of cavity 2 and the |e〉 ↔ | f 〉
(|g〉 ↔ | f 〉) transition frequency of the flux qutrit. δ3 (δ′

3) is the detuning between the frequency of cavity 3 and the |e〉 ↔ | f 〉 (|g〉 ↔ | f 〉)
transition frequency of the flux qutrit. 	̃kl is the frequency detuning between the two cavities k and l (kl = 12, 13, 23). g1 (g′

1) is the coupling
constant between cavity 1 and the |g〉 ↔ | f 〉 (|e〉 ↔ | f 〉) transition of the flux qutrit. g2 (g′

2) is the coupling constant between cavity 2 and the
|e〉 ↔ | f 〉 (|g〉 ↔ | f 〉) transition of the flux qutrit. g3 (g′

3) is the detuning between cavity 3 and the |e〉 ↔ | f 〉 (|g〉 ↔ | f 〉) transition of the flux
qutrit.

ωeg/(2π ) = 8.0 GHz ω f e/(2π ) = 12.0 GHz ω f g/(2π ) = 20.0 GHz
ωC1/(2π ) = 18.6 GHz ωC2/(2π ) = 10.0 GHz ωC3/(2π ) = 9.6 GHz
δ1/(2π ) = 1.6 GHz δ2/(2π ) = 2.0 GHz δ3/(2π ) = 2.4 GHz
δ′

1/(2π ) = −6.6 GHz δ′
2/(2π ) = 10.0 GHz δ′

3/(2π ) = 10.4 GHz
	̃12/(2π ) = 8.6 GHz 	̃13/(2π ) = 0.4 GHz 	̃23/(2π ) = 9.0 GHz
g1/(2π ) = 0.16 GHz g2/(2π ) = 0.198 GHz g3/(2π ) = 0.303 GHz
g′

1/(2π ) = 0.16 GHz g′
2/(2π ) = 0.198 GHz g′

3/(2π ) = 0.303 GHz

frequency detuning) between the two cavities k and l (k, l ∈
{1, 2, 3}; k 	= l ). Note that the coupling of each cavity with the
|g〉 ↔ |e〉 transition of the SC qutrit is negligible because the
|g〉 ↔ |e〉 transition can be made weak by increasing the bar-
rier between the two potential wells of the SC qutrit. Hence,
this coupling is not considered in the above Hamiltonian (42)
to simplify our numerical simulations.

B. Numerical results

With finite qutrit relaxation, dephasing and photon lifetime
being included, the dynamics of the lossy system is deter-
mined by the following master equation:

dρ

dt
= − i[H ′

I , ρ] +
3∑

j=1

κ jL[â j]

+ γegL[σ−
eg] + γ f eL[σ−

f e] + γ f gL[σ−
f g]

+ γe,ϕ (σeeρσee − σeeρ/2 − ρσee/2)

+ γ f ,ϕ (σ f f ρσ f f − σ f f ρ/2 − ρσ f f /2), (43)

where σee = |e〉〈e|, σ f f = | f 〉〈 f |, L[�] = �ρ�+ −
�+�ρ/2 − ρ�+�/2 (with � = â j, σ

−
eg, σ

−
f e, σ

−
f g), γeg is

the energy relaxation rate of the level |e〉 for the decay path
|e〉 → |g〉, γ f e (γ f g) is the relaxation rate of the level | f 〉
for the decay path | f 〉 → |e〉 (| f 〉 → |g〉), γe,ϕ (γ f ,ϕ) is the
dephasing rate of the level |e〉 (| f 〉) of the qutrit, while κ j

is the decay rate of cavity j ( j = 1, 2, 3). For numerical
calculations, we here use the QUTIP software [97,98], which is
an open-source software for simulating the dynamics of open
quantum systems.

The fidelity for the prepared three-cavity GHZ state is
evaluated by

F =
√

〈ψid|ρ|ψid〉, (44)

where |ψid〉 = |GHZ〉 ⊗ |g〉 is the ideal output state, with the
state |GHZ〉 given in Eq. (40). The ideal output state |ψid〉 here
is obtained without taking into account the system dissipation,
the intercavity crosstalk, and the unwanted couplings, while
ρ is the density operator describing the real output state of
the system, which is achieved by numerically solving the

master equation and considering the operation performed in
a realistic situation.

For a flux qutrit, the typical transition frequency between
adjacent energy levels can be made as 1–20 GHz [99–101]. As
an example, consider the parameters listed in Table I, which
are used in the numerical simulations. The coupling constants
g2 and g3 in Table I are calculated for m = 10 according to
Eq. (21). By a proper design of the flux qutrit [102], one
can have φ f g ∼ φ f e ∼10φeg, where φi j is the dipole coupling
matrix element between the two levels |i〉 and | j〉 with i j ∈
{eg, f e, f g}. Thus, one has g′

1 ∼ g1, g′
2 ∼ g2, and g′

3 ∼ g3,

while the |g〉 ↔ |e〉 transition is much weaker compared to
the |g〉 ↔ | f 〉 and |e〉 ↔ | f 〉 transitions of the qutrit. The
maximum among the coupling constants listed in Table I is
gmax = 2π × 0.303 GHz, which is readily available since a
coupling constant ∼2π × 0.636 GHz has been reported for a
flux device coupled to a microwave cavity [103].

Other parameters used in the numerical simulations are as
follows: (i) γ −1

eg = 10T , γ −1
f e = T , γ −1

f g = T , γ −1
φe = γ −1

φ f =
T/2, (ii) κ1 = κ2 = κ3 = κ , (iii) g12 = g23 = g13 = gcr , and
(iv) α = 1.1. We should mention that γ −1

eg is much larger than
γ −1

f e and γ −1
f g because of φ f g ∼ φ f e ∼10φeg. The maximal

value of T adopted in our numerical simulations is 20 µs.
As a result, the decoherence times of the qutrit employed in
the numerical simulations are 10−200 µs, which is a rather
conservative case since a decoherence time of 70 µs to 1 ms
for a superconducting flux device has been experimentally
demonstrated [48,104].

By numerically solving the master equation (43), we plot
Fig. 6, which gives the fidelity versus κ−1 for T = 10, 15, and
20 µs and gcr = 0.01gmax. The setting gcr = 0.01gmax here is
obtainable in experiments by a prior design of the sample with
appropriate capacitances C1, C2, and C3 depicted in Fig. 4 [95].
One can see from Fig. 6 that the fidelity exceeds 93.07% for
κ−1 � 20 µs and T � 10 µs. In addition, Fig. 6 shows that the
fidelity is insensitive to the qutrit decoherence. This is because
during the GHZ state preparation the qutrit mostly stays in
the ground state and thus the effect of decoherence from the
qutrit is negligible, while Fig. 6 shows that the fidelity is
sensitive to the cavity decay. This is understood because the
photons are populated in each cavity during the GHZ state
preparation.
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FIG. 6. Fidelity versus κ−1 for T = 10, 15, and 20 µs.

In reality, cavity 1 may not be prepared in a perfect initial
state. Thus, we consider a nonideal initial state of the system

|ψ (0)〉non-ideal =Nx[(1 + x)|0〉c1

+ (1 − x)]|1〉c1 |α〉c2 |α〉c3 ⊗ |g〉, (45)

where Nx = 1/
√

2(1 + x2) is a normalization factor. In this
situation, we numerically plot Fig. 7 for T = 10 µs, which
shows that the fidelity decreases with increasing of x. Never-
theless, for x ∈ [−0.1, 0.1], i.e., a 10% error in the weights of
the |0〉 and |1〉 states, a fidelity greater than 92.48%, 92.92%,

and 93.07% can be obtained for κ−1 = 20, 50, and 100 µs,
respectively.

With the parameters listed in Table I, the operational time
for preparing the GHZ state is estimated to be ∼0.63 µs, much
shorter than the cavity decay time and the qutrit decoherence
time used in the numerical simulations. For the cavity fre-
quencies given in Table I and κ−1 = 20 µs, the quality factors
for the three cavities are Q1 ∼ 2.34 × 106, Q2 ∼ 1.26 × 106,
and Q3 ∼ 1.21 × 106, which are achievable because a 1D
microwave cavity or resonator with a high-quality factor Q �
2.7 × 106 has been reported in experiments [52,53].

C. Discussion

The above analysis shows that the fidelity is sensitive to
the error in the initial state and the cavity decay, but it is

FIG. 7. Fidelity versus x for κ−1 = 20, 50, and 100 µs. In the
numerical simulation, we set T = 10 µs.

FIG. 8. Fidelity versus δ1/g1 and m. Here, m is the parame-
ter involved in Eq. (21). The figure is plotted by setting δ1/g1 =
m, g1/2π = 0.16 GHz, δ2 = δ1 + 2π × 0.4 GHz, δ3 = δ1 + 2π ×
0.8 GHz, and assuming that the dissipation of the system, the un-
wanted couplings of each cavity with the transitions between the
irrelevant levels of the qutrit (see Fig. 6), as well as the error in the
initial state preparation are negligible. The coupling constants g2 and
g3 used in the numerical simulation are calculated based on Eq. (21).

insensitive to the decoherence from the qutrit. The imperfect
fidelity is also induced by the unwanted qutrit-cavity cou-
plings. Moreover, the imperfect fidelity is caused because
the large detuning condition is not well satisfied. We note
that the fidelity can be further improved by optimizing the
system parameters to reduce the errors. As demonstrated in
Fig. 8, a high fidelity greater than 99% can be achieved for
δ1/g1, m � 50, and gcr = 0.01gmax when the unwanted qutrit-
cavity couplings, the dissipation of the system, and the error in
the initial state are negligible. Finally, it should be noted that
further study is needed for each particular experimental setup.
However, this requires a rather lengthy and complex analysis,
which is beyond the scope of this theoretical work.

VI. CONCLUSIONS

We have proposed a single-step method to implement a
multi-target-qubit controlled-phase gate with photonic qubits
each encoded via two arbitrary orthogonal eigenstates of the
photon-number parity operator. The gate is realized by em-
ploying multiple microwave cavities coupled to a SC flux
qutrit. As shown above, this proposal has the following
features and advantages: (i) It can be applied not only to im-
plement nonhybrid multi-target-qubit controlled-phase gates
using photonic qubits with various encodings, but also to
realize hybrid multi-target-qubit controlled-phase gates using
photonic qubits with different encodings; (ii) the gate real-
ization is quite simple because only a single-step operation
is needed; (iii) neither classical pulse nor measurement is
required, thus the gate is implemented in a deterministic way;
(iv) since only one coupler SC qutrit is needed to couple all
of the cavities, the hardware circuit resources are significantly
reduced and minimized; (v) during the gate realization, the SC
qutrit remains in the ground state, thus decoherence from the
qutrit is greatly suppressed; and (vi) the operation time for the
gate realization is independent of the number of target qubits,
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therefore it does not increase with increasing of the number of
target qubits.

As an application, we have further discussed how to apply
this multiqubit gate to generate a multicavity GHZ entan-
gled state with general expression. Depending on the specific
encodings, we have also discussed the generation of sev-
eral nonhybrid and hybrid GHZ entangled states of multiple
cavities. Furthermore, we have numerically analyzed the ex-
perimental feasibility of generating a spin-coherent hybrid
GHZ state of three cavities within current circuit QED tech-
nology. To the best of our knowledge, this work is the first to
demonstrate the realization of the proposed multiqubit gate
with photonic qubits, encoded via two arbitrary orthogonal
eigenstates of the photon-number parity operator, based on
cavity or circuit QED. Finally, note that the same Hamilto-
nians introduced in the above Sec. III A can be obtained for
many physical systems, such as multiple microwave or optical

cavities coupled to a three-level natural or artificial atom.
Hence, this proposal is quite general, thus can be applied to
implement the proposed multi-target-qubit gate using pho-
tonic qubits with various encodings and can be used to prepare
different kinds of nonhybrid and hybrid GHZ entangled states
of multiple cavities in a wide range of physical systems.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China (NSFC) (Grants No. 11074062,
No. 11374083, No. 11774076, and No. U21A20436), the Key-
Area Research and Development Program of GuangDong
province (Grant No. 2018B030326001), the Jiangsu Funding
Program for Excellent Postdoctoral Talent, and the Innovation
Program for Quantum Science and Technology (Grant No.
2021ZD0301705).

[1] P. W. Shor, in Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, edited by S. Goldwasser
(IEEE Computer Society, Los Alamitos, 1994), p. 124.

[2] L. K. Grover, Quantum Computers Can Search Rapidly by
Using Almost Any Transformation, Phys. Rev. Lett. 80, 4329
(1998).

[3] T. Beth and M. Röteler, in Quantum Information (Springer,
Berlin, 2001), Vol. 173, Chap. 4, p. 96.

[4] M. A. Nilsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, 2000), Chap. 5, pp. 217–220.

[5] S. L. Braunstein, V. Bužek, and M. Hillery, Quantum in-
formation distributors: Quantum network for symmetric and
asymmetric cloning in arbitrary dimension and continuous
limit, Phys. Rev. A 63, 052313 (2001).

[6] P. W. Shor, Scheme for reducing decoherence in quantum
computer memory, Phys. Rev. A 52, R2493 (1995).

[7] A. M. Steane, Error Correcting Codes in Quantum Theory,
Phys. Rev. Lett. 77, 793 (1996).

[8] F. Gaitan, Quantum Error Correction and Fault Tolerant Quan-
tum Computing (CRC Press, Boca Raton, 2008), pp. 1–312.

[9] M. Šašura and V. Bužek, Multiparticle entanglement with
quantum logic networks: Application to cold trapped ions,
Phys. Rev. A 64, 012305 (2001).

[10] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
Elementary gates for quantum computation, Phys. Rev. A 52,
3457 (1995).

[11] N. Khaneja and S. J. Glaser, Cartan decomposition of
SU(2n) and control of spin systems, Chem. Phys. 267, 11
(2001).

[12] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M.
Salomaa, Quantum Circuits for General Multiqubit Gates,
Phys. Rev. Lett. 93, 130502 (2004).

[13] Y. Liu, G. L. Long, and Y. Sun, Analytic one-bit and CNOT
gate constructions of general n-qubit controlled gates, Int. J.
Quantum Inform. 06, 447 (2008).

[14] X. Wang, A. Sørensen, and K. Mølmer, Multibit Gates for
Quantum Computing, Phys. Rev. Lett. 86, 3907 (2001).

[15] L. M. Duan, B. Wang, and H. J. Kimble, Robust quantum gates
on neutral atoms with cavity-assisted photon scattering, Phys.
Rev. A 72, 032333 (2005).

[16] C. P. Yang and S. Han, n-Qubit-controlled phase gate with
superconducting quantum interference devices coupled to a
resonator, Phys. Rev. A 72, 032311 (2005).

[17] T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P.
Schindler, M. Chwalla, M. Hennrich, and R. Blatt, Realization
of the Quantum Toffoli Gate with Trapped Ions, Phys. Rev.
Lett. 102, 040501 (2009).

[18] Y. Liang, Q. C. Wu, S. L. Su, X. Ji, and S. Zhang, Shortcuts to
adiabatic passage for multiqubit controlled-phase gate, Phys.
Rev. A 91, 032304 (2015).

[19] B. Ye, Z. F. Zheng, and C. P. Yang, Multiplex-controlled phase
gate with qubits distributed in a multicavity system, Phys. Rev.
A 97, 062336 (2018).

[20] S. L. Su, H. Z. Shen, E. Liang, and S. Zhang, One-step
construction of the multiple-qubit Rydberg controlled-PHASE
gate, Phys. Rev. A 98, 032306 (2018).

[21] P. Z. Zhao, G. F. Xu, and D. M. Tong, Nonadiabatic holonomic
multiqubit controlled gates, Phys. Rev. A 99, 052309 (2019).

[22] T. H. Xing, X. Wu, and G. F. Xu, Nonadiabatic holonomic
three-qubit controlled gates realized by one-shot implementa-
tion, Phys. Rev. A 101, 012306 (2020).

[23] M. Khazali and K. Mølmer, Fast Multiqubit Gates by Adi-
abatic Evolution in Interacting Excited-State Manifolds of
Rydberg Atoms and Superconducting Circuits, Phys. Rev. X
10, 021054 (2020).

[24] W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du,
One-step implementation of multiqubit conditional phase gat-
ing with nitrogen-vacancy centers coupled to a high-Q silica
microsphere cavity, Appl. Phys. Lett. 96, 241113 (2010).

[25] H. F. Wang, A. D. Zhu, and S. Zhang, One-step implemen-
tation of a multiqubit phase gate with one control qubit and
multiple target qubits in coupled cavities, Opt. Lett. 39, 1489
(2014).

[26] J. X. Han, J. L. Wu, Y. Wang, Y. Xia, J. Song, and Y. Y. Jiang,
Constructing multi-target controlled phase gate in circuit QED
and its applications, Europhys. Lett. 127, 50002 (2019).

032616-11

https://doi.org/10.1103/PhysRevLett.80.4329
https://doi.org/10.1103/PhysRevA.63.052313
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevA.64.012305
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1016/S0301-0104(01)00318-4
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1142/S0219749908003621
https://doi.org/10.1103/PhysRevLett.86.3907
https://doi.org/10.1103/PhysRevA.72.032333
https://doi.org/10.1103/PhysRevA.72.032311
https://doi.org/10.1103/PhysRevLett.102.040501
https://doi.org/10.1103/PhysRevA.91.032304
https://doi.org/10.1103/PhysRevA.97.062336
https://doi.org/10.1103/PhysRevA.98.032306
https://doi.org/10.1103/PhysRevA.99.052309
https://doi.org/10.1103/PhysRevA.101.012306
https://doi.org/10.1103/PhysRevX.10.021054
https://doi.org/10.1063/1.3455891
https://doi.org/10.1364/OL.39.001489
https://doi.org/10.1209/0295-5075/127/50002


SU, BIN, ZHANG, AND YANG PHYSICAL REVIEW A 107, 032616 (2023)

[27] T. Liu, B. Q. Guo, Y. Zhang, C. S. Yu, and W. N. Zhang, One-
step implementation of a multi-target-qubit controlled phase
gate in a multi-resonator circuit QED system, Quantum Inf.
Process 17, 240 (2018).

[28] C. P. Yang, Y. X. Liu, and F. Nori, Phase gate of one qubit
simultaneously controlling n qubits in a cavity, Phys. Rev. A
81, 062323 (2010).

[29] C. P. Yang, S. B. Zheng, and F. Nori, Multiqubit tunable phase
gate of one qubit simultaneously controlling n qubits in a
cavity, Phys. Rev. A 82, 062326 (2010).

[30] M. Waseem, M. Irfan, and S. Qamar, Multiqubit quantum
phase gate using four-level superconducting quantum interfer-
ence devices coupled to superconducting resonator, Physica C:
Superconductivity 477, 24 (2012).

[31] C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, Single-step
implementation of a multiple-target-qubit controlled phase
gate without need of classical pulses, Opt. Lett. 39, 3312
(2014).

[32] T. Liu, X. Z. Cao, Q. P. Su, S. J. Xiong, and C. P. Yang,
Multi-target-qubit unconventional geometric phase gate in a
multicavity system, Sci. Rep. 6, 21562 (2016).

[33] C. H. Bai, D. Y. Wang, S. Hu, W. X. Cui, X. X. Jiang, and H. F.
Wang, Scheme for implementing multitarget qubit controlled-
NOT gate of photons and controlled-phase gate of electron
spins via quantum dot-microcavity coupled system, Quantum
Inf. Process 15, 1485 (2016).

[34] C. P. Yang, S. I. Chu, and S. Han, Possible realization of
entanglement, logical gates and quantum information transfer
with superconducting-quantum-interference device qubits in
cavity QED, Phys. Rev. A 67, 042311 (2003).

[35] J. Q. You and F. Nori, Quantum information processing with
superconducting qubits in a microwave field, Phys. Rev. B 68,
064509 (2003).

[36] A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Cavity quantum electrodynamics for su-
perconducting electrical circuits: An architecture for quantum
computation, Phys. Rev. A 69, 062320 (2004).

[37] J. Q. You and F. Nori, Superconducting circuits and quantum
information, Phys. Today 58(11), 42 (2005).

[38] J. Q. You and F. Nori, Atomic physics and quantum optics
using superconducting circuits, Nature (London) 474, 589
(2011).

[39] I. Buluta, S. Ashhab, and F. Nori, Natural and artificial
atoms for quantum computation, Rep. Prog. Phys. 74, 104401
(2011).

[40] P. B. Li, S. Y. Gao, and F. L. Li, Engineering two-mode
entangled states between two superconducting resonators by
dissipation, Phys. Rev. A 86, 012318 (2012).

[41] Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quan-
tum circuits: Superconducting circuits interacting with other
quantum systems, Rev. Mod. Phys. 85, 623 (2013).

[42] X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori,
Microwave photonics with superconducting quantum circuits,
Phys. Rep. 718-719, 1 (2017).

[43] Q. P. Su, H. Zhang, and C. P. Yang, Transferring quantum
entangled states between multiple single-photon-state qubits
and coherent-state qubits in circuit QED, Front. Phys. 16,
61501 (2021).

[44] P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M.
Fink, M. Goppl, L. Steffen, and A. Wallraff, Using sideband

transitions for two-qubit operations in superconducting cir-
cuits, Phys. Rev. B 79, 180511 (2009).

[45] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N.
Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and
J. M. Martinis, Process tomography of quantum memory in a
Josephson-phase qubit coupled to a two-level state, Nat. Phys.
4, 523 (2008).

[46] G. Sun, X. Wen, B. Mao, J. Chen, Y. Yu, P. Wu, and S. Han,
Tunable quantum beam splitters for coherent manipulation
of a solid-state tripartite qubit system, Nat. Commun. 1, 51
(2010).

[47] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen,
Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. OMalley, P. Roushan,
J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis,
Coherent Josephson Qubit Suitable for Scalable Quantum In-
tegrated Circuits, Phys. Rev. Lett. 111, 080502 (2013).

[48] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears,
D. Hover, T. J. Gudmundsen, J. L. Yoder, T. P. Orlando, J.
Clarke et al., The flux qubit revisited to enhance coherence
and reproducibility, Nat. Commun. 7, 12964 (2016).

[49] A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M.
Smitham, M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon,
A. Vrajitoarea, S. Sussman et al., New material plat-
form for superconducting transmon qubits with coherence
times exceeding 0.3 milliseconds, Nat. Commun. 12, 1779
(2021).

[50] C. Wang, X. Li, H. Xu, Z. Li, J. Wang, Z. Yang, Z. Mi,
X. Liang, T. Su, C. Yang et al., Towards practical quantum
computers transmon qubit with a lifetime approaching 0.5
milliseconds, npj Quantum Inf 8, 3 (2022).

[51] A. Somoroff, Q. Ficheux, R. A. Mencia, H. Xiong, R. V.
Kuzmin, and V. E. Manucharyan, Millisecond coherence in a
superconducting qubit, arXiv:2103.08578.

[52] W. Woods, G. Calusine, A. Melville, A. Sevi, E. Golden,
D. K. Kim, D. Rosenberg, J. L. Yoder, and W. D. Oliver,
Determining Interface Dielectric Losses in Superconducting
Coplanar-Waveguide Resonators, Phys. Rev. Appl. 12, 014012
(2019).

[53] A. Melville, G. Calusine, W. Woods, K. Serniak, E. Golden,
B. M. Niedzielski, D. K. Kim, A. Sevi, J. L. Yoder, E. A.
Dauler et al., Comparison of dielectric loss in titanium nitride
and aluminum superconducting resonators, Appl. Phys. Lett.
117, 124004 (2020).

[54] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K.
Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J.
Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J.
Schoelkopf, A quantum memory with near-millisecond coher-
ence in circuit QED, Phys. Rev. B 94, 014506 (2016).

[55] M. Kudra, J. Biznarova, A. Fadavi Roudsari, J. J. Burnett,
D. Niepce, S. Gasparinetti, B. Wickman, and P. Delsing,
High quality three-dimensional aluminum microwave cavities,
Appl. Phys. Lett. 117, 070601 (2020).

[56] Romanenko, A. Romanenko, S. Zorzetti, D. Frolov, M. Awida,
S. Belomestnykh, S. Posen, and A. Grassellino, Three Di-
mensional Superconducting Resonators at T < 20 mK with
Photon Lifetimes up to τ = 2 s, Phys. Rev. Appl. 13, 034032
(2020).

[57] M. H. Devoret and R. J. Schoelkopf, Superconducting cir-
cuits for quantum information: An outlook, Science 339, 1169
(2013).

032616-12

https://doi.org/10.1007/s11128-018-2011-x
https://doi.org/10.1103/PhysRevA.81.062323
https://doi.org/10.1103/PhysRevA.82.062326
https://doi.org/10.1016/j.physc.2012.02.024
https://doi.org/10.1364/OL.39.003312
https://doi.org/10.1038/srep21562
https://doi.org/10.1007/s11128-015-1197-4
https://doi.org/10.1103/PhysRevA.67.042311
https://doi.org/10.1103/PhysRevB.68.064509
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1063/1.2155757
https://doi.org/10.1038/nature10122
https://doi.org/10.1088/0034-4885/74/10/104401
https://doi.org/10.1103/PhysRevA.86.012318
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1007/s11467-021-1098-1
https://doi.org/10.1103/PhysRevB.79.180511
https://doi.org/10.1038/nphys972
https://doi.org/10.1038/ncomms1050
https://doi.org/10.1103/PhysRevLett.111.080502
https://doi.org/10.1038/ncomms12964
https://doi.org/10.1038/s41467-021-22030-5
https://doi.org/10.1038/s41534-021-00510-2
http://arxiv.org/abs/arXiv:2103.08578
https://doi.org/10.1103/PhysRevApplied.12.014012
https://doi.org/10.1063/5.0021950
https://doi.org/10.1103/PhysRevB.94.014506
https://doi.org/10.1063/5.0016463
https://doi.org/10.1103/PhysRevApplied.13.034032
https://doi.org/10.1126/science.1231930


ONE-STEP IMPLEMENTATION OF A … PHYSICAL REVIEW A 107, 032616 (2023)

[58] M. O. Scully and W. E. Lamb, Quantum theory of an optical
maser. III. Theory of photoelectron counting statistics, Phys.
Rev. 179, 368 (1969).

[59] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M.
Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending
the lifetime of a quantum bit with error correction in super-
conducting circuits, Nature (London) 536, 441 (2016).

[60] M. Hua, M. J. Tao, and F. G. Deng, Universal quantum gates
on microwave photons assisted by circuit quantum electrody-
namics, Phys. Rev. A 90, 012328 (2014).

[61] H. Jeong and M. S. Kim, Efficient quantum computation using
coherent states, Phys. Rev. A 65, 042305 (2002).

[62] T. C. Ralph, A. Gilchrist, and G. J. Milburn, Quantum com-
putation with optical coherent states, Phys. Rev. A 68, 042319
(2003).

[63] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically pro-
tected cat-qubits: A new paradigm for universal quantum
computation, New J. Phys. 16, 045014 (2014).

[64] S. E. Nigg, Deterministic Hadamard gate for microwave cat-
state qubits in circuit QED, Phys. Rev. A 89, 022340 (2014).

[65] Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, and C. P.
Yang, Universal controlled-phase gate with cat-state qubits in
circuit QED, Phys. Rev. A 96, 052317 (2017).

[66] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H.
Devoret, and R. J. Schoelkopf, Implementing a universal gate
set on a logical qubit encoded in an oscillator, Nat. Commun.
8, 94 (2017).

[67] C. P. Yang, Q. P. Su, S. B. Zheng, F. Nori, and S. Han, Entan-
gling two oscillators with arbitrary asymmetric initial states,
Phys. Rev. A 95, 052341 (2017).

[68] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S.
Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H.
Devoret, Stabilization and operation of a Kerr-cat qubit,
Nature (London) 584, 205 (2020).

[69] L. Pei-Min, J. Song, and Y. Xia, Implementing a multi-qubit
quantum phase gate encoded by photonic qubit, Chin. Phys.
Lett. 27, 030302 (2010).

[70] M. Hua, M. J. Tao, and F. G. Deng, Fast universal quantum
gates on microwave photons with all-resonance operations in
circuit QED, Sci. Rep. 5, 9274 (2015).

[71] B. Ye, Z. F. Zheng, Y. Zhang, and C. P. Yang, QED circuit
single-step realization of a multiqubit controlled phase gate
with one microwave photonic qubit simultaneously control-
ling n–1 microwave photonic qubits, Opt. Express 26, 30689
(2018).

[72] J. X. Han, J. L. Wu, Y. Wang, Y. Y. Jiang, Y. Xian, and
J. Song, Multi-qubit phase gate on multiple resonators me-
diated by a superconducting bus, Opt. Express 28, 1954
(2020).

[73] Q. P. Su, Y. Zhang, L. Bin, and C. P. Yang, Efficient scheme
for realizing a multiplex-controlled phase gate with photonic
qubits in circuit quantum electrodynamics, Front. Phys. 17,
53505 (2022).

[74] J. Fiurášek, Linear-optics quantum Toffoli and Fredkin gates,
Phys. Rev. A 73, 062313 (2006).

[75] X. Zou, K. Li, and G. Guo, Linear optical scheme for direct
implementation of a nondestructive N-qubit controlled phase
gate, Phys. Rev. A 74, 044305 (2006).

[76] T. C. Ralph, K. J. Resch, and A. Gilchrist, Efficient Toffoli
gates using qudits, Phys. Rev. A 75, 022313 (2007).

[77] H. R. Wei and G. L. Long, Universal photonic quantum gates
assisted by ancilla diamond nitrogen-vacancy centers coupled
to resonators, Phys. Rev. A 91, 032324 (2015).

[78] H. L. Huang, W. S. Bao, T. Li, F. G. Li, X. Q. Fu, S. Zhang,
H. L. Zhang, and X. Wang, Deterministic linear optical quan-
tum Toffoli gate, Phys. Lett. A 381, 2673 (2017).

[79] L. Dong, S. L. Wang, C. Cui, X. Geng, Q. Y. Li, H. K. Dong,
X. M. Xiu, and Y. J. Gao, Polarization Toffoli gate assisted by
multiple degrees of freedom, Opt. Lett. 43, 4635 (2018).

[80] B. Y. Xia, C. Cao, Y. H. Han, and R. Zhang, Universal pho-
tonic three-qubit quantum gates with two degrees of freedom
assisted by charged quantum dots inside single sided optical
microcavities, Laser Phys. 28, 095201 (2018).

[81] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going
Beyond Bell’s Theorem, Quantum Theory and Conceptions of
the Universe (Springer, Dordrecht, 1989), pp. 69–72.

[82] M. Hillery, V. Buzek, and A. Berthiaume, Quantum secret
sharing, Phys. Rev. A 59, 1829 (1999).

[83] S. Bose, V. Vedral, and P. L. Knight, Multiparticle gener-
alization of entanglement swapping, Phys. Rev. A 57, 822
(1998).

[84] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced
measurements: Beating the standard quantum limit, Science
306, 1330 (2004).

[85] S. J. Devitt, W. J. Munro, and K. Nemoto, Quantum er-
ror correction for beginners, Rep. Prog. Phys. 76, 076001
(2013).

[86] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Optimal frequency measurements with maximally correlated
states, Phys. Rev. A 54, R4649 (1996).

[87] M. Silva and C. R. Myers, Computation with coherent states
via teleportations to and from a quantum bus, Phys. Rev. A 78,
062314 (2008).

[88] L. P. van Loock, Optical hybrid approaches to quantum infor-
mation, Laser Photonics Rev. 5, 167 (2011).

[89] U. L. Andersen, J. S. Neergaard-Nielsen, L. P. van, and A.
Furusawa, Hybrid quantum information processing, Nat. Phys.
11, 713 (2015).

[90] M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G.
Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the
field in a microwave resonator faster than the photon lifetime,
Appl. Phys. Lett. 92, 203501 (2008).

[91] Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis,
A. N. Cleland, and Q. W. Xie, Quantum state characterization
of a fast tunable superconducting resonator, Appl. Phys. Lett.
102, 163503 (2013).

[92] S. B. Zheng and G. C. Guo, Efficient Scheme for Two-Atom
Entanglement and Quantum Information Processing in Cavity
QED, Phys. Rev. Lett. 85, 2392 (2000).

[93] A. Sørensen and K. Molmer, Quantum Computation with Ions
in Thermal Motion, Phys. Rev. Lett. 82, 1971 (1999).

[94] D. F. V. James and J. Jerke, Effective Hamiltonian theory and
its applications in quantum information, Can. J. Phys. 85, 625
(2007).

[95] C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger-
Horne-Zeilinger entangled states of photons in multiple
cavities via a superconducting qutrit or an atom through reso-
nant interaction, Phys. Rev. A 86, 022329 (2012).

032616-13

https://doi.org/10.1103/PhysRev.179.368
https://doi.org/10.1038/nature18949
https://doi.org/10.1103/PhysRevA.90.012328
https://doi.org/10.1103/PhysRevA.65.042305
https://doi.org/10.1103/PhysRevA.68.042319
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1103/PhysRevA.89.022340
https://doi.org/10.1103/PhysRevA.96.052317
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1103/PhysRevA.95.052341
https://doi.org/10.1038/s41586-020-2587-z
https://doi.org/10.1088/0256-307X/27/3/030302
https://doi.org/10.1038/srep09274
https://doi.org/10.1364/OE.26.030689
https://doi.org/10.1364/OE.384352
https://doi.org/10.1007/s11467-022-1163-4
https://doi.org/10.1103/PhysRevA.73.062313
https://doi.org/10.1103/PhysRevA.74.044305
https://doi.org/10.1103/PhysRevA.75.022313
https://doi.org/10.1103/PhysRevA.91.032324
https://doi.org/10.1016/j.physleta.2017.06.034
https://doi.org/10.1364/OL.43.004635
https://doi.org/10.1088/1555-6611/aac904
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1103/PhysRevA.57.822
https://doi.org/10.1126/science.1104149
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevA.78.062314
https://doi.org/10.1002/lpor.201000005
https://doi.org/10.1038/nphys3410
https://doi.org/10.1063/1.2929367
https://doi.org/10.1063/1.4802893
https://doi.org/10.1103/PhysRevLett.85.2392
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1139/p07-060
https://doi.org/10.1103/PhysRevA.86.022329


SU, BIN, ZHANG, AND YANG PHYSICAL REVIEW A 107, 032616 (2023)

[96] H. Zhang, Q. P. Su, and C. P. Yang, Efficient scheme for cre-
ating a W-type optical entangled coherent state, Opt. Express
28, 35622 (2020).

[97] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-
source Python framework for the dynamics of open quantum
systems, Comput. Phys. Commun. 183, 1760 (2012).

[98] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A
Python framework for the dynamics of open quantum systems,
Comput. Phys. Commun. 184, 1234 (2013).

[99] A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S.
Lloyd, and J. S. Tsai, Quantum coherent tunable coupling of
superconducting qubits, Science 316, 723 (2007).

[100] K. Inomata, T. Yamamoto, P. M. Billangeon, Y. Nakamura, and
J. S. Tsai, Large dispersive shift of cavity resonance induced
by a superconducting flux qubit in the straddling regime, Phys.
Rev. B 86, 140508(R) (2012).

[101] Z. H. Peng, Y. X. Liu, J. T. Peltonen, T. Yamamoto,
J. S. Tsai, and O. Astafiev, Correlated Emission Las-
ing in Harmonic Oscillators Coupled via a Single Three-
Level Artificial Atom, Phys. Rev. Lett. 115, 223603
(2015).

[102] Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical
Selection Rules and Phase-Dependent Adiabatic State Control
in a Superconducting Quantum Circuit, Phys. Rev. Lett. 95,
087001 (2005).

[103] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke,
M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E.
Solano, A. Marx, and R. Gross, Circuit quantum electrody-
namics in the ultrastrong coupling regime, Nat. Phys. 6, 772
(2010).

[104] J. Q. You, X. Hu, S. Ashhab, and F. Nori, Low decoherence
flux qubit, Phys. Rev. B 75, 140515(R) (2007).

032616-14

https://doi.org/10.1364/OE.411810
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1126/science.1141324
https://doi.org/10.1103/PhysRevB.86.140508
https://doi.org/10.1103/PhysRevLett.115.223603
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/PhysRevB.75.140515

