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Realizing symmetry-protected topological phases in a spin-1/2 chain
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Quantum simulation on near-term quantum hardware is a topic of intense interest. The preparation of novel
quantum states of matter provides a quantitative assessment of the capabilities of near-term digital quantum
computers to implement circuits with structure of relevance to quantum simulation. Here, we conduct a
benchmark study by realizing symmetry-protected topological (SPT) phases of a spin-1/2 Hamiltonian with
next-nearest-neighbor hopping on up to 11 qubits on a programmable superconducting quantum processor using
adiabatic state preparation. Using recompilation techniques to reduce the gate count to around 50 two-qubit gates,
we observe clear signatures of the two distinct SPT phases, such as excitations localized to specific edges and
finite string-order parameters. We identify a parasitic phase associated with the two-qubit gate as the dominant
imperfection that limits the depth of the circuits, indicating a research topic of interest for future hardware
development.
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I. INTRODUCTION

Quantum computers have long been of interest for their
potential to simulate quantum many-body systems [1–6]. A
recent emphasis has been on using quantum computers to treat
classically challenging chemistry and condensed matter prob-
lems [5–9]. Advances in near-term quantum hardware now
make prototype versions of these simulations possible, for
instance in the computation of the ground-state properties of
chemical [10–17] and solid-state [12,18–20] quantum systems
as well as simulation of their real-time dynamics for closed
[21–31] and open [32–38] systems. Several recent studies
also reported the simulation of finite-temperature physics on
near-term devices [39–42].

The realization of topological phases of matter is an-
other area of considerable interest. These phases do not fit
within the Landau paradigm of local order parameters as-
sociated with symmetry breaking, and the study of their
ground-state properties and excitations is an active area of
research in condensed matter physics [43–46]. Analog quan-
tum simulators are able to realize some of these phases and
associated phenomena such as models with topological band
structures [47–51], Thouless charge pumps [52–54], various
symmetry-protected topological (SPT) phases [55–60], and
quantum spin liquids [61]. On digital quantum computers, the
preparation of various topological phases has been reported,
including spin-1/2 chain models with three-body interactions
[62–65], the toric code [66], and topological Floquet phases
[67,68].

Beyond realizing the quantum phase of interest, a com-
parison of the hardware data against theory can serve
to benchmark quantum devices and identify the hard-
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ware imperfections that limit circuit complexity [29,69].
These imperfections have varying impacts depending on the
particular structure of the circuits, implying benchmarking
methods which employ dissimilar circuit structures are in-
adequate for characterizing devices for quantum simulation
applications [70]. For example, many protocols used to assess
the performance of quantum computers employ randomized
circuits [71,72], which do not accurately reflect the impact of
coherent errors in more structured circuits [73,74].

Circuits which perform representative quantum simulation
tasks are expected to provide more relevant information on
the capabilities of near-term hardware. Spin-1/2 models with
beyond-nearest-neighbor interactions are an attractive target
of study for quantum simulation due to their richer physics
[75,76] and more complex circuits compared to those with
only nearest-neighbor (NN) couplings. Of particular interest
are topological phases in these models characterized by nonlo-
cal string-order parameters and edge excitations [77]. Hence,
the preparation of such phases may serve as a relevant bench-
mark of the capabilities of present digital quantum computers
for quantum simulation.

Here, we report the preparation of SPT phases of a spin-
1/2 chain with next-nearest-neighbor interactions on up to
11 qubits of a programmable superconducting quantum pro-
cessor, Google’s Rainbow processor. Circuits with up to 50
two-qubit gates are found to yield the topological signatures
of the SPT phases, including finite or zero values of dif-
ferent string-order parameters and edge excitations localized
to different sides of the chain depending on the particular
SPT phase. Examination of the discrepancies with theory
demonstrates that a parasitic phase in the two-qubit gate is the
leading limitation on the gate depth. Based on these findings,
we estimate the gap between the present achievable gate depth
and that required for realization of other novel phases such
as chiral spin liquids. Our results provide a benchmark of
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FIG. 1. Schematic of quantum circuits used to prepare the SPT
phases. (a) Arrangement of sites in a 1D lattice of seven sites.
The strength of interactions going from even-labeled to odd-labeled
(odd-labeled to even-labeled) sites are given by J ′

1 (J1); those for
NNN couplings are given by J2. For this study, we also consider
chains with 9 and 11 sites. (b) Quantum gates used to construct the
circuits for the demonstrations. Their matrix representations are pro-

vided in Ref. [83]. The gates PHASEDXZ(φ) and
√

iS
†

are the native
one-qubit and two-qubit gates on the Google Rainbow processor.
(c) Circuit to implement Trotterized ASP for a system with seven
sites. (d) Schematic of the recompiled circuit with M gate rounds.

the current capabilities and limitations of today’s quantum
processor in performing quantum simulations based on dig-
itized adiabatic state preparation.

II. THEORY

A. SPT phases of spin-1/2 chain with NNN hopping

We consider a one-dimensional spin-1/2 chain with NN
and next-nearest-neighbor (NNN) interactions as shown in
Fig. 1(a). Its Hamiltonian is given by

HT = −
∑

k

J ′
1

(
σ x

2kσ
x
2k+1 + σ

y
2kσ

y
2k+1

)
+ J1

(
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y
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)
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k σ x
k+2 + σ

y
k σ

y
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)
, (1)

where σ x, σ y, σ z are Pauli operators, J ′
1 (J1) denotes the

strength of the NN interactions from the even to odd sites (odd
to even), and J2 denotes the strength of the NNN coupling.

The phase diagram of HT contains two distinct gapped
SPT phases known as the even-parity dimer (ED) and singlet-
dimer (SD) phases. The model is in the ED (SD) phase when
J ′

1 = 2J1 < 0; J1 > 0 (J1 = −2J2 > 0; J ′
1 < 0). The solution

of the edge states in the two phases were derived by Zou et al.
[77]. Each edge state is two-fold degenerate and protected
by time-reversal (TR) symmetry. The two phases are topo-
logically distinct because they cannot be deformed into one
another without breaking TR, inversion, and D2 symmetry of
spin rotation by π about the x, y, and z axes [78].

These phases can be distinguished by the location of their
edge excitations; for a lattice with an odd number of lattice
points, the ED (SD) phase has an edge excitation on the
right (left) edge of the chain. In addition, the phases can be

distinguished by string-order parameters, defined as

Ozn = −limr→∞
〈(
σ z

n + σ z
n+1

)
eiπ

∑
k σ z

k
(
σ z

2r+n + σ z
2r+n+1

)〉
,

(2)
where the sum over k is restricted to n + 2 � k � 2r + n − 1
and r should be as large as possible. Generally, a nonzero
string-order parameter indicates the presence of hidden long-
range order and a topologically nontrivial phase. In the present
model, the ED (SD) phase exhibits a finite Ozn value for odd
(even) n. In this work, n is chosen to be 0 or 1. To select
r, we choose the largest value that satisfies the constraint
that the number of operators used to construct Oz0 and Oz1

are the same. This requirement is equivalent to using the
maximum integer value of r that satisfies 2r + 1 + 1 � M,
where M is the number of sites of the system. For systems
with M = 7, 9, 11, this constraint corresponds to r = 2, 3, 4,
respectively.

B. Preparation of SPT phases on a digital quantum processor

We used circuits based on adiabatic state preparation
[79,80] (ASP) to prepare the SPT phases of HT on the super-
conducting quantum processor. The system is initialized in the
ground state of an initial Hamiltonian HI and evolved to the
ground state of the target Hamiltonian HT over time duration
T using a linear interpolation H (s) = (1 − s)HI + sHT where
s ≡ t/T . In this study, HT is given in Eq. (1). The initial
Hamiltonian is given by

HI = −Bz

∑
k

(−1)kσ z
k , (3)

with Bz a uniform external field. For Bz > 0 and an odd num-
ber of sites, the ground state of HI is given by |0101 . . . 01010〉
which can be prepared by applying X -rotation single-qubit
gates on sites labeled by odd indices.

To carry out ASP, we Trotterized the adiabatic evolution to
first order and implemented the resulting steps using quantum
circuits constructed from single-qubit and two-qubit quantum
gates, as shown in Fig. 1(b) The two-qubit gate K , known
as the fermionic simulation (FSIM) gate, can be constructed
using the native gate set available on the Rainbow chip [29].
An example of a circuit that implements a single Trotter step
for a system of seven sites is shown in Fig. 1(c). Despite
extensive experimentation, the overall circuit that carries out
the full ASP was found to produce qualitative inaccuracies
with theory. To assess the maximum gate depth that could be
achieved while yielding quantitative agreement, we used a cir-
cuit recompilation scheme [42] by fitting the circuits needed
to realize the state at each time in the adiabatic evolution
to a parameterized circuit. In Ref. [42], the parameterized
circuits consisted of alternating layers of single-qubit gates
and two-qubit gates. We used this ansatz in our benchmark

studies by using the native gate
√

iS
†

for the two-qubit gate
and the native gate PHASEDXZ(φ) for the single-qubit gate,
respectively. A schematic of the final recompiled circuit is
shown in Fig. 1(d). The reduction in circuit depth is discussed
in Appendix A.

We used the Google Rainbow and Weber quantum proces-
sors for this study. The Rainbow and Weber processors consist
of a two-dimensional array of 23 and 54 transmon qubits,
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respectively, with each qubit tunably coupled to its neighbors.
The native single-qubit gates are the PHASEDXZ gate which
consists of a rotation about an axis in the XY plane of the
Bloch sphere with an extra phase about the Z axis. The native

two-qubit gates are the
√

iS
†

gates. Further information on the
device parameters are available in Ref. [81]. Simulated data
in the absence of noise are generated using Google’s circuit
emulator QSIM [82].

We perform 8192 repetitions of each circuit with measure-
ments in the Z basis for all sites at each Trotter step. While
the quantum circuits implemented conserve the total Sz, the
presence of hardware error can lead to Sz nonconservation.
We mitigate this error by postselecting the measurements for
�Sz = 0. The quantities required to compute string order pa-
rameters in Eq. (2) can be computed from the measurements
in the Z basis. Similarly, the occupancy of the ith site is
simply related to the expectation value 〈σ z

i 〉. Both quantities
can be directly computed by performing the appropriate sums
with the measurement bitstrings. Only those bitstrings with
�Sz = 0 are used in the computation.

III. RESULTS

A. Signatures of SPT phases

We first report calculations of the string order parameters
Oz1 for the ED phase versus ASP time s for spin chains with
7, 9, and 11 sites. We collected data from 15 configurations
of qubits; based on the

√
ISWAP gate cross-entropy bench-

marking (XEB) average error per cycle, we selected the ten
best configurations, from which we computed the mean and
standard deviations for all observables. To prepare the ED
phase, the Hamiltonian parameters were set to J1 = 0.2, J ′

1 =
−1.5, J2 = −0.1, Bz = 2.5, and T = 3.0, and M = 5 layers
of gate rounds were used for circuit recompilation. Emulated
results were obtained by running the Trotterized ASP circuit
on Google’s circuit emulator QSIM.

We plot |Oz1 | versus ASP time s on seven sites in Fig. 2(a).
We observe good agreement between the final value of |〈Oz1〉|
at s = 1 obtained from Trotterized ASP using QSIM and the
value from exact diagonalization in Fig. 2(a). This result in-
dicates that a Trotter step size of 0.25 is sufficiently small
enough to approximate the ASP evolution that yields the ED
phase with high fidelity.

We next compare the data obtained by running Trotterized
ASP trajectories on QSIM with the data obtained by running re-
compiled circuits on Rainbow without any error mitigation for

seven sites. These circuits required 30
√

iS
†

gates. Although
the trend of Oz1 increasing with ASP time is reproduced as
seen in Fig. 2(a), a clear discrepancy exists for the final value
of Oz1 at the end of the adiabatic trajectory. To mitigate this
discrepancy, we perform postselection based on Sz conserva-
tion. We observe a marked improvement in the quality of the
hardware data, with quantitative agreement obtained between
the hardware data and the simulator. With this error mitigation
step, the quantum processor is able to reproduce the adiabatic
trajectory with sufficient fidelity to arrive at the expected
nonzero value of the string-order parameter in the ED phase.

We next compute Oz1 for system sizes of 9 and 11 qubits.
The number of two-qubit gates used in the recompiled circuits
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FIG. 2. Preparation of ED phase for increasing system sizes on
Rainbow quantum processor. Absolute value of the string-order pa-
rameter Oz1 versus ASP time s for a system size of (a) 7, (b) 9,
and (c) 11 qubits, respectively. Data from Rainbow were collected
using 15 different configurations of qubits, and only the best 10
configurations were selected based on their

√
ISWAP gate XEB aver-

age error per cycle. The hardware data without any error mitigation
(blue triangles) yield qualitative agreement with the emulated ASP
trajectory (red squares). Quantitative agreement is obtained when
postselection is used (purple circles). The ED phase can be prepared
reliably for system sizes of up to 11 qubits. The parameters J1 = 0.2,
J ′

1 = −1.5, J2 = −0.1, Bz = 2.5, and T = 3.0 are used to prepare the
ED phase. The lines through the symbols are guides to the eye.

was 40 and 50, respectively, compared to 30 in the seven-qubit
case. Despite the larger number of gates, we observe good
agreement in the value of the string-order parameter over the
adiabatic trajectory in Figs. 2(b) and 2(c), although with a
slight degradation that likely arises from the deeper circuits.
The data indicate that the SPT phases for a system of 11 sites
can be prepared with enough fidelity to observe its topological
features on the Rainbow quantum processor.

Next, we verify that we can distinguish the SD and ED
phases using the string order parameters. Figure 3(a) and 3(b)
shows |Oz0 | and |Oz1 | versus s on 11 qubits when the model is
tuned into the ED phase. We observe good agreement between
the hardware data and the simulator over the adiabatic path.
At the end of the adiabatic path, we measure 0.029 ± 0.007
and 0.829 ± 0.147 for Oz0 and Oz1 , respectively, which is in
good agreement with the expected values of ∼0 and 0.964.
Similarly, we tune the model into the SD phase by setting the
Hamiltonian parameters to J1 = 1.5, J ′

1 = −0.2, J2 = −0.1.
The string-order parameters Oz0 and Oz1 versus s are given in
Figs. 3(c) and 3(d), respectively. Again, the final values of the
string-order parameter from the hardware are 0.981 ± 0.085
and 0.034 ± 0.013, which are in quantitative agreement with
the numerically determined exact values of 0.962 and ∼0.
In both cases, we measured a finite value for the appropriate
string-order parameters and nearly zero for the other, indicat-
ing that the correct SPT phases were successfully prepared.

Finally, we plot the occupancy of each site at the end of the
adiabatic evolution for the ED and SD phases in Figs. 3(e) and
3(f), respectively. In the ED (SD) phase, an edge excitation
is predicted to exist on the right (left) end of the chain. This
feature is indeed observed using the exact solution obtained
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FIG. 3. Preparation of ED and SD phases using 11 qubits on the Rainbow quantum processor. Absolute value of the string order parameters
(a) Oz0 and (b) Oz1 versus ASP time (s) in the ED phase. (c, d) Analogous result for the SD phase. Occupancy of each site at the end of the
ASP trajectory for the (e) ED and (f) SD phases. The two SPT phases can be prepared and distinguished clearly by finite or zero string-order
parameter and location of edge excitation. The parameters J1 = 0.2, J ′

1 = −1.5, J2 = −0.1, Bz = 2.5, T = 3.0 were used to prepare the ED
phase. The parameters J1 = 1.5, J ′

1 = −0.2, J2 = −0.1, Bz = 2.5, T = 3.0 were used to prepare the SD phase.

from exact diagonalization. The results from the hardware
clearly indicate a difference in the occupancy on the appropri-
ate edge of the chain for each phase and the rest of the chain,
with the value in good agreement with the exact result. This
observation provides additional evidence that the SPT states
prepared on the hardware exhibit the key features expected of
these topological phases.

B. Origin of gate depth limitations

The results obtained above required the use of circuit
recompilation techniques to reduce the gate depth for ASP
to a maximum of around 50 two-qubit gates. Without cir-
cuit recompilation, the number of required two-qubit gates
was around 170 for seven sites, and the hardware results
were in only qualitative agreement with the expected final
string-order parameter value. To investigate the origin of this
circuit depth limitation, we examined the nonidealities of the
two-qubit gates on the Rainbow processor. The most gen-
eral excitation-number-conserving two-qubit gate, denoted by
U (θ, ζ , χ, γ , φ) takes the following form (with the basis
states in the order |00〉, |01〉, |10〉, and |11〉) [15]:⎛

⎜⎜⎝
1 0 0 0
0 e−i(γ+ζ )cosθ −ie−i(γ−χ )sinθ 0
0 ie−i(γ+χ )sinθ e−i(γ−ζ )cosθ 0
0 0 0 e−i(2γ+φ)

⎞
⎟⎟⎠. (4)

While the ideal native two-qubit gate on Rainbow and
Weber is given by U (π/4, 0, 0, 0, 0)†, additional interactions
lead to nonzero values of ζ , χ , γ , and φ. We numerically

simulated the effects of these nonidealities on the value of
the string-order parameter along the adiabatic trajectory by
plotting |〈Oz1〉| versus ASP time s on seven sites for different
values of φ, γ , ζ , and χ .

Figure 4 shows the string order parameter versus ASP time
s for various values of φ, γ , ζ , and χ . We also collected data
from four different qubit configurations on Weber, a quantum
processor with similar specifications as Rainbow, and plot the
mean and standard deviations of the string-order parameter.
For comparison, we plot the ideal trajectory obtained using
QSIM [82]. Comparing the ideal trajectory with data from
Weber, we observe a nonmonotonic trend at the end of the
trajectory in the hardware data. Similar behavior was observed
in the simulator results for various values of φ, γ , ζ , and χ .
The nonmonotonic trend is observed to be most sensitive to
φ, and the results with φ = π/50 yielded the best qualitative
agreement with the hardware results. These observations sug-
gest that the parasitic controlled phase φ is a dominant factor
in limiting the gate depth of the present simulations.

IV. DISCUSSION AND FUTURE OUTLOOK

We now discuss the implications of our findings regard-
ing the role of the parasitic phase in limiting gate depth
for quantum simulation. Error mitigation strategies such as
randomized compiling [84] may be applicable to mitigate
coherent errors. However, in the present simulations, this pro-
tocol cannot be implemented because the two-qubit native
gate does not commute with the Pauli group. Other strate-
gies to mitigate coherent gate errors may be possible, but

032614-4



REALIZING SYMMETRY-PROTECTED TOPOLOGICAL … PHYSICAL REVIEW A 107, 032614 (2023)

0.0 0.5 1.0
ASP time s

0.0

0.5

1.0

|〈O
z 1
〉|

(a)
φ = π/23

φ = π/50

φ = π/100

0.0 0.5 1.0
ASP time s

0.0

0.5

1.0

|〈 O
z 1
〉|

(b)
γ = −0.08

γ = −0.12

0.0 0.5 1.0
ASP time s

0.0

0.5

1.0

|〈O
z 1
〉|

(c)
ζ = 0.03

ζ = 0.05

0.0 0.5 1.0
ASP time s

0.0

0.5

1.0

|〈O
z 1
〉|

(d)
χ = 0.15

χ = −0.15

simulator Weber

FIG. 4. Effects of gate imperfections on |〈Oz1 〉| in the ED phase.
Absolute value of the string-order parameters Oz1 versus ASP time
(s) in the ED phase when (a) φ, (b) γ , (c) ζ , and (d) χ are varied.
Error bars for the hardware data (Weber) were obtained from four
different qubit configurations. The parameter φ best explains the
observed trend in string-order parameter with s. The parameters J1 =
0.2, J ′

1 = −1, J2 = −0.1, Bz = 1.5, T = 3.0 were used to prepare the
ED phase.

their effectiveness is, in general, problem-dependent. Several
strategies were attempted in this work, but were ultimately
unsuccessful (see Appendix B). Supposing that the parasitic
phase can be successfully mitigated, emulations using CIRQ

indicate that the maximum number of two-qubit gates is
around 100 for the present simulations given reported error
rates [29], which agrees well with the findings of a recent
work which simulated correlated molecules and materials on
the same device [85].

Given the capabilities of present quantum processors, we
examine the resources required to prepare more complex
chiral spin liquids that are thought to exist in a spin-1/2 frus-
trated honeycomb with similar couplings studied in our work
[75,76,86]. For a system size of 20 spins in a hexagonal lattice,
corresponding to four unit cells, the total number of two-qubit
gates required to implement a single Trotter step of the ASP
trajectory is 210. Assuming six Trotter steps are needed in
total, 1260 two-qubit gates would therefore be required. This
value exceeds our estimate of the achievable gate depth by
around an order of magnitude. Our results provide quantitative
metrics regarding the improvements needed for future quan-
tum devices to realize more exotic topological phases using
ASP.
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TABLE I. Comparison of number of two-qubit gates in target
unitary Utarg for 12 Trotter steps and in Urec(θ) for different system
sizes.

System size Utarg Urec(θ)

7 336 30
9 468 40
11 564 50

APPENDIX A: CIRCUIT RECOMPLIATION SCHEME

This Appendix describes the circuit recompilation tech-
nique originally introduced in Ref. [42] and which is used to
reduce the depth of the circuits implemented on the Rainbow
quantum processor. Let the target unitary be Utarg and the
parameterized circuit be Urec(θ), where θ is a composite vector
of all the free variables in the parameterized circuit. Given a
reduced density operator ρ on the finite domain acted on by
the target unitary, the optimal parameterized circuit is found
by performing a gradient descent to maximize the function

F (θ) = |Tr(Urec(θ)†Utargρ)|2, (A1)

which can be interpreted as the fidelity between Urec(θ) and
Utarg with respect to the reduced density matrix ρ. For the
purpose of this work, we set F (θ) = 0.999 as the stopping
criterion. We compare the number of two-qubit gates present
in the target unitary Utarg at the end of 12 Trotter steps and
in the parameterized circuit Urec(θ) in Table I. The number
of two-qubit gates required decreases by around an order of
magnitude with recompilation.

APPENDIX B: PARASITIC CONTROLLED PHASE
IN NONRECOMPILED CIRCUITS

This Appendix describes attempted strategies to mitigate
the parasitic controlled phase. The first approach constructs
CPHASE(ψ ) and appends it to the back of the native gate
with ψ = −φ to compensate for the parasitic phase; that is,

we implement
√

iS
†
hardwareCPHASE(ψ = −φ). This gate can be

constructed exactly by using a series of single-qubit rotations

and two
√

iS
†
hardware to compensate for the phase in each

√
iS

†
.

By noting that
√

iS
†
hardware is approximately

√
iS

†
CPHASE(φ)

for some parasitic phase φ, a controlled-phase gate between
control qubit i and target qubit j, CPHASE(ψ = −φ)i j can be
constructed exactly as [87]

CPHASE(ψ )i j =[RZi (π − ψ/2) ⊗ RZ j (−ψ/2)]

[RXi (−ξi ) ⊗ RXj (−ξ j )]
√

iS
†
hardware,i j

[RZi (π + φ/2) ⊗ RZ j (φ/2)]

[RXi (−2α) ⊗ I j]
√

iS
†
hardware,i j

[RZi (ψ/2) ⊗ RZ j (ψ/2)]

[RXi (ξi ) ⊗ RXj (ξ j )], (B1)
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where RZ , RX are the single-qubit rotations around the z axis
and x axis, and the decomposition parameters α, ξi, ξ j are
given by

sin(α) =
√

sin2(ψ/4) − sin2(φ/2)

sin2(π/4) − sin2(φ/2)
(B2)

ξi = tan−1

(
tan(α)cos(π/4)

cos(φ/2)

)

+ π

2
(1 − sgn(cos(φ/2))), (B3)

ξ j = tan−1

(
tan(α)sin(π/4)

sin(φ/2)

)

+ π

2
(1 − sgn(sin(φ/2))). (B4)

The cost of this approach is the addition of two native
two-qubit gates for each original two-qubit gate, thereby in-
creasing the gate depth by a factor of 3.

We tested this scheme on Weber by performing Floquet
characterization to estimate the parasitic phase φ present on
each qubit [29], then used the average value to construct a
compensated CPHASE(−φavg) that was appended to the hard-

ware gate
√

iS
†
hardware. The results with these compensated

circuits are presented in Fig. 5(a). We observe greater devi-
ations from the exact result when the compensated circuits
are used. The likely origin of the worse performance is the
larger number of two-qubit gates are used in the compensated
circuits (510 versus 170 to reach the end of the adiabatic path).

The second approach is based on the observation that the
phase present in the |11〉 can be removed at the expense of
adding half the phase to the |01〉 and |10〉 using single-qubit Z

0.0 0.5 1.0
ASP time s

0.0

0.5

1.0

|〈O
z 1
〉|

(b)
Z-rotation

0.0 0.5 1.0
ASP time s

0.0

0.5

1.0

|〈O
z 1
〉|

(a)
Compensation

simulator Weber

FIG. 5. Attempts to compensate for parasitic controlled phase.
Absolute value of the string-order parameters Oz1 versus ASP time
(s) in the ED phase for circuits with (a) CPHASE(φ) appended to
each native two-qubit gate to compensate for the parasitic controlled
phase; (b) single-qubit Z rotations added to split the parasitic phase
among two basis states. The data obtained from Weber and the noise-
less data from the simulator are also shown. The qualitative trend
of the string-order parameter is qualitatively unchanged by the two
strategies. The parameters J1 = 0.2, J ′

1 = −1, J2 = −0.1, Bz = 1.5,
T = 3.0 were used to prepare the ED phase.

rotations. Assuming that fidelity is a quadratic function of gate
parameters, a higher fidelity can be obtained by splitting the
phase into two. We tested this scheme by performing Floquet
calibration to estimate the φ present on each qubit and used
the average to perform single-qubit Z rotations on the qubits.
The result is shown in Fig. 5(b). Although some improvement
in the final value of the string-order parameter is observed,
the nonmonotonic trend remains largely unchanged, indicat-
ing that manipulation of the parasitic phase is inadequate to
remove the discrepancy.
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