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Efficacy of noisy dynamical decoupling
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Dynamical decoupling (DD) refers to a well-established family of methods for error mitigation, comprising
pulse sequences aimed at averaging away slowly evolving noise in quantum systems. Here we revisit the
question of its efficacy in the presence of noisy pulses in scenarios important for quantum devices today:
pulses with gate control errors, and the computational setting where DD is used to reduce noise in every
computational gate. We focus on the well-known schemes of periodic (or universal) DD and its extension,
concatenated DD, for scaling up its power. The qualitative conclusions from our analysis of these two schemes
nevertheless apply to other DD approaches. In the presence of noisy pulses, DD does not always mitigate errors.
It does so only when the added noise from the imperfect DD pulses does not outweigh the increased ability
in averaging away the original background noise. We present break-even conditions that delineate when DD is
useful, and further find that there is a limit in the performance of concatenated DD, specifically in how far one
can concatenate the DD pulse sequences before the added noise no longer offers any further benefit in error
mitigation.
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I. INTRODUCTION

The adverse effects of noise pose some of the biggest
challenges in realizing useful quantum technologies. The very
quantum effects that give quantum technologies their edge
over classical devices are also the obstacles to success: They
are extremely fragile and easily destroyed by the presence of
unwanted interactions with the environment noise. Much of
the current research and technological push in the community
are centered around exploring ways to reduce and remove the
effects of noise in quantum devices [1,2].

An effective noise-suppression technique is dynamical de-
coupling (DD), which requires the application of fast control
pulse sequences on individual qubits to average away the
effects of noise processes [3–11]. Advancing well beyond its
root in control techniques for nuclear magnetic resonance, DD
has been used in many different types of experiments as a
viable way to combat decoherence in quantum information
processing systems [12–18], alongside other applications such
as noise spectroscopy [19] and quantum metrology [20]. Com-
pared with quantum error correction (QEC) (see, for example,
Ref. [21]), a more widely studied noise-removal approach,
DD is much more economical as it requires no encoding of
logical qubits using multiple physical qubits, nor real-time
close-loop control through periodic syndrome measurement
and recovery. All that is needed are regular single-qubit fast
pulses that are usually easy to implement—they employ the
same gates used for quantum computational tasks that are typ-
ically part of the capabilities of the quantum device. DD can

be used by itself, or as the first layer of defense against noise
within a standard QEC scheme as a hybrid noise-reduction
approach [22–24]. The use of DD does not, however, come
at no cost. The multiple pulses that have to be applied can be
imperfect. Imperfect DD pulses can add, rather than remove,
errors in the system. When the pulses are too noisy, those
added errors can happen often enough to eliminate the benefit
of having DD in the first place [23].

Like the concatenated codes in QEC, it is also possible to
construct pulse schemes in a recursive manner to “scale up”
the power of decoupling and form what is known as concate-
nated DD (CDD) [5]. In an ideal world, one could in principle
construct arbitrarily accurate DD-protected gates through con-
catenation [25]. However, under realistic constraints such as
control errors and finite pulse rate, both theoretical papers and
experimental papers find that increasing concatenation may
not always be beneficial [25–31].

In this work, we study the efficacy of DD as a noise-
removal technique when the DD pulses themselves are noisy
by asking similar fault-tolerance questions usually asked of
QEC procedures. Our investigation can be split into two
lines of inquiry. First, for a given DD sequence, what is the
maximum amount of noise in the DD pulses that can be
tolerated, before DD stops offering any benefit? We refer to
this maximum amount of tolerated noise as the break-even
point (it is also sometimes referred to as the pseudothresh-
old in QEC and fault-tolerance literature). Second, we ask
for the accuracy threshold—again borrowing terminology of
QEC—specifying the level of noise permissible in the DD
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pulses below which a given prescription for scaling up the
DD scheme can remove more and more noise, and hence
attain better and better computational accuracy in the quantum
device. As we will see, we find that, in typical situations,
there is no nonzero threshold. Instead, there is a maximal
scale for DD, beyond which no additional benefit can be
derived.

Past research involves some aspects of our queries. In
particular, the performance of DD with imperfect pulses has
been extensively studied with various models accounting for
the effects of finite pulse width and systematic unitary ro-
tation errors [26,32–35]. A generic description of noisy DD
has also been attempted using a stochastic process model
[35]. Experimental evidence suggesting the adverse impacts
of noisy controls are also available in many reports [27,36,37].
Among these studies on nonideal DD, however, a comprehen-
sive cost-benefit analysis from the fault-tolerance perspective
is yet available to the best of our knowledge. Furthermore,
for a fully fault-tolerant discussion relevant to experiments
today, more general noises for the pulses have to be incor-
porated. Experimentally, gate-control noise, which can arise
every time a DD pulse is applied, is often of a very different
nature than the background noise—assumed in the case of
finite pulse widths—in a quantum device, and can be highly
dependent on the specific gate being applied. Such noise has
to be treated separately in a realistic study of the efficacy
of DD.

Here we focus our discussion on the most commonly used
scheme of periodic DD (PDD) based on what is known as
the universal decoupling sequence [3]. The same analysis,
however, extends to other DD schemes. For scaling up the DD
protection, to be able to remove more noise, we make use of
CDD [5], organizing the DD pulse sequence in a recursive
manner. We discuss the break-even point in two operational
settings: computation and memory. In the computational set-
ting, we consider using DD to reduce noise in computational
gates in the course of carrying out a quantum circuit. The
break-even comparison is thus about the noise per gate, with
or without DD. In the memory setting, we instead compare
the noise over a fixed time interval, during which DD can
be carried out or not. Most of our discussion will be in the
computational setting, the one most relevant to the current
interest in quantum devices, though we mention the memory
setting in specific cases. Following past papers, we quantify
the performance of DD using the error phase, namely, the
strength of the effective noise Hamiltonian—with and without
DD—acting on the qubits in the quantum device. As we will
see, the error phase permits easy analytical treatment. We
numerically check for consistency with another natural fig-
ure of merit, the system state infidelity, in a specific physical
setting.

We begin in Sec. II with a few basic concepts needed for
our analysis. Section III discusses the break-even point for
PDD, starting with the ideal-pulse situation before moving to
the realistic noisy case. We examine the example of unitary
errors in detail, numerically exploring the infidelity measure
in addition to the analytical treatment of the error phase.
Section IV extends our discussion to the case of CDD and
explores the existence of an accuracy threshold for DD. We
conclude and summarize our findings in Sec. V.

circuit:

model:

FIG. 1. Illustration of one cycle of a generic DD sequence com-
prising L pulses Pi, for i = 1, 2, . . . , L. Pulse Pi is applied at time ti;
pulses are separated by time τi. The dashed pulse at time t0 is the
final pulse of the previous DD cycle. Hctrl is the control Hamiltonian
that implements the DD pulses.

II. PRELIMINARIES

We begin our discussion with the introduction of a few
basic concepts necessary for understanding the rest of the
paper.

A. Basics of DD

DD involves the repeated application of a fixed sequence
of short pulses (or fast gates) to individual quantum regis-
ters that average away the effect of any noise with a time
scale slow compared to the sequence time. For a given DD
scheme, let L be the length, i.e., the number of pulses, of
the sequence. We denote the ith pulse of the sequence as Pi,
and write the sequence as PL · · · P2P1, proceeding from right
to left in time. Pulse Pi is applied at time ti = ti−1 + τi, for
i = 1, 2, . . . , L, with τi the time between pulses Pi−1 and Pi,
and t0 is the time of the last pulse of the previous sequence,
coincident with the start time of the current sequence; see
Fig. 1.

All DD schemes share some fundamental similarities.
First, all DD pulses are chosen from a specific transformation
group. Second, all DD sequences must satisfy the constraint
that in the absence of errors, PLPL−1 · · · P1 is the identity map
(up to a phase factor). This constraint ensures that there is
no net transformation on the quantum register at the comple-
tion of the sequence. Different strategies could differ in the
following respects: (1) the transformation group—for a qubit
register, a common choice is the Pauli group generated by
the Pauli operators X and Z . Simpler schemes such as spin
echo [38] and the CPMG sequence [39] use only the subgroup
{I, Z}. (2) The specific sequence of pulses, which can be
deterministic as well as randomized [6]. and (3) The pulse
times—one can have regular-interval pulses, with τi ≡ τ ∀i,
as is the case in PDD [3] and CDD [5] schemes. One could,
however, have variable-interval schemes, such as the Uhrig
DD sequence and its variants [7,11,40]. It is also possible
to apply continuous control that follows a Eulerian cycle
instead of using the “bang-bang”-style control [41]. In this
work, we focus on the regular-interval schemes of PDD and
CDD, differing in sequence length and the specific pulse se-
quence, but which employ pulses drawn from the Pauli group.
The physical model we are considering is one where gates,
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including the DD pulses, are applied at some operating fre-
quency, with time τ in between consecutive gates. Such
nonzero τ can simply be the finite switch time between gates,
or there may be other practical reasons for a synchronized
clock cycle time.

Generally speaking, the errors can be attributed to two ma-
jor sources: (1) the system (quantum register) interacting with
its environment (local quantum bath and field fluctuations,
etc.), which constitutes the background noise on the system
presenting even in the absence of control and (2) the control
imperfections. In much past research, imperfect DD pulses
were modeled as finite-width (or finite-duration) pulses during
which the always-on system-bath interaction acts and leads to
errors in the pulses. Our approach, explained in Sec. III B 1,
allows additionally incorporating general control errors in the
pulses as well. This second source of errors is perhaps more
dominant and relevant in practical situations. In the follow-
ings, we refer to the DD sequences with perfect, instantaneous
pulses as ideal DD, and to the case with imperfect pulses as
noisy DD.

In the absence of any DD pulses, the system and bath
evolve jointly according to the Hamiltonian H , assumed to be
time-independent as is appropriate for standard DD analysis
[42]. H here can be written as H = HB + HSB, with HB as the
bath-only Hamiltonian, and HSB the interaction. No system-
only term appears in H as we assume no nontrivial dynamics,
other than that arising from HSB, occur in the system during
the course of a DD sequence. Computational gates, if any,
can be done only between complete DD sequences for the
noise averaging to work. With this, we can write the evolution
operator for a single complete ideal DD sequence as

UDD = PLe−iτH PL−1 · · · P2e−iτH P1e−iτH ≡ e−i�DD . (1)

Here we have defined �DD ≡ T Heff as the dimensionless ef-
fective Hamiltonian appropriate for describing the evolution
for the time T ≡ Lτ of the DD sequence. �DD can be written
formally using the Magnus expansion,

�DD =
∞∑

m=1

�
(m)
DD, (2)

where the mth term consists of products of m copies of τH ,
and hence is of order ‖τH‖m. We refer the reader to past anal-
yses of DD (see, for example, Ref. [23]) for a detailed deriva-
tion of the Magnus expansion. Here we provide only the basic
expressions needed for our discussion below. In particular,
we will need the expressions for the three lowest-order Mag-
nus terms for piecewise-constant Hamiltonian evolution [43].
For U = e−iOK e−iOK−1 · · · e−iO1 , for Ois a sequence of time-
independent dimensionless Hamiltonians (e.g., O1 = τH), we
have U ≡ e−i� with � = �(1) + �(2) + �(3) + · · · , where

�(1) =
K∑

i=1

Oi,

�(2) = − i

2

K∑
i, j=1
i> j

[Oi, Oj],

and �(3) = −1

6

K∑
i, j,k=1
i� j�k

([Oi, [Oj, Ok]] + [Ok, [Oi, Oj]])
sym(i, j, k)

.

(3)

Here sym(i, j, k) is the symmetry factor (equaling to 1 when
i, j, k are all different, 2 when any two indices are equal, and
6 when all indices are equal); [ ·, · ] denotes the commutator.
Within the radius of absolute convergence of the Magnus
series [44],

L‖τH‖ < 1.0868 · · · ≈ 1, (4)

�(m) decreases in importance as m increases. A DD scheme
such that �

(m)
DD acts trivially on the system (i.e., acts as the

identity on the system) for all m � n is said to achieve
nth-order decoupling. For such a scheme, the system sees
an effectively weakened noise, of strength ‖�(n)

DD‖ ∼ ‖τH‖n,
compared with ‖τH‖ without DD.

B. The PDD scheme

We specialize here to the case of interest, that of the
single-qubit PDD scheme based on the universal decoupling
sequence [3]. We refer to this case simply as PDD for brevity.
The single qubit interacts with a bath, via a joint Hamiltonian
(in the absence of DD) that can be written, without loss of
generality, as

H ≡ I ⊗ BI + X ⊗ BX + Y ⊗ BY + Z ⊗ BZ . (5)

Here I ≡ σ0 is the identity operator on the qubit, X ≡ σ1,Y ≡
σ2, and Z ≡ σ3 are the Pauli operators on the qubit, and the
Bαs are operators on the bath. We identify I ⊗ BI as the bath-
only Hamiltonian HB, and X ⊗ BX + Y ⊗ BY + Z ⊗ BZ as the
interaction Hamiltonian HSB.

The universal decoupling sequence refers to a simple four-
pulse sequence “Z − X − Z − X−.” The corresponding �DD
of Eqs. (1), now relabeled as �PDD, is expressible as the series
�PDD = �

(1)
PDD + �

(2)
PDD + · · · whose first two terms can be

worked out to be

�
(1)
PDD = (4τ )I ⊗ BI , (6)

�
(2)
PDD = −(2τ 2){X ⊗ 2i [BI , BX ]

+ Y ⊗ (i [BI , BY ] + {BX , BZ})}, (7)

where {·, ·} is the anticommutator.
Let us compare the PDD evolution with the evolution with-

out DD over the same time period of 4τ (i.e., in the memory
setting): U = e−i4τH ≡ e−i�, with

� = (4τ )H = (4τ )(I ⊗ BI + HSB). (8)

Comparing �
(1)
PDD—usually the dominant term—with �, we

see that the HSB in � no longer appears in �
(1)
PDD and �

(1)
PDD

is trivial on the system. This corresponds to the fact that PDD
is able to remove the lowest-order noise and that it achieves
first-order decoupling.

C. Scaling up the protection with concatenation

A given DD sequence yields a given decoupling order,
setting a limit on the scheme’s ability to reduce noise in the
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system. To increase the power of the DD scheme, one can
employ the method of concatenation introduced in Ref. [5].
In that work, CDD was built upon the basic PDD scheme; the
same procedure of concatenation, however, can be applied to
other basic DD sequences as well [8,9]. The idea is to make
use of concatenation to increase the decoupling order of the
resulting DD sequence, hence reducing the residual noise.

CDD can be described in a recursive manner. We begin
with the bare evolution, without any DD sequence, writing
the evolution operator over time interval t as

U0(t ) ≡ e−itH0 , (9)

where H0 ≡ H , with the subscript 0 added here in preparation
for concatenation to higher levels. With a DD scheme of L
pulses, applied at time intervals (assuming regular-interval
DD) τ0, the evolution operator is

U1(τ1) ≡ PLU0(τ0) · · · P2U0(τ0)P1U0(τ0), (10)

where τ1 ≡ Lτ0. The subscript 1 is to be understood as indi-
cating that this is for concatenation level 1. To concatenate
further, Uk (τk ) is defined recursively,

Uk (τk ) ≡ PLUk−1(τk−1) · · · P1Uk−1(τk−1)

≡ e−iτkHk = e−i�CDDk (for k � 1), (11)

with τk ≡ Lτk−1. For each Uk (τk ), we also associate an ef-
fective Hamiltonian Hk , and a dimensionless Hamiltonian
�CDDk ≡ τkHk . Each CDD scheme is determined by specify-
ing the maximal concatenation level n, and either the value of
τ0 or τn. CDD at level n, denoted as CDDn, is then a sequence
of Ln ≡ Ln pulses separated by time interval τ0 and taking
total time τn = Lnτ0 to complete.

In the remainder of the paper, we will restrict our discus-
sion to CDD built upon the basic PDD scheme. The authors
of Ref. [5] showed that CDDn achieves nth-order decoupling.
This quantifies the benefit of scaling up the noise protection
by concatenation. Appendix D rederives this conclusion with
a different argument than that in the original reference.

D. Quantifying the efficacy of DD

We need concrete figures of merit to quantify the perfor-
mance of DD. For most of the discussion, we will employ the
error phase, which measures the strength of the effective noise
Hamiltonian. In a specific example, we will also examine the
infidelity measure, and compare the conclusions to those from
error phase considerations.

1. Error phase

To gauge the efficacy of DD, we quantify the deviation
of the actual state of the quantum system, with and without
DD, from the ideal, no-noise state. Following Ref. [5], we
make use of the error phase, which measures the strength
of the system-bath interaction, the source of noise on the
system. The system and bath evolve jointly for some spec-
ified time T according to the evolution operator U (0, T ).
The underlying joint Hamiltonian generating the dynamics
can be time-dependent, and can include—or not—the DD
pulses on the system. We write U (0, T ) ≡ e−i�, for some
effective dimensionless Hamiltonian �; this can be thought of

as evolution according to a time-independent effective Hamil-
tonian �/T , for time T . � can be split into two pieces: � ≡
�B + �SB, where �B ≡ 1

dS
IS ⊗ trS (�) (dS is the dimension

of the system) acts on the bath alone, while �SB ≡ � − �B

contains all the pieces that act nontrivially on the system. �SB

can be thought of as the effective system-bath interaction over
this time T . We define the error phase �SB as the norm of
�SB, �B as the norm of �B, which as we will see, will also
enter our analysis:

�B ≡ ‖�B‖ and �SB ≡ ‖�SB‖. (12)

We choose to employ the operator norm, i.e., the maximal
singular value of an operator, for all norm symbols appearing
in this paper. For this choice, we have unit norm for the
identity operator in any dimension, so that the bath dimension
is irrelevant in the definition of the error phase, a fact that
will come in useful later. In what follows, we will use φ for
the bare Hamiltonian associated with the no-DD situation.
Specifically, we write

φB ≡ ‖τHB‖ and φSB ≡ ‖τHSB‖, (13)

and exclusively reserve the uppercase � for the effective
Hamiltonian after DD. The Hamiltonian operators are as-
sumed to be bounded throughout this work, but there is
otherwise no restriction on the dimension of the bath Hilbert
space.

2. Infidelity measure

We mention another natural measure of noise, namely, the
infidelity between the noisy (with or without DD) and ideal
no-noise system states. Since we are interested only in how
the system state is affected by noise, we care only about
the effective noise channels N acting on the system, with
or without the DD pulses, with the bath degrees of freedom
discarded, i.e.,

N ( · ) ≡ trB{e−i�( · ⊗ ρB)ei�}
and NDD( · ) ≡ trB{e−i�DD ( · ⊗ ρB)ei�DD}. (14)

With these channels, we can define our infidelity measure as

InF ≡ max
N ,ψ

InF(N , ψ ), (15)

with InF(N , ψ ) ≡ √〈ψ |(I − N )(ψ )|ψ〉, noting that
〈ψ |(I − N )(ψ )|ψ〉 = 1 − 〈ψ |N (ψ )|ψ〉 ∈ [0, 1], so that InF
and InF(N , ψ ) ∈ [0, 1]. We have an analogous expression
for InFDD computed from NDD. Here ψ ≡ |ψ〉〈ψ | is a
pure system-only state. InF is the square root (as we will
see, the square root gives the proper comparison with
the error phase) of the deviation from 1 of the square of the
fidelity between the postnoise state and the initial state. The
maximization over N (and NDD) refers to a maximization
over all choices of the B operators that enter H = HB + HSB,
with fixed φB and φSB values. The maximization—resulting
in a worst-case measure—over all pure system states provides
a state-independent quantification, while the maximization
over the N s reflects our typical lack of knowledge of the
precise forms of the B operators, even if we are given the φB

and φSB values.
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One can obtain analytical bounds between the error phase
and infidelity measures. Appendix A derives such a bound by
writing the output state N (ρS) as a power series in �. We find
the relation

0 � InF(N , ψ ) �
√

2φSB. (16)

Since we allow any general channel N here, analogous
bounds also hold for InFDD and �SB.

III. LIMITS OF DECOUPLING:
THE BREAK-EVEN CONDITIONS

Any noise mitigation strategy is effective only if its costs,
i.e., the increased complexity of carrying out the computa-
tional task with noise mitigation, are lower than its benefits,
i.e., the increased ability to reduce the adverse effects of
noise on the computation. The costs enter not just because
any noise mitigation approach requires the use of more re-
sources, e.g., more gates, more qubits, etc., but also that those
added resources are themselves imperfect in practice, such
that the unmitigated noise of the resulting larger system is
unavoidably larger than if no noise mitigation strategy was
adopted. There is then a net benefit only if the added noise
is low enough to not overwhelm the added noise-removal
capabilities. Such is the content of any fault-tolerance analysis
(see, for example, Ref. [21]), usually applied to quantum com-
puting tasks protected by quantum error correction. Here we
apply the same logic to DD, and ask when the added benefit
of averaging away part of the noise outweighs the added cost
of having to do additional pulses which are themselves noisy.

For a proper cost-benefit analysis, we distinguish between
two operational scenarios: to better preserve states in a quan-
tum memory (no computational gates), or to reduce noise
in the course of carrying out a quantum computation. In the
memory setting, the goal is to preserve an arbitrary quantum
state for some storage time T . During this period, DD pulses
are applied, and we can ask if the resulting noise is lower
compared with the no-DD case over the same time period.
In other words, for DD to work well, we require

Memory setting: εDD(T ) < ε(T ), (17)

where ε(t ) is some chosen figure of merit quantifying the
noise associated with the time evolution over period t , with
or without DD as specified by the subscript. In particular, for
the quantum memory protected with an L-pulse DD scheme
with constant interval τ , we have T = Lτ . In the computa-
tional setting, instead of the same total evolution time with
and without DD, we need to pay attention to the gate time,
assumed to be common to both computational and DD gates.
In the absence of DD, we assume computational gates are
applied at the same rate as DD pulses, i.e., every time step
τ . With DD, however, the protected computational gates are
further separated in time by a factor L, the number of pulses
in the DD cycle. The condition for DD to be effective in this
case is then

Computational setting: εDD(Lτ ) < ε(τ ). (18)

In our work, we are more interested in the computational
setting, the more stringent one among the two, though it is
straightforward to adapt our analyses to the memory case, as

we do in some of the situations below. As we will see, con-
dition (18) will yield a requirement on the noise parameters
characterizing the noise in the system and the DD pulses.
We refer to this requirement as the break-even condition for
DD, borrowing terminology from quantum error correction
and fault-tolerant quantum computing.

A. Ideal case

Let us first discuss the break-even condition for ideal PDD.
We expect to recover the usual statement of when DD works at
all, namely when the noise changes slowly compared with the
time taken for a complete DD sequence. We choose the error
phase as our figure of merit: ε ≡ �. For PDD to be useful, we
require, under the computational setting,

�SB � φSB, (19)

where �SB is the error phase with PDD, while φSB, as defined
earlier, is ‖τHSB‖, the error phase without DD, for a single
time step τ . From our earlier discussion of PDD, we have
�SB = ‖�(2)

PDD + �
(3)
PDD + · · · ‖. The full Magnus series is dif-

ficult to write out, but we can employ the dominant nontrivial
(on the system) term, �

(2)
PDD, for the approximate condition:

�SB 
 ∥∥�
(2)
PDD

∥∥ � φSB. (20)

Using the expression for �
(2)
PDD from Eq. (7), we have∥∥�

(2)
PDD

∥∥ � 2τ 2(2‖[BI , Bx]‖ + ‖[BI , BY ]‖ + ‖{BX , BZ}‖)

� 4φBτ (2‖BX ‖ + ‖BY ‖) + 4τ 2‖BX ‖‖BZ‖
� 12φBφSB + 4φ2

SB, (21)

noting that φB ≡ ‖τHB‖ = ‖τBI‖, and that φSB ≡ ‖τHSB‖ �
‖τBi‖ for i = X,Y, Z (see Appendix B). For the break-even
condition (19), it then suffices to require

12φB + 4φSB � 1. (22)

Condition (22) amounts to a requirement that both φSB and
φB be small for PDD to work well. We note that this condition
is also sufficient for the convergence criterion, Eq. (4), as
4‖�‖ � 4φB + 4φSB � 1, which in turn justifies the approxi-
mation of Eq. (20). The coefficients for φB and φSB contain a
factor of 4 from the length of the PDD sequence. In general,
a longer sequence will have a larger prefactor and hence put
a more stringent requirement on the noise to be small. That
φSB has to be small comes as no surprise: φSB quantifies the
strength of the noise on the system, and DD is expected to
work well as long as the noise is weak enough so that the
remnant noise is small. The requirement that φB be small is
perhaps more surprising. After all, it bounds the bath-only
term which does not directly lead to noise on the system.
Nevertheless, HB determines the evolution rate of the bath
(which can be made explicit in the Heisenberg picture of HSB

defined by HB), while τ is the inverse rate for the control pulse.
Hence φB quantifies how rapidly the bath evolves relative to
the pulse, or how fast the noise is compared with the control.
That φB should also be small should be understood as the
additional requirement that the characteristic frequency of
the bath should be low compared with the control, for good
averaging over the entire sequence. These two requirements
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are consistent with the understanding of DD from the filter-
function formalism [19].

B. Noisy DD gates

Next, we accommodate the possibility of noise in the appli-
cation of the DD pulses. A realistic—imperfect or noisy—DD
pulse takes finite time to complete, during which the always-
on background HSB interaction acts, leading to noise in the
applied pulse. Control errors in the course of the gate applica-
tion contribute to additional imperfections.

1. Noise model

We describe a noisy DD pulse in the following manner.
We denote the actual ith DD pulse by P̃i, now regarded as a
map on states, not just a unitary operator. P̃i can be obtained
in an experiment through the use of process tomography
methods, giving generally a completely positive (CP) and
trace-preserving (TP) map [45]. P̃i can in reality be time-
dependent in that the noisy pulse may be different in each DD
cycle, but for simplicity, we assume no such time dependence.
Each pulse is assumed to take time τP (the pulse width) to
complete, during which a gate Hamiltonian Hi acts. In the
ideal situation, Pi = e−iτPHi ; in reality, during the gate action,
the background Hamiltonian H = HB + HSB acts as well, and
there can be additional gate control noise. We hence write the
noisy pulse as

P̃i = Ui ◦ Ei. (23)

Here Ui(·) ≡ Ui(·)U †
i with Ui ≡ eiτP (Hi+H ), is the unitary map

that accounts for the finite width of the DD pulse, with noise
coming from the background Hamiltonian H . Ei ≡ U†

i ◦ P̃i

is a CPTP “error” map that captures the gate control noise.
Ei acts only on the system in the typical case. Splitting P̃i

into the two maps as in Eq. (23) reflects the physical nature
of the two noise sources and what we typically know about
them: The noise arising from the background Hamiltonian
scales as the pulse width, while the control noise (e.g., finite
turn-on and -off times, misalignment issues, etc.) often does
not. While one can view Ei (as we do below, mathematically)
as one generated by a noise Hamiltonian, one often does not
know that Hamiltonian source of noise but obtains Ei from
tomography alone, as a map for the time step associated with
the pulse.

Now, if Ei is a unitary map, then Ei(·) = Vi(·)V †
i with Vi a

unitary operator on the system. We can write Vi ≡ e−i�i , where
�i is a Hermitian operator to be viewed as the dimensionless
effective Hamiltonian for the control noise in the ith pulse.
Even for a nonunitary CPTP map Ei (the typical case), we can
“dilate” the system to include an ancillary system such that
Ei arises from a unitary map on the system-ancilla composite,
with Ei obtained after tracing over the ancilla. According to
the Stinespring dilation theorem of a quantum channel, it
suffice to incorporate at most a d2-dimensional ancilla space
for the d-dimensional system [46]. For the analytical treat-
ment below using the error phase, we will always assume this
dilation, and treat all noise as unitary Ei with a dimensionless
effective Hamiltonian �i. The ancillary system needed for the
dilation is treated as part of the bath. We thus write the noisy
pulse finally as P̃i(·) = P̃i(·)P̃†

i , with P̃i a unitary operator on

the system and bath defined as

P̃i ≡ e−iτP (Hi+H )e−i�i . (24)

Note that every �i can be taken to have no pure-bath term, i.e.,
it does not have a term proportional to I on the system. Such
a term gives rise only to an overall phase on the system and
cannot result in observable imperfections in the pulses.

We assume that ‖�i‖ � η for all i, where η is a dimen-
sionless parameter that carries the meaning of a control-noise
strength. In experimentally relevant scenarios, we expect η to
be small. Also, τP is usually chosen to be small compared
to τ , for fast pulses that minimize the effect of H while the
pulse Hamiltonian acts. We define δ ≡ τP/τ � 1. There is no
particular relation between the small parameters η and δ, and
we will consider the leading-order contributions from both
terms.

2. Noisy PDD

With noisy and finite-width pulses, the evolution of the
system and bath under DD can be described using the time
evolution operator,

ŨDD ≡ P̃K e−i(τ−τP )H P̃K−1 · · · P̃2e−i(τ−τP )H P̃1e−i(τ−τP )H

≡ e−i�̃DD . (25)

This reduces to the ideal case of Sec. III A when �i and τP

both vanish.
For PDD, the Pi sequence comprises only X and Z pulses.

We assume that the X pulses suffer the same noise each time
they are applied, as do the Z pulses. We write the noisy X and
Z pulses as

Z̃ = e−iτP (HZ +H )e−i�Z

and X̃ = e−iτP (HX +H )e−i�X , (26)

with HX ≡ π
2τP

X and HZ ≡ π
2τP

Z . We can rewrite the time
evolution as

ŨPDD = Z̃e−i(τ−τP )H X̃ e−i(τ−τP )H Z̃e−i(τ−τP )H X̃ e−i(τ−τP )H

≡ e−iK3 e−i�3 e−iK2 e−i�2 e−iK1 e−i�1 e−iK0 e−i�0 , (27)

where �α ≡ τσαHσα for α = 0, 1, 2, 3, and the Kαs are
defined as e−iK0 ≡ XX̃ eiτPH , e−iK1 ≡ Y Z̃eiτPH X , e−iK2 ≡
ZX̃ eiτPHY , and e−iK3 ≡ Z̃eiτPH Z . Following the calculation
detailed in Appendix C, we find, to the lowest order in η and
φSBδ (= ‖τPHSB‖),

K0 
 �X + τP{−Y ⊗ [BY − (2/π )BZ ]

− Z ⊗ [BZ + (2/π )BY ]},
K1 
 X�ZX + τP{−X ⊗ [BX − (2/π )BY ]

+ Y ⊗ [BY + (2/π )BX ]},
K2 
 Y �XY + τP{−Y ⊗ [BY − (2/π )BZ ] (28)

+ Z ⊗ [BZ + (2/π )BY ]},
K3 
 Z�ZZ + τP{X ⊗ [BX − (2/π )BY ]

+ Y ⊗ [BY + (2/π )BX ]}.
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With this, we can calculate the first-order Magnus term for
noisy PDD as

�̃
(1)
PDD =

3∑
α=0

(�α + Kα ) 
 (4τ )I ⊗ BI + (4/π )τPY

⊗ (BX + BZ ) + �X + X�ZX + Y �XY + Z�ZZ.

(29)

Unsurprisingly, we no longer have exact first-order decou-
pling, with deviations of order φSBδ and η.

Observe that, if �X = �Z , the �i terms in Eq. (29) can-
cel, leaving only the finite-width term that goes as τP as
the sole deviation from exact first-order decoupling. Thus,
gate-independent control noise affects PDD only at order η2

and higher. We can understand this as the PDD sequence
averaging away also the constant—over the PDD sequence—
noise that comes from the imperfect pulses, just as it does
the time-independent HSB. Put differently, the deviation from
first-order decoupling from control noise enters only as the
difference between the X and Z control noise, so that we can
rewrite �̃PDD as

�̃
(1)
PDD 
 (4τ )I ⊗ BI + (4/π )τPY ⊗ (BX + BZ ) (30)

+ X (�Z − �X )X + Z (�Z − �X )Z.

Ignoring higher-order Magnus terms, we can extract a suffi-
cient break-even condition,

(8/π )φSBδ + 4η � φSB. (31)

Here we have upper-bounded ‖�Z − �X ‖ by 2η, the most
general bound when there is no particular relation between
�Z and �X , as would be the case for platforms where the two
gates are applied by different methods. If, on the other hand,
the control noise is only weakly gate-dependent, namely,
that ‖�Z − �X ‖ � η′ � η, one can replace the 4η in the
break-even condition Eq. (31) by 2η′. In this case, η′ may
also be comparable to the second-order Magnus terms (e.g.,
compared with φ2

SB), and higher order corrections should be
considered and included in the break-even condition. We ex-
plore a concrete example of this in Sec. III C.

In the absence of gate control noise, i.e., �X = 0 = �Z ,
or, equivalently, η = 0, we return to the case of finite-width
pulses already discussed in past literature. In this scenario, the
break-even condition becomes simply δ � π

8 , or, in terms of
τP itself,

τP � π

8
τ 
 0.4τ. (32)

In the opposite limit, if there is control noise, but pulses are
instantaneous, i.e., τP = 0, we have the break-even condition,

η � 1
4φSB. (33)

C. Example: Unitary error and cross-measure consistency

As a concrete example of our discussion of break-even
conditions for PDD, let us examine the situation of a unitary—
on the system only—gate control noise, arising, for example,
from a systematic calibration error in the pulse control. At
the same time, we investigate the infidelity measure for ε and

εDD, as an alternative to the error phase, and compare the
conclusions about the break-even conditions.

For simplicity, we assume instantaneous pulses τP = 0
(since finite-width errors are already explored in existing liter-
ature) and that the noise is gate independent. Specifically, we
write

�X = �Z = η n · σ, (34)

with σ ≡ (σX , σY , σZ ) = (X,Y, Z ), n ≡ (nX , nY , nZ ) is a real
unit vector, and η is a nonnegative constant quantifying the
strength of the unitary error. Here the �s act only on the
system and not on the bath. Since τP = 0 and the noise is
gate independent, the first-order Magnus contribution to the
effective with-DD interaction vanishes: �̃

(1)
PDD of Eq. (30) re-

duces to a bath-only term. The error phase is then second order
in small quantities, and we need the second-order Magnus
term to deduce the effective interaction Hamiltonian. Direct
calculation yields

�̃
(2)
PDD = − 4X ⊗ iτ 2[BI , BX ] − 2Y ⊗ ( iτ 2[BI , BY ]

+ {τBX + ηnX I, τBZ + ηnZ I}). (35)

We can then bound the error phase in a straightforward man-
ner, with triangle inequalities, as

�SB 
 ∥∥�̃
(2)
PDD

∥∥ � 2η2 + 8ηφSB + 12φBφSB + 4φ2
SB

= 2(η + 2φSB)2 + 4φSB(3φB − φSB), (36)

where we have used the fact that |nX nZ | � 1
2 since n is a unit

vector. A sufficient break-even condition, neglecting higher-
order corrections, can be obtained by restricting the above
upper bound on the error phase �SB to be no larger than
φSB. This gives the regions bounded by the white-dashed lines
in the lower-left corners of Figs. 2(a)–2(c); for Figs. 2(d)
and 2(e), the break-even condition cannot be satisfied for the
chosen parameters.

One can regard �SB � φSB as a threshold condition for
the gate control error η, for given φSB and φB. Using the
approximation in Eq. (36) for the error phase, this translates
into the condition

η �
√

1
2φSB[1 − 4(3φB − φSB)]−1/2 − 2φSB (37)

for the break-even point. For φB and φSB � 1, as is usually the
case in practice, this becomes η �

√
φSB/2. The square-root

relation between η and φSB comes directly from the fact that
the gate-independent noise matters only at the second order
when there is DD, compared with φSB that enters in the first
order without DD.

To gauge how tight our analytical bounds are, which are
general and applicable for all H and unitary �, we numerically
simulate the action of PDD for specific instances to find the
break-even conditions. At the same time, numerical analysis
permits the investigation of figures of merit to quantify the
performance of PDD, beyond the analytically accessible error
phase that we have used thus far. Our conclusions about the
break-even conditions are useful only if they are reasonably
consistent across different measures. Specifically, we examine
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FIG. 2. Ratio εDD/ε(1) for PDD, with unitary system-only gate control noise [Eq. (34)] and instantaneous pulses, for ε taken to be the
error phase (top row) and infidelity (bottom row). The strengths of gate control noise are, from left to right, η = 0, 0.02, 0.06, 0.1, and 0.14.
The ratio = 1 contours give the break-even conditions. The white-dashed lines in (a)–(c) mark the analytical break-even condition of Eq. (37).

the infidelity measure, already introduced in Sec. II D 2, in
addition to the error phase figure of merit.

We numerically simulate the action of PDD on a single sys-
tem qubit, for the gate-independent unitary noise of Eq. (34).
The bath is also taken to be a single qubit. The system-bath
Hamiltonian takes the form of Eq. (5), with the bath operators
chosen randomly, with specified values of the norms, φB ≡
‖HB‖ = ‖I ⊗ BI‖ and φSB ≡ ‖HSB‖ = ‖∑

i σi ⊗ Bi‖. BI is
chosen such that tr(BI ) vanishes, corresponding to fixing a
choice for the zero-energy level. Specifically, we write BI =
φBv · σ where v is a real 3D unit vector chosen uniform-
randomly over the surface of a 3-sphere. In addition, we write
Bi = Ri + R†

i , where Ri is a complex random matrix with
normally distributed entries. The resulting HSB is normalized
and then multiplied by a chosen φSB to give the desired
magnitude.

The error phase approach requires no specification of the
initial bath state, as it quantifies the size of the full system-
bath interaction Hamiltonian. The infidelity measure that we
compute here, however, targets only the resulting system-only
state, and the effective system-only noise channels depend on
the choice of initial bath state ρB. In those cases, we consider
the infinite temperature state, i.e., the maximally mixed state,
as a symmetric choice of bath state. The maximization con-
tained in the definition of InF is carried out numerically with
10 000 samples over N and ψ .

In Fig. 2 we plot the numerical values of the ratio
εPDD/ε(1), for the two different choices of the figure of merit
ε, over the parameter space (φB, φSB), and for different η

values. Figures 2(a)–2(e) (top row), plotting the error phase
results, show a rapid shrinking of the break-even region,
where DD remains effective, as η increases from 0 to 0.14.
The numerical break-even regions are much larger than those
predicted by the analytical condition of Eq. (37). The infidelity
measure is plotted in Figs. 2(f)–2(j) (bottom row). With InF,
the break-even regions are larger, indicating a difference in de-
tailed conclusion from the error-phase measure. The contour

shapes nevertheless follow a similar pattern as that of the error
phase measure, suggesting a qualitative agreement between
the two measures.

IV. SCALING UP PROTECTION:
LIMITS OF CONCATENATION

Next, we turn to the situation of CDD, where we attempt to
scale up the noise protection by concatenating a basic decou-
pling sequence to longer and more sophisticated sequences.
The scaling strategy differs between the quantum memory
scenario and the quantum computation scenario, as illustrated
in Fig. 3. In the memory setting, the natural strategy is to
slice the fixed evolution time T into finer and finer intervals to
accommodate more and more DD pulses, until some minimal
gate time is reached. In the computational setting, with the
working gate time τ fixed, increasing the concatenation level
will inevitably bring about a longer time between computa-
tional gates. Past analytical and numerical studies gave rather
optimistic assessments of the scaling performance using the
memory setting [5,25,27], while experimental and numer-
ical studies in the computational setting produced mixed
conclusions [26,30,32]. Below we put our emphasis on the
computational setting, the more relevant scenario for the cur-
rent pursuit of high-fidelity gates for quantum computational
tasks. We also adapt our analyses to the memory case for
comparison.

One can certainly discuss the break-even point for a par-
ticular CDDn sequence, treating it simply as a “flattened”
sequence of pulses, and asking when the error phase after
CDDn is smaller than φSB as was done for PDD in the pre-
vious section. However, a more interesting question, given the
CDD scheme of scaling up the protection by increasing the
concatenation level, is the gain in noise-removing power for
every increase in CDD level. A key concept in fault-tolerant
quantum computing is the accuracy threshold, the noise
strength below which scaling up the QEC code always gives
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FIG. 3. An illustration of the CDD sequences for different con-
catenation levels. We compare the memory setting (top panel) with
the computational setting (bottom panel).

improved protection against noise, and hence more accurate
quantum computation (see, for example, Ref. [21]). Here we
ask the analogous question of CDD: Is there a condition on the
noise parameter of the problem such that increasing the CDD
level always leads to improved noise removal capabilities?
Concretely, an accuracy threshold for CDD exists if the phys-
ical noise strength—denoted symbolically here by η, though
there can be many noise parameters that characterize the noise
strength—satisfies a condition η < ηthres, for some ηthres > 0,
such that

�SB,n+1 < �SB,n, (38)

for every n = 1, 2, . . .. Here �SB,n denotes the error phase for
CDDn. The existence of an accuracy threshold means that
every increase in CDD level is accompanied by a decrease
in the resulting error phase, as long as the physical noise
strength is below the threshold level. Note that Eq. (38) au-
tomatically implies the break-even condition by recognizing
that �SB,0 = φSB.

Unfortunately, as we will show below, for CDD built from
concatenating the PDD scheme, there is no such accuracy
threshold in the computational setting, i.e., there is no nonzero
ηthres for which Eq. (38) holds for every n. Instead, we will
see that the error phase initially decreases as n increases but
eventually, this decrease turns around, and there is a maximal
concatenation level beyond which the error phase actually
grows with n. This maximal concatenation level hence quan-
tifies the limits to the power of CDD, for given physical noise
parameters. Below we show this general behavior for both the
ideal CDD case where pulses are perfect, and the noisy CDD
case where imperfections in the pulses are allowed.

As mentioned earlier, both φB and φSB have to be small
for DD to offer benefits. Depending on the relative sizes
of these two terms, there are two very different regimes
for understanding the CDD performance: φB/φSB � 1 and

φB/φSB � 1. Reference [5], the original work that introduced
CDD, focused on the limit of φB/φSB � 1 (specifically, they
assume φB > φSB while both are small), a limit they argue
to be relevant when the system is coupled only to a small
portion of the bath while the whole bath, with many degrees
of freedom, has a nonzero self-interaction. The other limit
of φB/φSB � 1 is also potentially of physical interest, and
represents an arguably better situation for DD, where the noise
evolution is of secondary importance to the actual interaction
between the system and bath. Here we reexamine the situation
of φB/φSB � 1 as done in [5] but now with gate-control noise.
We also consider the opposite limit of φB/φSB � 1 for the
ideal case; we will see that the qualitative behavior is, in
fact, not that different. In that case, to obtain the leading-
order behavior, we can simply assume BI = 0 in the physical
Hamiltonian. The practical situation will likely be somewhere
between the two limits.

A. Ideal case

1. φB/φSB � 1

We first work in the limit of φB/φSB � 1 examined in
Ref. [5], while distinguishing between the computational and
memory settings. Here the � symbol specifies that φB > φSB

but both are similar in magnitude so that both can be consid-
ered to be of the same order in a perturbative expansion.

We focus on the computational setting for now. Following
the analysis of Ref. [5], the effective Hamiltonian for CDDn
can be written as

�CDDn = I ⊗ 4nτBI + X ⊗ (−i)n2n(n+1)τ n+1adn
BI

(BX )

+ Y ⊗ (−i)n2n2
τ n+1adn−1

BI
([BI , BY ] − i{BX , BZ})

+ ( higher order terms ). (39)

We confirm this leading-order behavior in Appendix D, an
analysis needed also for our BI = 0 discussion below. CDDn
thus indeed achieves nth-order decoupling in that the lowest-
order system-bath interaction term is (n + 1)th order in BI

and/or Bα; lower-order terms have been eliminated by the DD
sequence. The pure-bath part, whose size can be approximated
by

�B,n 
 4nφB, (40)

is of the first order. The remnant interaction part can be
bounded in a straightforward manner using the leading-order
terms in Eq. (39), giving the error phase

�SB,n � 2(n+1)2
φn

BφSB. (41)

That φB enters the error phase should again be of no
surprise. As in PDD, φB determines how quickly the noise
seen by the system evolves, and hence affects the efficacy of
DD designed to eliminate noise that remains unchanged for
the full DD sequence. φB has to be small for DD to work
well. What is perhaps more surprising is the 2(n+1)2

factor
in �SB,n. The origin of this factor lies in the exponentially
increasing temporal length of the CDD pulse sequence as n
increases, for fixed τ0 ≡ τ (implicit in the φB and φSB quan-
tities). This means that the error phase eventually increases
for large enough n, as the exponentially decreasing φn

B factor
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FIG. 4. The error phase �SB,n as a function of the CDD con-
catenation level. The thin colored lines are obtained from random
samples of the Hamiltonian H satisfying φB = φSB = 0.001. The
blue dashed line is our theoretical upper bound for the error phase.
The maximal concatenation level occurs at 4 for these parameter
values.

is eventually overcome by the super-exponentially increasing
2(n+1)2

factor. This tells us, as anticipated in the introductory
paragraphs to this section, that there is no accuracy threshold:
There are no nonzero values for φB and φSB below which
�SB,n+1 � �SB,n for all n. Instead, there is a maximal useful
level of CDD, beyond which further concatenation actually
increases the noise seen by the system. Figure 4 plots this
situation of fixed τ0, for increasing concatenation level n. We
observe the initial decrease of �SB,n as n increases, but this
turns around eventually (at n = 4 for the plotted situation).

Of course, the above discussion is based on the upper
bound for the error phase. We can only conclude that there
is no threshold level of noise below which the upper bound
on error phase decreases as n increases. A more careful dis-
cussion of the threshold should look at the original �CDDn

expression, rather than a bound. For that, we examine the
actual map �CDDn+1 ≡ D(�CDDn) that recursively gives the
evolution as the CDD level increases, leading to Eq. (39).
Stated in terms of the bath operators and neglecting higher-
order terms, the map D is given by (see Appendix D), for
n � 0,

τBn+1,I = 4τBn,I = 4n+1τBI ,

τBn+1,X = −4i[τBn,I , τBn,X ],

τBn+1,Y = −2i[τBn,I , τBn,X ],

τBn+1,Z = 0, (42)

where Bn,α , for α = I, X,Y, Z , refers to the bath operators in
�CDDn associated with σα on the system for CDDn: �CDDn =∑

α σα ⊗ τBn,α , with �CDD0 ≡ �, and B0,α = Bα; the factor
of τ that accompanies every B operator makes it a dimension-
less quantity. Since Bn,Z = 0 at this order of approximation
for n � 1, for the norm of the interaction part of �CDDn to
decrease as n increases, it suffices to require τBn,X and τBn,Y

to each decrease in size as n grows. This happens if the map
−4i[τBn,I , · ] is contractive, satisfied if 8‖τBn,I‖ < 1. This

gives a maximal concatenation level,

nmax = ⌈ − log4(φB) − 3
2

⌉
, (43)

where � · � denotes the ceiling function. At n = nmax, the up-
date rules (42) no longer give a contractive map, and the error
phase can grow upon further concatenation. For φB = 0.001,
this sufficient condition successfully predicts the nmax = 4
numerically observed in Fig. 4. The maximal concatenation
level depends only on the norm of τBI here, but this need not
hold in all settings. It is worth mentioning that in Refs. [26],
the authors find through numerical investigations that an opti-
mal decoupling strategy is CDD2, when compared with other
schemes like PDD, Symmetric DD (a time-symmetrized ver-
sion of PDD), and CDD4. The existence of such an optimal
strategy is consistent with our observation of a maximal con-
catenation level here.

The existence of a maxima concatenation level, be-
yond which further concatenation increases—rather than
decreases—the noise strength, does not technically contra-
dict the statement that higher-order decoupling is achieved
by higher-level CDD. Using decoupling order to quantify
the degree of noise removal requires, in the first place, the
convergence of the Magnus series, so that the (n + 1)-th and
higher-order terms in the series are small corrections to the
first n terms. However, if the DD scheme is designed such that
the total time for the sequence grows exponentially with n,
as is the case for CDD if τ0 is fixed as n increases, eventu-
ally, we violate the convergence criterion and the decoupling
order stops being a reasonable indicator of successful noise
removal.

That the total sequence time grows exponentially with n
also provides the intuition to the nonexistence of an accuracy
threshold for CDD, and that CDD fails after some maximal
level, even in the ideal (perfect pulses) case. As n grows,
the sequence time grows as 4nτ in this computational set-
ting where the per-pulse time interval is some fixed value τ

independent of n. Recalling that DD works to average away
noise that remains constant for the full sequence time, as n
grows, the sequence time eventually becomes long compared
to the timescale of evolution of the noise, reducing the efficacy
of the DD averaging. Eventually, the additional concatenation
adds only to the total sequence time, without adding much
noise-removal power, and we reach the maximal useful con-
catenation level beyond which further concatenation makes
the total (over the full sequence time) noise worse.

To further confirm this intuition, it is useful to momentar-
ily consider the memory setting appropriate for a a different
physical situation: to have fixed τn = T ≡ τ , so that the CDD
sequence takes the same amount of time, regardless of n.
This requires per-pulse time interval τ0 = τ

4n for each n, so
that the physical pulses are applied at shorter and shorter
time intervals as the concatenation level increases, up to some
practical limit in the pulse rate. In this case, the evolution can
be written as

�n+1 = D(�n/4), (44)

so that the recursive rules of Eq. (42) become

τBn+1,0 = τBn,0,

τBn+1,1 = − 1
4τ 2i[Bn,0, Bn,1],
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τBn+1,2 = − 1
8 iτ 2[Bn,0, Bn,1],

τBn+1,3 = 0. (45)

This gives

�n 
 σ0 ⊗ τBI + σ1 ⊗ (−i)n2−n(n+1)τ n+1adn
BI

(BX )

+ σ2 ⊗ (−i)n2−n(n+2)τ n+1adn−1
BI

([BI , BY ] − i{BX , BZ}).

(46)

�B,n = φB thus remains unchanged, while the error phase is
reduced to

�SB,n � 2−n2
φn

B φSB, (47)

where we have dropped the subleading-order term. For rea-
sonably bounded noise (φB < 2), the condition �SB,n+1 <

�SB,n automatically holds for all n � 0. The error phase
is super-exponentially decreasing in n, suggesting—in sharp
contrast to the computational setting—that the noise can be
arbitrarily suppressed by increasing the CDD level, limited
only by practical constraints on how small τ0 can be in the
experiment.

2. φB/φSB � 1

Next, we consider the situation where BI is negligible com-
pared with Bα so that we effectively set BI = 0 (and hence φB)
to the approximation order considered below. As mentioned
earlier, one expects CDD to perform better in this case: DD
is intended to remove slow—compared with the gate times—
noise, the limiting situation being one where BI = 0 so that
the noise in fact does not evolve by itself in the absence of
the system. As we will see below, this BI = 0 limit, however,
does not mean that an accuracy threshold for CDD exists.
The behavior of CDD as the concatenation level increases in
fact eventually resembles that of CDD with BI �= 0. This can
be understood intuitively once we recognize—as we will see
below—that the CDD pulses cause a back-action—through
the system-bath interaction—on the bath itself, such that the
effective BI after adding the DD pulses becomes nonzero,
and eventually we get back the situation of the previous
subsection.

When BI = 0 (or of higher order in our approximation
compared with Bα), the terms in Eq. (39) for the effective
Hamiltonian for CDDn vanish, except when n = 1 (the PDD
case; there, we retain the σ2 ⊗ {BX , BZ} term). That expres-
sion is hence no longer useful beyond PDD, as is the case
of the recurrence map Eq. (42). Both expressions came from
considering only the first and second-order Magnus terms for
every n (see Appendix D).

For a nonvanishing contribution for n > 1, we first consider
the third-order term for n = 1, the PDD case; we will see why
momentarily. Straightforward algebra gives, for negligible BI ,

�
(3)
PDD = 2

3τ 3[iI ⊗ ([BZ , {BX , BY }] − [BY , {BX , BZ}])
+ 3σz ⊗ {BX , {BX , BZ}}]. (48)

For PDD, this third-order correction is subleading order, com-
pared with the nonvanishing second-order �

(2)
PDD, and can be

neglected in the PDD analysis. However, we see that this
third-order term gives rise to a nonzero B1,0, the bath operator

associated with the identity on the system in �PDD. This term
arises solely from the HSB bath operators BX , BY , and BZ ,
and can be thought of as a back-action on the bath due to its
interaction with the system.

Given the recursive structure of CDD, this means that,
while at level n = 1, the PDD analysis has BI = B0,0 = 0, at
the next level n = 2, we no longer have this no-pure-bath-
evolution situation, since B1,0 �= 0, albeit of a higher order.
If we begin our recursion map D at n = 2, rather than n = 1,
using �PDD as the base dimensionless Hamiltonian in place
of the physical τH , we are in essence back in the previous
case where the pure-bath evolution is no longer vanishing.
The former form of D as specified in Eq. (42) thus holds for
n � 2, with now the base case as n = 1, not n = 0, with the
B1,αs given by

τB1,0 ≡ i 2
3τ 3([BZ , {BX , BY }] − [BY , {BX , BZ}]) + O

(
φ4

SB

)
τB1,1 ≡ 0 + O

(
φ4

SB

)
τB1,2 ≡ −2τ 2{BX , BZ} + O

(
φ4

SB

)
τB1,3 ≡ 2τ 3{BX , {BX , BZ}} + O

(
φ4

SB

)
. (49)

The dimensionless Hamiltonian for CDDn is then estimated
for n � 2, following Eq. (39), as

�CDDn 
 σ0 ⊗ 4n−1τB1,0

+ σ2 ⊗ (−i)n−12(n−1)2
τ nadn−1

B1,0
(B1,2). (50)

Here we have kept only the lowest-order terms that contribute
to HB,n and HSB,n, keeping in mind the various τB1,αs are of
different orders of magnitude: τB1,0 and τB1,3 ∼ φ3

B, τB1,1 ∼
O(φ4

SB), and τB1,2 ∼ O(φ2
SB).

In this case, the error phase for level-n CDD can be
bounded as

�SB,n � 2n(n−1)‖τB1,0‖n−1‖τB1,2‖

� 2n2+3n−2

3n−1
φ3n−1

SB =
(

8

3

)n−1

2n2+1φ3n−1
SB , (51)

noting that ‖τB1,0‖ � 16
3 φ3

SB and ‖τB1,2‖ � 4φ2
SB. Comparing

this with the error phase bound of �SB,n ∼ φn
BφSB, the current

situation of BI = 0 gives a faster suppression of φ3n
SB as n

increases. The numerical prefactor still grows exponentially
with n, however, so we still expect the accuracy threshold for
CDD to vanish even in this case. Figure 5 plots the error-phase
bound for this BI = 0 case for φSB = 0.001. This shows the
same qualitative behavior as in Fig. 4, where BI �= 0, though
the maximal n value is larger in this BI = 0 situation.

A similar analysis as in the φB/φSB � 1 regime leads to
an analogous maximal concatenation level for CDD to offer
benefit in this BI = 0 setting,

nmax = ⌈ − 3 log4(φSB) + log4 3 − 5
2

⌉
, (52)

where we have used the fact that Bn+1,0 = 4nB1,0 for n � 2.
For φSB = 0.001, this gives nmax = 14, which agrees with the
maximal n level observed in Fig. 5. We note that, compared
with the φB/φSB � 1 regime of the previous subsection, this
φB � 1 situation presents much more favorable conditions
for the performance of CDD, in terms of both the smallest
achievable error phase and the maximal concatenation level

032615-11



QI, XU, POLETTI, AND NG PHYSICAL REVIEW A 107, 032615 (2023)

FIG. 5. The error phase as a function of the concatenation level
using the theoretical upper bound of Eq. (51), for φB = 0 and φSB =
0.001. The maximal concatenation level occurs at n = 14 for this
particular configuration. The inset shows the maximal concatenation
level as a function of the error phase, as predicted by (52). Nonposi-
tive n values here indicate that even PDD (n = 1) does not offer any
benefit.

(cf. Figs. 4 and 5). The inset to Fig. 5 shows the maximal
useful CDD level as a function of φSB, using Eq. (52). We
see that DD becomes useful when φSB � 10−0.25 
 0.56, an
improvement compared with the prediction of the generic con-
dition (22) (with φB = 0, giving φSB � 0.25) based on a loose
bound. These results support the intuition that DD performs
better in the φB � φSB regime, although the quantitative be-
havior, in particular the existence of a maximal concatenation
level, is similar in both.

B. Noisy CDD

Next, we discuss the CDD performance when the DD gates
themselves are noisy. In particular, we are interested in the
strength of the combined noise by studying how the error
phase upper bound will evolve with the CDD concatenation
level. Since we want to understand the limitations of CDD,
we focus only on the φB/φSB � 1 regime, the scenario with
poorer CDD performance, as explained earlier.

With imperfect control, the iterative map D of the ideal
situation gets modified by the noise, and we write �̃CDDn+1 =
D̃(�̃CDDn) for n � 0, where, as before, a tilde indicates the
noisy version of the quantity, and we have �̃CDD1 ≡ �̃PDD
and �̃CDD0 ≡ �. The use of the same noisy map D̃ stems from
the fact that the same physical gates—with the same noise—
are used to implement CDD at every level. The error phase,
namely, the norm of the interaction part of each �̃CDDn, is
denoted as �̃SB,n.

The accuracy threshold condition under noisy control is
given by

�̃SB,n+1 � �̃SB,n, (53)

for every n. From our earlier discussion, we understand that
there is no accuracy threshold even with perfect control, but
it is still meaningful to study how noise can adversely impact
the error phase at each level. For each n, the recursive nature
of CDD allows us to view Eq. (53) as the break-even condition
for noisy PDD, with � replaced by �̃CDDn−1. We thus simply

need to understand how �̃SB,n and �̃B,n evolve as n increases,
and make use of the PDD break-even conditions discussed in
Sec. III.

We consider the computational setting, with only gate-
control noise and, for simplicity, instantaneous pulses (τP =
0). The noisy X and Z gates are written as

X̃ = Xe−i�X and Z̃ = Ze−i�Z , (54)

where we recall that �X and �Z describe the gate-control
noise, and are generally operators on both the system and
the bath. We write �X (Z ) ≡ ∑3

i=1 σi ⊗ �X (Z ),i where �X (Z ),i

acts only on the bath. �X (Z ), as previously noted, can be
taken to have no pure-bath term, and ‖�X (Z )‖ � η. Our earlier
calculation [Eq. (30)] for noisy PDD gives, as the first-order
Magnus term,

�̃
(1)
PDD 
 (4τ )I ⊗ BI + 2Y ⊗ (�X,2 − �Z,2). (55)

From this, we know that the pure-bath term approximately
(ignoring higher-order corrections) quadruples in size with
every concatenation level,

�̃B,n 
 4�̃B,n−1 = 4nφB. (56)

For the interaction part, the first-order Magnus expression
gives a term with norm bounded by 4η. Since CDDn is
just PDD on CDD(n − 1) with the same noisy gates, this
term will occur unchanged at all concatenation levels, giving
(again, ignoring higher-order corrections) �̃SB,n � 4η, an n-
independent bound. This is the appropriate estimate of the
error phase if η is dominant over the φSB and φB terms that
arise in the second-order Magnus term. In the opposite limit,
where η � φSB, φB, we should recover the ideal PDD be-
havior, where the first-order Magnus term has no interaction
piece, and the leading order correction is the second-order
Magnus term [Eq. (7)] for ideal PDD. In this case, we estimate
�̃SB,n as in Eq. (21), with φSB and φB replaced by �̃SB,n−1 and
�̃B,n−1, respectively, the noise parameters from CDD(n − 1).
Putting the two limits together, we can estimate the error phase
as

�̃SB,n � 12�̃B,n−1�̃SB,n−1 + 4�̃2
SB,n−1 + 4η, (57)

now valid for all values of η. Equations (56) and (57) give a
pair of recurrence relations that tells us how the noise param-
eters evolve as n increases.

Intuitively, we can understand the origin of the maximal
useful CDD level of concatenation by combining the recur-
rence relations with the PDD break-even condition. From
our understanding of PDD in Sec. III, we know that the
break-even condition for PDD identifies a bounded region
for φB and φSB. Yet, we see here that �̃B,n—which enters
the bound for �̃SB,n—grows without bound, indicating that
there is no accuracy threshold, i.e., no values of the noise
parameters for which condition (53) is satisfied for all n. Such
is to be expected, given our conclusion for ideal CDD. We
can, moreover, determine the maximal useful CDD level of
concatenation from this: The maximal level corresponds to the
n such that the (�̃B,n, �̃SB,n) pair just crosses the boundary
determined by the PDD break-even condition. We illustrate
this point in Fig. 6(a), where three different systems with
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FIG. 6. The evolution of the (�̃B, �̃SB) pair with increasing con-
catenation level for (a) the computational setting and (b) the memory
setting. In both plots, the three colored lines, from top to bottom,
are for the overall pulse errors of η = 10−3, 10−6, and 10−10, respec-
tively, while the black dashed line gives the noiseless limit [in (a) it is
nearly coincident with the η = 10−10 line]. The leftmost marker for
each line is the n = 0 (i.e., no DD) point, and we have n = 1, 2, 3, . . .

for the subsequent markers as we move rightwards on the line. The
shaded regions in (a) are the PDD (n = 1) break-even regions for the
different values of η in the computational setting.

control noise levels η = 10−3, 10−6, and 10−10 are explored,
indicated in red, orange, and blue shades, respectively.
Figure 6(a) plots the regions bounded by the break-even
conditions for those systems, and simulates the evolution of
(�̃B, �̃SB) for the effective Hamiltonian as one increases the
concatenation level, for the same starting values of φB =
φSB = 0.001. Since log(�̃B) is linear in n [see Eq. (56)],
the concatenation level can be alternatively read off from the
horizontal axis. For small enough η, we observe a similar
behavior as in the ideal CDD case: �SB,n first decreases then
increases as n grows, and we can identify a maximal n beyond
which scaling up CDD gives no further benefit. That maximal
n value is the very last level where its previous level still lies
within the break-even region (not counting the boundary). For
η = 10−3, we see that even n = 1 is of no use: The error phase

�SB,n for every n is larger than if no DD is used, as the bare
Hamiltonian lies on the break-even boundary to begin with.

Again, we can examine the memory setting for compari-
son. In that case, �̃B,n 
 φB is approximately constant across
the concatenation levels, while the error phase, following a
similar logic as above, updates according to the rule

�̃SB,n � 1
2φB�̃SB,n−1 + 4η. (58)

Assuming the upper bound provides a good estimate of the
actual quantity, we solve this recursive relation to obtain

�̃SB,n 
 (
1
2φB

)n
φSB + 4η

1 − 1
2φB

, (59)

keeping terms up to order n + 1 in small quantities. As long
as φB < 2, �̃SB,n decreases as n increases. However, un-
less the control pulses are perfect, there will always be an
n-independent remnant—the second term in Eq. (59) pro-
portional to η—that will limit how small �̃SB,n can be, not
to mention the eventual limit in n when τ (= T/4n) for this
memory setting gets too short to be feasible. As illustrated in
Fig. 6(b), the error phase reduces and plateaus to the same or-
der as η as one increases the concatenation level. Thus, in this
case of noisy pulses, there is a limit in the error suppression
capability of CDD, determined entirely by the size of the gate
control noise. Hence, arbitrary noise suppression with CDD
is not possible with imperfect control even in the memory
setting. Note that this conclusion does not rely on us equating
�̃SB,n with its upper bound above, but simply results from the
linear-in-η term in Eq. (55).

V. CONCLUSIONS

In this work, we studied the question of the fault tolerance
of DD, namely, the efficacy of DD schemes in the presence of
imperfections in the very pulses that carry out the DD oper-
ations. Our results are summarized in Table I. We examined
first the break-even conditions on the noise parameters for
single-level PDD, and then we analyzed the performance of
CDD. We saw that, in the computational setting, of primary
relevance today, there is generally a limit to the CDD con-
catenation level, beyond which further concatenation offers
no added benefit. This is in contrast to the memory setting,
where unlimited error suppression is possible in some cases:
Here we saw this for the case of ideal CDD, while the case of
finite-width pulses gave similar conclusions in Ref. [5]. In the
case where gate control noise dominates, CDD faces a limit
even in the memory setting, determined by the strength of the
gate control noise.

That CDD faces a limit eventually is simply a reflection
of the fact that the benefit, namely the error suppression ca-
pability, of CDD fails to grow sufficiently fast to compensate
for the added cost, namely, the additional gate control noise,
from the increased number of pulses needed for larger n. It
is easy to understand how this arises in the computational
setting: Even in the case of ideal pulses, the exponential
lengthening of the pulse sequence time as the CDD level
increases means a relative increase in the noise evolution
rate [see Eq. (56)]—whether the noise changes quickly or
slowly is relative to the pulse sequence time—until eventually,
for large enough n, the noise changes much faster than the
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TABLE I. Summary of results.

Assumptions Setting Condition Eq(s). in text

PDD, break-even conditions
Ideal Computational 12φB + 4φSB � 1 (22)
Noisy, general Computational (8/π ) φSB δ + 4η � φSB (31)
Noisy, η = 0 Computational τP/τ � 8/π 
 0.4 (32)
Noisy, τP = 0 Computational η � φSB/4 (33)

Unitary control errors only, τP = 0 Computational η � √
φSB/2[1 − 4(3φB − φSB)]−

1
2 − 2φSB

≈ √
φSB/2 (when φB, φSB � 1)

(37)

CDD, maximal concatenation level
Ideal, φB � φSB Computational �− log4(φB) − 3/2� (43)
Ideal, φB � φSB Memory no maximal n, with �SB → 0 —
Ideal, φB = 0 Computational �−3 log4(φSB) + log4 3 − 5/2� (52)
Noisy, τP = 0 Computational recurrence relations for maximal n (56) and (57)
Noisy, τP = 0 Memory no maximal n, with �̃SB,n → 4η/(1 − φB/2) (59)

pulse sequence time, and DD stops being effective. This is
exacerbated by imperfections in the pulses, with the limiting
n reached earlier than in the ideal case; see Fig. 6(a) as an
example. In contrast, the memory setting sees no such relative
increase in noise evolution rate as, in this case, all CDDn
sequences, for any n, are assumed to take the same total
time.

That gate control noise sets a limit to the error suppres-
sion capability of CDD can also be understood intuitively.
Any gate-dependent errors is equivalent to noise that changes
during the pulse sequence and hence cannot be effectively
averaged away by the DD sequence. This is in contrast
to any gate-independent noise, which includes noise that
arises from the finite-width pulses due to the always-on and
time-independent HSB during the pulse application. Such
static noise—referred to as “systematic errors” in Refs. [5]—
can be removed by the DD sequence. Note that Refs. [5]
hinted at some robustness of CDD against what they termed
“random errors,” as opposed to systematic errors. Our gate-
dependent gate control noises are closer to the random errors
mentioned in Refs. [5], but they are not quite random enough
for truly randomized averaging effects, hinted at in Ref. [5], to
kick in. Yet such kinds of gate-dependent errors are generic in
experiments today, with the same noise statistics manifesting
each time the same gate is applied.

While we chose PDD and CDD as our focus here, the
insights gained from them apply to arbitrary scalable DD
schemes. As long as the DD pulse sequence gets longer as
one scales up, the above intuition that the noise evolution
rate increases relatively continues to hold true, and one again
expects a limit in the efficacy of CDD.

Last, it is worthwhile to note that, even though we con-
clude here that there is a limit to the usefulness of CDD
concatenation in the realm of realistic pulses, we should re-
member that CDD is anyway not meant as the final solution
to noise in a quantum computing device. Instead, it is a lower-
level means to remove slow noise, with higher-level methods
like error correction taking over eventually to eliminate any
remnant noise. The advantage of CDD, over that of error
correction, is its much lower-resource requirements, and this
remains a key consideration in near- to middle-term quantum

devices. One can simply employ CDD to the maximum n
limit, weakening the noise as much as possible, before switch-
ing over to more expensive, but more powerful, quantum error
correction.
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APPENDIX A: RELATING THE ERROR PHASE AND
INFIDELITY MEASURES

Here we relate the error phase (see Sec. II D 1) and infi-
delity (see Sec. II D 2) measures. We consider the system and
bath evolution for some time T , with effective dimensionless
Hamiltonian � (U (T, 0) = e−i�), using the appropriate � for
the bare evolution without DD, or in the case with DD. Given
our context of weak noise and slow evolution of the bath for
good DD performance, we assume � to be small in norm and
write the system-bath evolution as a power series in � using
the Baker-Hausdorff lemma [47], so that we have

N (ρS) = trB{U (T, 0)(ρS ⊗ ρB)U (T, 0)†}

=
∞∑

n=0

(−i)n

n!
trB{ad�(ρS ⊗ ρB)}, (A1)

where ad� is the map ad�(·) ≡ [�, · ]. With this [see
Eq. (15)], we can write

InF(N , ψ )2 = 〈ψ |(I − N )(ψ )|ψ〉 ≡
∞∑

n=1

fn(N , ψ ), (A2)

for fn(N , ψ ) ≡ − (−i)n

n! 〈ψ |trB{adn
�(ψ ⊗ ρB)}|ψ〉 = − (−i)n

n!
tr{ψ adn

�(ψ ⊗ ρB)}, from the order-n term in the power
series (A1). This allows us to examine the infidelity measure
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as a series also in �, with the leading orders giving an
approximate expression.

To further evaluate the fns, we note two identities,

tr{ψadA(ψ ⊗ ρB)} = 0, (A3)

and trBadB = 0, (A4)

where A is an arbitrary system-bath operator, while B is a bath-
only operator, i.e., acts nontrivially only on the bath. Eq. (A3)
immediately tells us that the first-order term f1(N , ψ ) al-
ways vanishes. For the second-order term, we first write � =
�B + �SB with �B ≡ I ⊗ trS� as the bath-only part, and
�SB ≡ � − �B is the system-bath term. Then, invoking the
Jacobi identity, adAadA′ = adA′adA + ad [A,A′], together with
Eqs. (A3) and (A4), we find

f2(N , ψ ) = 1
2 tr

{
ψad2

�SB
(ψ ⊗ ρB)

}
. (A5)

f2(N , ψ ) hence does not depend on �B and scales as the
square of the error phase ‖�SB‖2. In fact, from Eq. (A5), we
can write the following bound:

f2(N , ψ ) � 1
2‖ρS ⊗ I‖ ∥∥ad2

�SB
(ρS ⊗ ρB)

∥∥
tr

� 2‖�SB‖2 ‖ρS ⊗ ρB‖tr = 2‖�SB‖2. (A6)

Assuming f2(N , ψ ) nonvanishing, we thus have that
InF(N , ψ )2 
 f2(N , ψ ) � 2‖�SB‖2 for all N and ψ , so that

0 � InF �
√

2‖�SB‖. (A7)

APPENDIX B: NORM INEQUALITY

Here we prove an inequality used in the main text,

max
i∈{1,2,3}

‖Bi‖ �
∥∥∥∥∥

3∑
i=1

σi ⊗ Bi

∥∥∥∥∥, (B1)

for Bis Hermitian operators, σi the usual Pauli operators, and
‖ · ‖ is the operator norm maxx:‖x‖=1 |xT · x|. In the main text,
we had used this inequality in the context where Bis are
the bath operators associated with σis on the system in the
interaction Hamiltonian HSB.

Proof. We first prove a lemma: For Ai Hermitian and
A0 positive semidefinite, we show that ‖I ⊗ A0 + ∑3

i=1 σi ⊗
Ai‖ � ‖A0‖. Let M ≡ I ⊗ A0 + ∑3

i=1 σi ⊗ Ai. It can be writ-
ten in a block form, following the standard matrix representa-
tion of σis, as

M =
(

A0 + A3 A1 − iA2

A1 + iA2 A0 − A3

)
. (B2)

Following the same block form, an arbitrary vector can be
written as (x, y)T, with x and y vectors (columns) themselves.
Let x be the (unit-length) eigenvector corresponding to the
greatest eigenvalue of A0. Since A0 � 0, ‖A0‖ = xTA0x. We
calculate the following:

(xT 0)M

(
x
0

)
= xTA0x + xTA3x = ‖A0‖ + xTA3x. (B3)

This means that ‖M‖ � ‖A0‖ + xTA3x. A similar argument
with (0 x)T in place of (x 0)T gives ‖M‖ � ‖A0‖ − xTA3x.

Combining the two inequalities gives the desired result:
‖M‖ ≡ ‖I ⊗ A0 + ∑3

i=1 σi ⊗ Ai‖ � ‖A0‖.
With this, we can prove Eq. (B1). We first note that ‖A‖2 =

‖A†A‖ for any operator A. Since σi are Hermitian, we have∥∥∥∥∥
3∑

i=1

σi ⊗ Bi

∥∥∥∥∥
2

=
∥∥∥∥∥∥
∑

i j

σiσ j ⊗ B†
i B j

∥∥∥∥∥∥
=

∥∥∥∥∥∥I ⊗
∑

i

B†
i Bi +

∑
i �= j

σiσ j ⊗ B†
i B j

∥∥∥∥∥∥
�

∥∥∥∥∥∑
i

B†
i Bi

∥∥∥∥∥ � max
i

‖Bi‖2, (B4)

where, in the last line, we have used the above-proven lemma,
with A0 ≡ ∑

i B†
i Bi and recognizing that

∑
i �= j σiσ j ⊗ B†

i B j

can be written in the form of
∑

i σi ⊗ Ai. The final inequality
follows from the fact that 〈ψ |O|ψ〉 � 〈ψ |O|ψ〉 + 〈ψ |O′|ψ〉,
for any O and O′ positive semidefinite operators. �

APPENDIX C: NOISY PDD DERIVATION

Here we provide the derivation leading to Eq. (28), for the
effective Hamiltonians Kis (i = 0, 1, 2, 3) for PDD with noisy
gates as detailed in the main text. We recall the definitions of
the Ki here:

e−iK0 ≡ XX̃ eiτPH ,

e−iK1 ≡ Y Z̃eiτPH X,

e−iK2 ≡ ZX̃ eiτPHY,

e−iK3 ≡ Z̃eiτPH Z, (C1)

with Z̃ (X ) ≡ e−iτP (HZ (X )+H )e−i�Z (X ) and HZ (X ) ≡ π
2τP

Z (X ). The
goal here is to work out expressions for Ki, to lowest order in
small quantities φSBδ ≡ ‖τPHSB‖ and η � ‖�X (Z )‖.

We first need a key formula, which we show here as a
lemma,

eA+γ B = eA

[
1 + γ

(
1 − e−adA

adA

)
B + O(γ 2)

]
, (C2)

where A and B are arbitrary operators, and γ is a small scalar
parameter. Here adA is the map adA(·) ≡ [A, · ], and 1−e−adA

adA

should be understood in terms of a Taylor series,

1 − e−adA

adA
=

∞∑
n=0

(−1)n

(n + 1)!
(adA)n. (C3)

Proof. We begin with a standard formula available from
Lie-algebra textbooks (see, for example, [47]), applicable to
any operator X ,

d

dt
eX = eX 1 − e−adA

adA

d

dt
X. (C4)

We want to write eA+γ B as a power series in γ ,

eA+γ B = eA[1 + γC + O(γ 2)], (C5)
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for some C. C can be calculated as

C =
[

e−A d

dt
(eA+γ B)

]∣∣∣∣
γ=0

=
(

1 − e−adA

adA

)
B, (C6)

where we have made use of the identity (C4). This gives,
immediately, formula Eq. (C2), as desired. �

Armed with Eq. (C2), we can work out, say, K3. We
first observe that e−iK3 ≡ Z̃eiτPH Z = Z̃ZeiτPZHZ = Z̃Zeiδ�3 ,
for �3 ≡ Z�Z = τZHZ . We compute Z̃Z:

Z̃Z = Ze−i(τPHZ +δ�3 )e−iZ�Z Z

=̇
{

1 − iτP

∞∑
n=0

(−π )n

(n + 1)!

(
adZ

2i

)n

(ZHZ ) + O(γ 2)

}
e−iZ�Z Z ,

(C7)

where we have used the key formula Eq. (C2) on the expo-
nential e−i(τPHZ +δ�3 ), with A ≡ −iτPHZ and γ B ≡ −iδ�3, so
that γ ≡ δφSB is a small parameter. We also note that eA=̇Z ,
where we recall that the notation =̇ denotes equality up to an
overall phase.

Now, recall that H = ∑3
α=0 σα ⊗ Bα . We let hZ ≡ −X ⊗

BX − Y ⊗ BY so that ZHZ = hZ + I ⊗ BI + Z ⊗ BZ . Ob-
serve that (adZ )0(ZHZ ) = (adZ )0(hZ ) + I ⊗ BI + Z ⊗ BZ ,
and for integer n > 0, (adZ )n(ZHZ ) = (adZ )n(hZ ). It is easy
to show that, for n = 0, 1, 2, . . .,

(
adZ

2i

)n

(hZ ) =
{

(−1)n/2hZ , n even,

(−1)(n−1)/2h′
Z , n odd,

(C8)

for h′
Z ≡ X ⊗ BY − Y ⊗ BX . From this, straightforward alge-

bra gives

e−iK3 = Z̃Zeiδ�3

=
{

1 − iτP(I ⊗ BI + Z ⊗ BZ ) + iτP
2

π
h′

z + O(γ 2)

}
× e−iZ�Z Zeiδ�3

= exp

[
−iτP

(
I ⊗ BI − 2

π
X ⊗ BY + 2

π
Y ⊗ BX

+ Z ⊗ BZ

)
− iZ�ZZ + iδ�3 + O(γ 2, γ η)

]
. (C9)

From this, we obtain K3 as given in Eq. (28) after further
simplification. K0, K1, and K2 are derived in a similar manner.

APPENDIX D: IDEAL CDD DYNAMICS

Here we analyze the dynamics of the system under ideal
CDD pulses, giving the derivation to Eq. (39) and related
statements used in the main text.

The theory of Lie groups guarantees the existence of a
homeomorphism between the Lie-group elements around I
and its Lie-algebra elements in the vicinity of 0. This suggests

a one-to-one correspondence between the unitary dynamics
Un for CDDn and the Hermitian generator �CDDn ≡ i log(Un)
when noise is weak. It is more convenient to focus on the
generators and regard DD as transformation among them as
n changes. At the base level, we have the bare Hamiltonian
� ≡ τH . For n = 1, CDD gives �CDD1 ≡ �PDD, which can
be expressed as a series

∑∞
m=1 �

(m)
CDD1 through the Magnus

expansion, as we have done in the main text. To characterize
this process, we introduce the decoupling maps D and D(m),
defined as

�CDD1 = D(�), �
(m)
CDD1 = D(m)(�), (D1)

with D ≡ ∑∞
m=1 D(m) following the Magnus series. In partic-

ular, D(1) and D(2) are explicitly given in Eqs. (6) and (7).
Higher-level concatenations are defined iteratively,

�CDDk+1 = D(�CDDk ) =
∞∑

m=1

D(m)(�CDDk ). (D2)

Backtracking from level n to level 0, we have �CDDn =
(D)n(�). In the end, �CDDn can be expanded as a Magnus
series in the bare Hamiltonian,

�CDDn =
( ∞∑

m=1

D(m)

)n

(�) =
∞∑

m=1

�
(m)
CDDn, (D3)

where �
(m)
CDDn ∼ ‖�‖m is the mth-order term in �.

There is no analytical solution to the full �CDDn. But to
estimate CDD dynamics, it suffices to find an analytically
solvable estimator �̂CDDn that reflects the leading-order be-
havior of the full series. We need the leading-order behavior
of the pure-bath part and system-bath coupling separately, as
the two pieces can be of different orders in small quantities,
and we make use of them separately in our analyses. Formally,
we define an estimator-error pair,

�CDDn = �̂CDDn + δ�CDDn. (D4)

For an accurate estimator, the error term δ�CDDn must be of
higher-order smallness than the estimator, both in the pure-
bath part and in the coupling. To quantify this statement, we
introduce a two-component norm for any operator O with
a split into the bath-only and system-bath coupling terms:
‖|O|‖ ≡ (‖OB‖, ‖OSB‖). Here we are interested in the two-
component norm of both δ�CDDn and �̂CDDn. Accuracy of our
estimation scheme demands

‖|δ�CDDn|‖ ≡ (δφB,n, δφSB,n) � ‖|�̂CDDn|‖ ≡ (φ̂B,n, φ̂SB,n),

(D5)

for every n. Here φ̂B(SB),n and δφB(SB),n denote the norms
of the pure-bath (system-bath coupling) parts of �̂CDDn and
δ�CDDn, respectively. The comparison is implied for both
components separately, and should be understood as a com-
parison of the leading powers of the polynomials, i.e., a
smaller polynomial has a larger leading power.
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Reference [5] constructed an estimator by keeping the first
two Magnus terms for each iteration step. In our notation, we
write this as

�̂CDDk+1 ≡ (D(1) + D(2) )(�̂CDDk ). (D6)

We explicitly decompose �̂CDDk as
∑

i σi ⊗ B̂k,i. Eq. (7) sug-
gests that B̂k,Z vanishes beyond the first level of concatenation.
This gives a simple update rule that connects higher concate-
nation levels:

τBn+1,I = 4τBn,I

τBn+1,X = −4i[τBn,I , τBn,X ],

τBn+1,Y = −2i[τBn,I , τBn,X ],

τBn+1,Z = 0. (D7)

After a little bit of algebra, the estimator can be shown to be

�̂CDDn = I ⊗ 4nτBI + X ⊗ (−i)n2n(n+1)τ n+1adn
BI

(BX )

+ Y ⊗ (−i)n2n2
τ n+1adn−1

BI
([BI , BY ] − i{BX , BZ}).

(D8)

To track orders, we focus on the leading powers in τ , ignoring
any coefficients. According to Eq. (D8), we have

(φ̂B,n, φ̂SB,n) 
 (τ, τ n+1). (D9)

To show that �̂CDDn is indeed faithful, δφB,n and δφSB,n need
to be of higher-order smallness compared to φ̂B,n and φ̂SB,n.
Indeed, we claim that

(δφB,n, δφSB,n) � (τ 3, τ n+2). (D10)

We prove this assertion by mathematical induction.
Proof. For n = 1, the estimation error comes solely from

the series truncation error, which is led by the third-order term,

(δφB,1, δφSB,1) =
∥∥∥∥∥
∣∣∣∣∣

∞∑
k=3

�
(k)
PDD

∥∥∥∥∥
∣∣∣∣∣ 
 (τ 3, τ 3). (D11)

At higher truncation levels, the estimation errors are also
supplemented with contributions from the lower-level terms.
Formally,

δ�CDDn+1 = D(�CDDn) − (D(1) + D(2) )(�̂CDDn)

= D(1)(δ�CDDn) +
∞∑

m=2

D(m)(�CDDn)

− D(2)(�̂CDDn), (D12)

where we have used the fact that D(1) is a linear map. To
properly bound the size of the error term, we take the two-
component norm on both sides of Eq. (D12) and apply the

triangle inequality:

(δφB,n+1, δφSB,n+1) � ‖|D(1)(δ�CDDn)|‖
+ ‖|D(2)(�CDDn) − D(2)(�̂CDDn)|‖

+
∥∥∥∥∥
∣∣∣∣∣

∞∑
m=3

D(m)(�CDDn)

∥∥∥∥∥
∣∣∣∣∣. (D13)

We need to show that the right-hand side is bounded by
(τ 3, τ n+3).

Reference [5] demonstrated that the higher-order Magnus
series

∑∞
m=3 D(m)(�̂CDDn) is small. However, Eq. (D12) sug-

gests that this argument is not sufficient, as the estimation
error δ�n+1 comes not only from the truncation error at the
same level, but also propagates up from the lower-level error
δ�CDDn. Let us examine the size of these terms. The first term
in (D13) is straightforward,

‖|D(1)(δ�CDDn)|‖ = (4δφB,n, 0) 
 (τ 3, 0). (D14)

To bound the second term in (D13), we need to calculate the
difference between the full �CDDn and �̂CDDn after applying
D(2). Using the explicit expression for the second-order Mag-
nus term, we obtain

‖|D(2)(�CDDn) − D(2)(�̂CDDn)|‖

 (0, δφB,nφSB,n + φB,nδφSB,n) 
 (0, τ n+3), (D15)

where we have applied the induction hypothesis φB,n 

φ̂B,n 
 τ and φSB,n 
 φ̂SB,n 
 τ n+1. The final term in (D13)
involves an infinite sum of Magnus terms higher than the third
order. Since the series is led by the third-order term, which can
be explicitly bounded, we have∥∥∥∥∥

∣∣∣∣∣
∞∑

m=3

D(m)(�CDDn)

∥∥∥∥∥
∣∣∣∣∣ 
 ‖|D(3)(�CDDn)|‖

�
(
φ2

SB,n(φB,n + φSB,n), φSB,n(φB,n

+ φSB,n)2)

 (τ 2n+2, τ n+3). (D16)

The estimation for D(3)(�CDDn) can be done by explicitly
calculating the third-order Magnus term for PDD, whose ex-
pression is not relevant here. Since all three terms are bounded
by (τ 3, τ n+3), so is their sum. This proves our assertion
Eq. (D10). �

We have now shown that the estimator constructed through
Eq. (D6) is indeed accurate. This leads to the conclusion
that ideal CDDn indeed achieves nth-order decoupling, with
leading-order behavior given by �̂n in Eq. (D8), which is also
Eq. (39).
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