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We apply an extension of the Pontryagin maximum principle to derive time-optimal controls of two-level
quantum systems by means of piecewise constant pulses. Global optimal solutions are obtained for state-to-state
transfer in the cases with one and two controls. Exact quantum speed limits are established as a function of
the sampling period. We observe numerically an exponential convergence towards the minimum time in the
continuous limit when this period goes to zero. We show that this convergence is only polynomial for a linearized
quantum system. We discuss the experimental impact of this result.
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I. INTRODUCTION

Designing fast and accurate control sequences while taking
into account specific experimental constraints is a central task
in quantum control [1-6]. In this framework, optimal control
theory (OCT) [7,8] is a powerful and versatile tool in order to
propose efficient answers to the different issues that can be en-
countered in experimental setups [1,3]. For complex quantum
systems, optimal controls are computed by using iterative op-
timization algorithms [9—12] such as the well-known Gradient
Ascent Pulse Engineering (GRAPE) procedure [9].

A key limitation of pulse-shaping devices is their ability to
generate time-continuous controls. They are therefore usually
replaced by piecewise constant pulses in experiments with
a minimum sampling period over which the controls remain
constant. This hybrid situation is characterized by a digital
control which evolves in a discrete way, while the state of
the system varies continuously. This constraint was one of the
motivations for the development of GRAPE, a gradient-based
algorithm directly optimizing piecewise constant functions
that can be implemented experimentally. Even if the efficiency
of numerical algorithms has been demonstrated in a variety of
domains [1,3], their application is not completely satisfactory
because only local optimal protocols are achieved, therefore
with no certitude about the global optimality of the control
process. This problem can be solved from the Pontryagin
maximum principle (PMP), which has the decisive property of
transforming the initial infinite-dimensional control problem
into a generalized Hamiltonian system subject to a maxi-
mization condition and boundary constraints. The optimal
solution corresponds, then, to a Hamiltonian trajectory both
reaching the target state and minimizing a cost functional
such as the control time. The low and finite dimension of
this dynamic space simplifies greatly the search for globally
optimal controls [7]. This method has been applied recently
to a series of quantum control problems [13-20]. However, as
with the original formulation of Pontryagin [8], such studies
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consider that the control can be modified at any time, leading
to continuous functions or possibly having discontinuities in
the case of bang-bang protocols [7]. As this assumption is too
strong for standard wave-form generators, the PMP only gives
mathematical optima which cannot necessarily be physically
achieved in practice. An interesting example is given by time-
optimal control processes in which the goal is to perform a
given task as quickly as possible. In this framework, quan-
tum speed limits provide lower bounds on the minimum time
required for a given control protocol [21-23]. Limiting the
shaping to piecewise constant controls necessarily increases
the minimum time. A key point for the experimental perfor-
mance of the process is the quantitative impact of the control
digitalization on this time.

In this study, we aim to take a step towards solving this
control problem by applying a recent mathematical extension
of the PMP to piecewise constant pulses [24-26]. In this
rigorous formulation (called discrete below to differentiate
it from the standard continuous one), the overall structure
of the PMP is not modified. The main difference between
the continuous and the discrete versions relies on the max-
imization condition in which the instantaneous condition is
replaced by an integral one. This integral condition can be
interpreted as an average over the sampling period of the stan-
dard maximization condition. We apply this general procedure
to the control of two-level quantum systems. We consider two
benchmark control protocols with, respectively, one and two
control parameters and for which the time-optimal solutions
are bang-bang and continuous. We find in the two cases the
optimal dynamics for any sampling period, and we show that
the corresponding minimum time converges exponentially to-
wards its continuous limit when this period goes to zero. We
show that this convergence is only polynomial for a specific
linearized quantum system. Finally, we describe the link be-
tween this version of the PMP and GRAPE and we propose a
formulation of the algorithm based on the PMP with an exact
gradient. A comparison with different versions of GRAPE is
performed for a specific control problem. We consider for
GRAPE both the split operator [9] and the auxiliary matrix
[27] approaches. In the first formulation, the gradient of the
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fidelity with respect to the control is approximated by re-
placing the elementary evolution operator over a time step
into a product of two or more factors, while in the second
the gradient is exactly computed by extending the size of the
Hilbert space and computing the matrix exponential in this
space. We show the superiority of the PMP-based formulation
for the example under study.

The paper is organized as follows. Section II introduces the
PMP for piecewise constant pulses. The time-optimal solu-
tions for controlling two-level quantum systems with two and
one control parameters are respectively presented in Secs. I1I
and IV. The optimal solution for the control of a linear sys-
tem is described in Sec. V. Section VI focuses on the link
between this formulation of the PMP and gradient-based op-
timal algorithms. The conclusion and prospective views are
given in Sec. VII. Technical computations are reported in
Appendix A.

II. METHODOLOGY

We briefly recall in this section the main steps of the
application of the PMP for bilinear differential systems. We
refer the interested reader to a recent paper about the PMP in
quantum control for details [7]. We describe the differences in
the PMP between the continuous and the discrete cases. We
present a numerical method called the shooting algorithm to
solve the optimization equations for low-dimensional dynam-
ical systems.

We consider the control of a system described by the state
X € R",n > 1, whose dynamics are described by the follow-
ing differential system:

X = HoX + u H\X + uyHr X,

where Hy, H;, and H; are n x n skew-symmetric real matrices,
and u;(t), uy(t) are the two real control parameters. Note
that the approach detailed below can be straightforwardly
extended to any number of control parameters. The goal of
the control process is to bring in minimum time ¢, the state of
the system from X to the target state X, with the constraint
w0 +up(t)* < 1at any time ¢t € [0, 7].

We first state the PMP in the standard continuous situation
where u; and u, are assumed to be sufficiently smooth func-
tions [7]. We only consider the regular case in which u; and
uy are not simultaneously equal to 0, except in isolated points.
The Pontryagin Hamiltonian Hp can be expressed as

Hp(X, P, uy, uz) = PT[HoX + uiH\ X + u, HX
with the adjoint state P € R". Since the final time ? is free,

Hp is a constant fixed to 1 (see Ref. [7] for technical details).
The adjoint state P fulfills the same equation as X,

P = HyP + uiH,\P + u,H,P.

The candidate controls u] and w3 for optimally satisfy the
following maximization condition at any time ¢:

HX,P,ui(X,P), u;(X,P)) = max Hp(X, P, uj, u).

u% +u§ <1

A straightforward computation shows that the solutions can
be written as

. PTH,X
u, = ,
' J(PTHIX)? + (PTHLX )2

PTH>X
uy 2

~ JPTHX) + (PTHX)?

Hamiltonian trajectories of H can then be computed from the
expressions of u} and 3. The shooting approach consists in
finding the initial adjoint state P(0) such that the correspond-
ing trajectory reaches exactly the target state X(¢y) = Xy in
minimum time. The optimal controls are then deduced from
the time evolution of X and P. If the optimization equa-
tions cannot be integrated analytically, a Newton algorithm is
generally used to estimate the initial adjoint state with a very
high numerical precision.

We study now the case where u; and u, are piecewise
constant pulses with the same constraint u; )2 +u(t)*> < 1.
We denote by T the sampling period. The controls are charac-
terized by N values ugk), ugk) in the time intervals [kT, (k +
DT, ke{0,1,2,...,(N = 1)}, with (N — 1T 46T =1t
and 0 < 6T < T. Note that the last time interval of length §T
can be lower than or equal to 7. This point is discussed in the
different examples. We consider here for simplicity a regular
time discretization, but the same approach can be used if the
sampling period is not constant.

The application of the PMP is very similar to the continu-
ous version [25,26]. The Pontryagin Hamiltonian is defined
the same way (except that Hp is no more constant in time
but still equal to +1 at the final time #;) and the state X
and adjoint state P satisfy the same differential equations.
The only difference corresponds to the formulation of the
maximization condition. Introducing the integrals

(k+1D)T
HY = / P(t)TH X ()dr,
kT

(D

(k+DT

HP = / P(T)TH X (7)dr,
kT

the maximization condition can be expressed for all k as

Hl(k)(vl — uﬁk)) + Hz(k)(vz — ugk)) <0

for any couple (v;, vy) such that v% + v% < 1. We then deduce
that the extremal controls are given by

(k)
(k) (k)
(H)"+ (1)
H®
Uy = z : )

) + ()

If the last time interval is not of length 7 then the integrals
(1) are taken from (N — 1)T to t;. From this modified maxi-
mization condition, the same shooting approach can be used
to find the initial value of P, bringing the system to the target
state. Note that 67 is also computed by the shooting procedure
when this parameter is not fixed. Finally, we point out that
in the limit 7 — 0, the piecewise constant controls converge
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towards their continuous limit given by the standard PMP
[25,26].

III. THE CASE OF TWO CONTROLS

A. The general formalism

As a first application, we consider the time optimal control
of a two-level quantum system by means of two resonant
controls [7]. In a given rotating frame, the dynamics of the
system is given by the Schrodinger equation, written in units
such that & = 1:

i) = Hly) = (w0, + 0,00 %),

where o, and w, are the two real control amplitudes along
the x and y directions, with the constraint w% + a)f, <1 and
0Oy, the two Pauli matrices. We limit our study to state-to-
state transfer. In the continuous case, it has been shown that
the optimal protocol consists of saturating the bound at any
time, that is, a)ﬁ + a)i = 1. This saturation can be qualitatively
explained by the fact that the fastest control protocol requires
generally maximum control intensity. The same assumption is
made in this section for the discrete formulation of the PMP.
We introduce to this aim the Bloch vector X = (x, y, z) which
satisfies

X = (oM, + o,M,)X,

with the matrices M., My, and M, defined as

0
M, =1
0

S O =
S OO

The Pontryagin Hamiltonian Hp can be expressed as
Hp = PT(w, M, + wyMV)X’

where the adjoint state P = (p,, py, p.) fulfills the differential
equation

P = (o.M, + w,M,)P.

We consider piecewise constant pulses described by a phase
¢ such that w, = cos ¢ and w, = sin ¢. We denote ¢; as the
amplitude of the control parameter in the interval [kT, (k +
DT], 0 <k < (N —1). We also introduce X and P, as the
values of the state and adjoint state at time ¢t = k7', and the
quantities I;kv) . = PM, . X;.. Using Eq. (2), the maximization
condition of Hp leads to the condition

k+1)T
DT pT (0)M, X (7)d T

k+1)T ’
DT PT(OM X, (T)d

tan(py) = 3)

with Xi (1) = R(t)X; and P(tr) = R(t)P,, t € [kT, (k +

0 0 0 0 0 1 T, and R(t) = exp ([cos(¢x )M, + sin(gx)M,]7). The rota-
M,=10 0 —-1], M,= 0O 0 0], tion matrix R(t) can be explicitly computed as
0 1 0 -1 0 0 |
sin2(<pk) cos(t) + cosz(gok) [1 — cos(t)] sin(gy) cos(¢x) sin(t) sin(gy)
R(t) = | [1 — cos(t)] sin(¢y) cos(gi) sinz(gok) + cos(t)cos?(gr)  — sin(t) cos(pi)
— sin(7) sin(¢y) sin(t) cos(¢x) cos(T)

Setting h; = tan(g/2) and computing the integrals in Eq. (3),
we arrive at a polynomial of order 2 in Ay,

(I sin(T) + [1 = cos(THIV] )k + 21 sin(T )iy
+ ([1 — cos(T)I;] — I, sin(T"))
=0.

The two real solutions (if they exist) are candidates to be the
optimal value of ¢;. As in the continuous case, they lead
to two symmetric trajectories with respect to the equator.
We select in Sec. III B the positive root which corresponds
to p,(0) < 0 and to a dynamic in the southern hemisphere.
Finally, we point out that in the continuous limit 7 — 0, we
recover the extremal solution tan ¢ = ;—‘

B. Numerical results

We apply the shooting method to a state-to-state transfer
on the Bloch sphere. The initial and target states are, respec-
tively, of coordinates (1,0,0) and (0,1,0). As mentioned in
Sec. II, we consider two cases for which #; is equal either
to NT orto (N — 1)T + 8T . In the first situation, for a fixed

(

time step value N, we only need to find the initial adjoint
state P(0) and the sampling period T such that the trajectory
reaches the target state in a minimum time ;. In the numerical
simulations, we therefore optimize four parameters, p.(0),
py(0), p;(0), and T, such that x(t; = NT) =0, y(ty) =1,
2(tf) =0, and Hp(tf) = 1. In the second case, T is fixed and
we find the coordinates of P(0), N, and ¢, such that the four
final conditions are met. The parameter §T is then given by
8T =1t; — (N — 1)T. We point out that we use exactly N time
steps in the first approach, while the last step may be different
from the others in the second case.

The continuous limit can be integrated exactly and leads

to the minimum time t;.c ) = ”“Tﬁ ~ 2.7207 (see Ref. [7] for
the derivation). The corresponding initial adjoint state P(0)

has the coordinates [p,(0), \/%, +1], where the first coordi-

nate is not fixed. We stress that the same control process is
obtained for any value of p,(0). Note that a similar behavior
is observed in the discrete case. The two possible values of
p.(0) correspond to two symmetric trajectories with respect to
the equator on the Bloch sphere [7]. Details about the results
of the shooting method and a comparison with the continuous
limit are given in Appendix A.
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FIG. 1. Evolution of the minimum time ¢, as a function of the
number of time steps N (a) (with 7 = T') and of the sampling period
T (b) when 8T is free. In (a), the minimum value of N is 2. The points
are computed for integer values of N. The solid line is just to guide
the reading. Quantities plotted are dimensionless.

Figure 1 compares the results obtained by the two dif-
ferent approaches. We observe a rapid convergence of the
minimum time towards the continuous limit since the ratio
between the two times is, respectively, of the order of 1073
and 1073 when N = 10 and 100. The results of Fig. 1 clearly
show that this convergence is exponential. As could be ex-
pected, releasing the constraint 1, = NT allows to decrease
the minimum time. In this second case, the curve t; as a
function of T has a quasi-quadratic shape when T is not too
small and horizontal tangents when §T = T. An example of
optimal solutions is given in Fig. 2 for N =3 and 6T # T.
We observe that the discrete and the continuous trajectories
are very close to each other on the Bloch sphere, while the
two controls are quite different even if they have a similar
evolution.

As a quantitative example, we briefly analyze the control
of a spin 1/2 particle in nuclear magnetic resonance [28].
We consider the experimental parameters given in Ref. [29],
i.e., a time digitization of 0.5 us and a maximum amplitude
of v = 100 kHz. The experimental time f., is then given by
t = 27 Vtexp, Where ¢t is the time in normalized units used in
Sec. III. For N = 9 and §T # T, the minimum time is equal to
4.34 ps, while this time is 4.33 ps in the continuous limit. Due
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FIG. 2. (a) Optimal trajectories for N =3 and 6T # T (solid
lines) and in the continuous limit (dashed lines) for the coordinates
x (black), y (red or light gray), and z (blue or solid gray). The
black vertical line corresponds to the minimum continuous time t}”.
(b) The corresponding controls with the same color code. The dots
indicate the position of the switching times #;. Quantities plotted are

dimensionless.

to the exponential convergence of the optimization procedure,
we observe that the difference is very small between the two
times even for relatively low values of N.

IV. THE CASE OF ONE CONTROL

A. Description of the optimal control problem

We consider in this section a similar control problem for
a two-level quantum system, but with only one control w(t)
such that |w(f)| < 1 [7,14]. The dynamics of the Bloch vector
are governed by the following differential equation:

X = (AM, + oM)X, 4)

where the offset A is a constant parameter and we introduce
Q = +/1 + A2, The goal of the control is to steer the system
from the north pole to the south one in minimum time. This
corresponds to a complete population transfer from the ground
state to the excited state in the two-level quantum system.
The adjoint state P fulfills the same equation as X and the
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FIG. 3. Evolution of the minimum time ¢, as a function of the
number of steps N (crosses). The solid line is just to guide the eye.
(b) corresponds to the same data as (a) but in a logarithmic scale.
Quantities plotted are dimensionless.

Pontryagin Hamiltonian Hp is given by

Hp = A(pyx — pxy) + o(py — py2).

The continuous limit can be solved exactly with the PMP
[7,14]. In the case |A| < 1, the optimal solution is a bang-
bang control with a switching time equal to ¢} = é[n -
arccos(A?)] or 1, = L[ + arccos(A?)]. These two symmet-
ric solutions lead to the same total time f; = 27 /Q2. The
discrete version of the PMP is applied in Appendix B. The
numerical results are described in Sec. IV B.

B. Numerical results

The two shooting methods described in Sec. II can be
applied to this control problem. We only present the results
corresponding to 67 = T. In this case, we observe numeri-
cally that the solution is very sensitive to the initial conditions
of the adjoint vector. The initial guess was adapted to each
value of N. Despite these numerical difficulties, we show
in Fig. 3 that the minimum time 7, converges very quickly
towards its continuous limit as a function of N, the difference
being of the order of 10~* for N = 20. The cloud of points
that can be seen in Fig. 3(b) is a signature of the numerical
instabilities of the shooting algorithm, even if a clear trend can
be observed with an approximate exponential convergence.

1
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FIG. 4. (a) Optimal trajectories for N =4 and §T =T (solid
lines) and in the continuous limit (dashed lines) for the coordinates
x (black), y (red or light gray), and z (blue or solid gray). The
black vertical line corresponds to the minimum continuous time t_;c).
(b) Optimal control in the discrete case. The dots indicate the position
of the times 7, = kT'. The vertical red line represents the position of
the switching time for the bang-bang solution in the continuous limit.

Quantities plotted are dimensionless.

An example of optimal trajectories and controls is plotted
in Fig. 4. The bang-bang optimal solution in the continuous
limit is replaced by another piecewise constant control but
with fixed switching times. While the former switches be-
tween -1 and 1 (singular control is not optimal in this case),
the latter can take values in the interval [—1, 1] as allowed
by the discrete version of the PMP. This degree of freedom
compensates for the fact that switching cannot take place at
any time ¢ € [0, t¢]. For most values of N, we observe that
the algorithm finds the optimal control displayed in Fig. 4
with three constant parts of respective amplitudes —1, wy,
and +1. The control w = wy is applied during only one time
step around the switching time in the continuous limit. This
parameter wg € [—1, 1] depends in a rather complex way
onN.

C. Optimal control of a Landau-Zener-type Hamiltonian

We analyze in this section a closely related control of a
two-level quantum system that has been widely investigated
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FIG. 5. Plot of the optimal controls for the Landau-Zener
Hamiltonian. The black and blue lines depict, respectively, the con-
tinuous and the discrete solutions for N = 5. Quantities plotted are
dimensionless.

both theoretically [15,30,31] and experimentally [32-34] in
recent years. The two levels are coupled through a Landau-
Zener Hamiltonian, leading to the dynamics of Eq. (4), where
w is a constant parameter (set to 0.5 in the numerical computa-
tion) describing the coupling between the two levels and A(t)
the control parameter. In the case of a Bose Einstein conden-
sate (BEC) in an optical lattice [32], this latter corresponds to
the quasimomentum. The initial and final states of the control
are, respectively, the ground adiabatic levels for A = +1 and
A = —1. The two states are close to the north and south poles
of the Bloch sphere. The time optimal solution in the continu-
ous limit has been established in Ref. [15]. With the constraint
[A@)| < Amax (With A = 2 below), the control law is the
concatenation of two bang pulses of maximum intensity at the
start and end of the sequence with a zero singular control in
the middle. It can be shown that this protocol reaches the QSL
when the bang controls are replaced by Dirac pulses. Using
the equations introduced in Sec. IV A, where this time the role
of control is played by A, the same control problem can be
solved with the constraint of piecewise constant pulses. This
study is illustrated in Fig. 5 for the case N =5 and 6T =T.
We obtain a ratio between the two control times equal to
1.0554. We surprisingly observe that the discrete solution does
not use maximum intensity pulses for which A(¢) = 2, but
only less strong controls. As expected, the structure of the two
optimal sequences are very close to each other.

V. TIME-OPTIMAL CONTROL IN A LINEAR SYSTEM

We have observed numerically in Secs. III and IV that the
minimum control time by means of piecewise constant pulses
converges exponentially towards the time in the continuous
limit when the number of time steps N tends to infinity. The
aim of this section is to investigate the same issue but for a
linearized quantum system. We show on a specific example
that the linearization process is responsible for the change in
convergence which is no more exponential, but polynomial
with respect to the number of time steps.

A linearization of a quantum system can be achieved
around an equilibrium point. This corresponds to the north
or south pole of the Bloch sphere for a two-level quantum
system. The control of quantum dynamics is then reduced
to that of a spring which provides information on the initial
problem [35-37]. This approach is well known in nuclear
magnetic resonance and usually called the small flip angle
approximation [28].

As anontrivial example, we consider a linearization around
the north pole of the quantum system investigated in Sec. III,
but with nonresonant controls. This slight modification is due
to the fact that the optimal control is constant in the resonant
case. In a given rotating frame, the dynamics of the two-
level quantum system can be expressed in Bloch coordinates
(x,y,2)as

X = —wy + sin(p)z,
y = ox — cos(9)z,
z = —sin(p)x + cos(p)y,

where o is the offset term and ¢(¢) the control parameter.
Starting from the point (0,0,1), the goal of the control is to
reach a state in a neighborhood of the north pole. Since z >~ 1
during the control process, we make this approximation in the
dynamical system by replacing z with 1 and by considering
only the first two equations. The linearized systems on R? are
then governed by the following differential equations:

X = —wy+sing,

Y = wXx — COS @.
In this case, the objective of the control is to steer in minimum
time the system from the origin of coordinates (0,0) to the
point of coordinates (1,0). We point out that the conclusion
of this section would be the same with other initial and final
states, as long as the linear approximation is valid. We first

solve this problem in the continuous limit. The Pontryagin
Hamiltonian Hp is given by

Hp = w(pyx — pyy) + pxsing — p, cos ¢,

where the adjoint state P = (px, p,) is the solution of p, =
—wpy, and p, = wp,. We get

Dx(t) = px(0) cos(wt) — py(0) sin(wt ),
py(t) = px(0)sin(wt) + p,(0) cos(wt).

Note that P> = p? + p} is a constant of the motion. We in-
troduce the angle ¢ such that p, = pcos?¥ and p, = psin,
with p the norm of P. The optimal control is given by 22

K2
_ Px(t)

and fulfills tan g = FROR We arrive at tang = —tan(5 —
X

¥ — wt), le.,
b4
o)=Y+ wt — 7

The optimal dynamics for the state of the system are then
given by
7 = iwZ — €&,

with Z = x + iy. The solution can be integrated exactly as

Z(t) = ¢“'[Z(0) — €V1].
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We stress that the optimal trajectories depend only on one free
parameter ¥, which is fixed by the initial adjoint state. In the
case Z(0) = 0 and Z; = 1 under study, we deduce that

—iwtf _

e —te?,

which leads to the minimum time tj(f) =1l,and ¥ =7 — wty.
We consider now a piecewise constant control wit t; =
NT. The maximization condition is given by

(k+DT

_ kT Px
tan O = —W,
ket Py

which leads after integration to

9 (k4 t)or - T
o = > )Jor =3

where ¥ has the same definition as in the continuous limit.
This solution corresponds to the average of the continuous
function ¢(¢) in the interval [kT, (k + 1)T]. The differential
equation becomes in this case

7 =iwZ — & e kt3)eT
We have in the interval [kT, (k + 1)T]
; 2 T\ . )
Zk+1 — ethZk — Zsin <w_>et(k-§-l)wTelz77
w 2
with Z, = Z(kT). For the initial state Z,, the final state is
given by
: 2N TN\ ., .
ZN — elNa)TZO -~ sin (a)_>elz7€tNa)T.
w 2
For the control problem, we deduce that
) 2N T\ .
elewT — = sin (w_)en}.
w 2
The parameter T fulfills the condition
2 . w
T = — arcsin (—)
w 2N
The total time is thus
2N . w
ty = NT = — arcsin (—)
w 2N

The evolution of this time with respect to the minimum time
in the continuous limit (t;.C ) = 1) when N >> 1 is then

We show here that the convergence in this linear approxima-
tion is polynomial and not exponential as in the quantum case.
These analytical results are illustrated in Fig. 6. We conjecture
that this speed of convergence is the same in any linear control
system. The exponential convergence observed in quantum
systems seems due to their bilinear structure, and therefore has
an intrinsic link with the quantum nature of their dynamics.

3t (@ |

-7 ‘ ‘ ‘
0.5 1 1.5 2 2.5
log;g [N]
1.6
(b)
15| b

147 /
_ —

-~

5 1.37 —— Continuous
—Discrete
1.2 L
1.1
1 ‘ ‘ ‘
0 0.25 0.5 0.75 1
t/t)

FIG. 6. (a) Evolution of the minimum time #; as a function of
the number of steps N(a). The solid line is just to guide the eye.
(b) Optimal controls in the continuous limit (red or gray curve) and
in the discrete case (black curve) for N = 4. The parameter w is set
to 0.5 and the minimum time is equal to 1.0008 for N = 4. Quantities
plotted are dimensionless.

VI. GRADIENT-BASED OPTIMAL
CONTROL ALGORITHM

We describe in this section a formulation of gradient-based
algorithm for piecewise constant pulses. We show how this
algorithm is linked to the discrete version of the PMP.

We consider a general quantum system of state | (¢))
solution of the Schrodinger equation

ilV) = [cos(p)H, + sin(p)H, 1|¥),

with [¢(0)) = |o) the initial state, the control being ¢(t) €
R. The optimal control problem is defined through the fig-
ure of merit J to maximize

J = sly ),

where |f) is the target state and the control time 7/ is fixed.
The control parameter ¢ is a piecewise constant function of
values (¢¢), k € {0, 1, ..., N — 1}, with a sampling period T'.
The final state of the dynamics can be expressed as

() = |¥n) = Uv—1Un—2 ... Upl¥o),

where Ur = exp ( — i[cos(gi)H, + sin(gx)H,]T). We
denote by [Yx) = Ur1Us—z... Uplo) and  |xx) =
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ulul, .

k Yk+1
The figure of merit J is then given by J = |[(}x+1|Uk|¥x)
The next step consists of computing the gradient of J with
respect to the control ¢, which can be found from the
derivative of U, with respect to ¢,. For that purpose, we use

the Wilcox formula for the derivative of the exponential of a

matrix [38]
de — etA /t e—z’Aa_Aet’Adt/.
0 30

.. U,Ll |/ r) the state and the adjoint state at step k.
2.

a6

In our case, we get

0 .
Ton exp{—it[cos(gx)H; + sin(¢x)H, ]}
k

=Uk(T)/ UL (0)(—D)[— sin(g)Hy+ cos(p)Hy Ui (1)dt,
0

which leads to

aJ T,
Tor =—ZSin(wk)Im[WNh/ff)(XH/ U, (I)HxUk(t)dt|1/fk>:|
(23 0
+2005(<P/<)Im[(1//1v|1ﬁf)()(k|/0 U,j(t)HyUk(t)dthﬁk)],
and finally to
aJ T .
= =2 / Iy 1) (e ()= sin(g0 H,
(23 0

+ cos(p)H, 1|V (0))]dt,
or in a compact form,

aJ .
— = —sin(g)I® + cos(gok)ly(k),
OPx

with

1P =2 /0 Im[ (Y [V ) e (O He |y () 1t

I = 2/0 Im[ ([ r) O (O1Hy [ i (1) 1dt.

The maximization condition is achieved when all the gradients
are zero. We recover here a formula for the optimal control
very similar to the one given by the discrete version of the
PMP
o
tan(gy) = ® 4)

This derivation gives a qualitative justification of the extended
PMP formulation for piecewise constant pulses. Note that this
argument can be applied to other expressions of the Hamil-
tonian of the system. Equation (5) also allows to define a
version of GRAPE which has the key advantage of giving
an exact value of the gradient [7]. We now study the control

problem described in Sec. III with | (0)) = Lz[ll) + |2)]and

W) = %[ll) + i|2)], where {|1), |2)} is the canonical basis
of the Hilbert space. We compare in Fig. 7 this formulation
to the standard one based on a split-operator method [9] and
to the recent auxiliary matrix approach [27]. We point out
that this latter method also gives an exact gradient, but at
the cost of increasing by a factor 2 the size of the system,

0 ‘
—— Aux. Mat.
- ——split Op.
N —PMP
5
S
0
2 -6 .
| \
0 5 10 15

Wall time (in s)

FIG. 7. Comparison of the different formulations of GRAPE for
the control problem described in Sec. III. The figure of merit d
is defined as d(t;) = 1 — [(Y/|¥(#,))|>. The red, black, and blue
lines depict the evolution of d as a function of the wall time for,
respectively, the split operator, the auxiliary matrix, and the discrete
PMP approaches. The parameter N is fixed to 7. Quantity plotted in
the vertical axis is dimensionless.

while the first only approximates the gradient of J. In order
to get a fair comparison between the algorithms, the same
parameters in the optimization procedure have been used. We
have checked that the qualitative conclusions do not depend
on a specific choice of the numerical parameters. We choose
to plot the fidelity d(t;) = 1 — [(¥¢|¥(t7))]* as a function
of the wall time. Similar results have been achieved for the
CPU time. Note that the algorithms based on the PMP and
on the auxiliary matrix method give exactly the same per-
formance when the figure of merit is plotted in terms of the
number of iterations. This observation was expected since
the gradient is computed without any approximation in the
two cases. The slight difference observed with the wall time
is due to the computation time for calculating the gradient.
Here the PMP version gives better results because the integrals
involved in Eq. (5) can be determined exactly. However, the
auxiliary matrix approach seems to be more efficient in terms
of computational time if applied to large quantum systems.
This aspect, which is beyond the scope of this paper, should be
an interesting point to check. A comparison with an automatic
differentiation method [39—41] has also been performed. The
same final distance to the target state is reached but with
longer computation times than the PMP or the auxiliary matrix
method. Another key advantage of the PMP formulation of
GRAPE lies in the fact that it is not restricted to bilinear dy-
namics, as it is the case, e.g., for the auxiliary matrix approach.
The same algorithm can be used if nonlinearities are added to
the model system [42—46].

Finally, we propose a numerical analysis of the minimum
time with the GRAPE algorithm based on the auxiliary matrix
approach. Note that the same results in terms of precision are
obtained with the PMP formulation of GRAPE. For a fixed
control time ?7, the goal of the optimization procedure is to
minimize the figure of merit d(ty). A good estimation of the
optimal solution can be achieved by running the algorithm
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-2 i xxxxx:xxxxxxxxxxx*xx

logy [d(tf)]
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7t g
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ty

FIG. 8. Numerical results (crosses) obtained with GRAPE for
N =3 and 6T = T in the case of the process with two controls. The
control times range from 2.72 to 2.77. The vertical solid red line
indicates the value of the minimum time found by this optimization
procedure. Quantities plotted are dimensionless.

with many different initializations. This operation is repeated
for a range of final times #; in order to estimate the minimum
time, which is the lower value of 7y for which d(t;) ~ 0. In
the numerical simulations displayed in Fig. 8, we observe
that the figure of merit d falls very quickly towards zero
around t; = 2.753, which is the minimum time of the control
process. The distance to the target is of the order of 10~°. For
the shooting algorithm, we obtain in the same conditions a
minimum time of 2.75292 and a distance of 10~°.

VII. CONCLUSION

We have applied an extension of the PMP to piecewise
constant pulses to the control in minimum time of two-level
quantum systems. We consider as illustrative examples two
benchmark control problems for which the control procedure
is known exactly in the continuous limit. We compare for dif-
ferent state-to-state transfers the minimum times, the optimal
trajectories, and the controls. We show in particular that the
minimum time in the discrete case converges very quickly
towards its continuous limit, while the piecewise and the con-
tinuous controls remain quite different. In the examples under
study, we observe that this convergence is exponential. These
results can be considered as good news from an experimental
point of view since experimental sampling limitations only
slightly affect the minimum control time and therefore the
overall duration of the operation composed of several control
processes.

Finally, these results also pave the way for other studies
using the same approach, such as the generation of one-
qubit gates [18,47,48], the control of open quantum systems
[19,20,49,50], the selective [51-54] and robust [55-60] con-
trol of two-level quantum systems, or the control of more
complex quantum systems [3,61-63]. It would be interesting
to verify in these examples that the convergence is always
exponential and does not depend on the control problem under
study.
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APPENDIX A: THE SHOOTING METHOD IN THE CASE
OF TWO CONTROLS

We describe in this section the solutions of the shooting
algorithm in the case of two controls. We first recall some
results about the continuous limit [7,64]. In this limit, the
optimal equations can be integrated exactly by introducing
spherical coordinates (r, ¥, ¢) such that x = rsin v cos ¢,
y=rsindsing, and z = rcos ¥, with r = 1 by definition.
Using the generating function [65] F, = p,rsin ¥ cos¢ +
pyrsin sing + p.rcos ¢}, we deduce that the conjugate mo-
menta can be expressed as

pr = pxsin® cos ¢ + pysin v sing + p,cos ¥,
Py = PxCOSV COS @ + pyrcos ¥ sing — p,rsind,
Py = —Dx'sin® sing + pyrsin ¥ cos ¢.

It is straightforward to show that p.(0) = p,(0), p,(0) =
P4(0), and p (0) = —pg(0), since ¥#(0) = 7 and ¢(0) = 0.
In the spherical coordinates, the true Pontryagin Hamiltonian
(obtained by replacing the controls by their values maximiz-

ing Hp) can be written as

Hp = /p} + p2/tan® 9,

with the constraint Hp = 1 at any time. The Hamiltonian’s
equations then read

¥ = Do = pw/tanzﬁ,

1
. 2 .
= tan| 14+ —— |; =0.
Py pgo/ ( t 2 19> Py

At time ¢t = 0, using 9 (0) = % and Hp = 1, we deduce that

p9(0) = £1. The extrema of the trajectory are reached when
. . 2

t = ”jTE and ¥ = 0. Using #? = 1 — mﬁ—;’ﬂ, we deduce that the

corresponding angle 9, satisfies tan ,, = p,. Starting from

the time evolution of ¥ given, when 9 (¢) increases, by [64]

9(t) = % + asin|:\/% sin (‘ 1+ pét):|,

2
1+p(p

we arrive at p, = \/% Note that the value of p, does not play

any role in the control process. Finally, we obtain the
possible values of the initial adjoint state P(0)=
[px(0), \/%, +1] given in the main text of the paper. We
choose to use a sphere to represent the different initial
adjoint states with the following spherical coordinates p, =
R,sin®,cos ®,, py = R,sin®,sin ®, and p, = R,cos ©,,.

The constant radius is equal to R, = 1/% + p2(0) and the
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FIG. 9. Figure of merit d for the minimum discrete time ¢,
(N =3 and 8T =T) as a function of the coordinates (®,, ®,) of
the initial adjoint state (see the text for details). The solid and dashed
lines depict, respectively, the minimum value of d and the continuous
limit. Quantities plotted are dimensionless.

angles ©, and @, can be expressed when p.(0) = —1 as

4
p= acos|:—1/,/§ +p)2€(0)i|,

1
b, = —_— .
’ m{%mmJ

The corresponding curve is plotted in Fig. 9. The result of the
control process for the discrete case can also be represented
on the same sphere. To this aim, we consider all the possible
values of P(0) and we integrate the trajectory up to the mini-
mum time 77. The figure of merit d is defined as the Euclidian
distance from the final state to the target. A contour plot of the
corresponding performance is displayed in Fig. 9. The optimal
adjoint states correspond to d = 0. We observe that they also
form a curve in the space (©,, ®,) which is very close to the
one of the continuous case. Note that all these initial adjoint
states lead to the same controls in the discrete version of the
PMP.

APPENDIX B: APPLICATION OF THE PMP IN THE CASE
OF ONE CONTROL

We show in this section how the PMP in the discrete case
can be applied to the control problem of Sec. IV. We introduce
the switching function ® = p.y — p,z. We denote by P (z)
the value of the switching function in the interval [kT, (k +
1)T']. The maximization condition can be written as follows:

(k+1)T
W—m%/ ()t < 0,YU € [-1, 1],
T Jir

where wy is the constant value of w(?) in this interval. We have

the following cases, with I'y(wy) = % k“;“” O, (t)dt:

(1) If min,, I'y > Othen I'i(wy) > Oand U — wy < 0. We
deduce that w; = +1.
(2) Ifmax,, I't < Othen I'i(wr) < Oand U — awy = 0. We

deduce that w;, = —1.

(3) If max,, I't > 0 and min,, I';y < O then the only solu-
tion is 'y (wy) = 0, which leads to a value wy in the interval
[—1,1].

Note that it is possible to get solutions distinct from -1 or
+1 in the discrete case while the optimal trajectory is regu-
lar in the continuous limit, i.e., |w(t)] = 1 except in isolated
times.

The expression of I' can be derived explicitly as follows.
To simplify the notations, we consider a time interval [0, T']
such as the state and the adjoint state are, respectively, of
coordinates (xo, Yo, z0) and (pxo, Pyo, Pz0) at t = 0. We also
introduce the coordinates of the angular momentum L =
X X P,

Ly =yp,—zpy = P,

Ly = zp. — xp,,
L; = xpy — ypx.
We have
AB A .
x(t) =x9g — — — —[Asin(Qpt) — B cos(Qpt)]
Qo R

y(t) = Acos(€2t) + Bsin(S2t)

wB w .
2t)=z20+— + Q—[A sin(2pt) — B cos(L2t)]

Qo
Vv @? + A?. For the ad-

with A = yy, B = A"O % and Qo =
joint state, we get 51m1iar equations:

AD
o —[C sin(2p1) — D cos(2t)],
0

py(t) = Ccos(0t) + D s1n(§20t),

px(t) = Dx0 —

wD w .
p:(t) = po + N + Q—[C sin($201) — D cos(201)],
with C = pyp and D = %

The switching function can then be expressed as

b =

w A
@(Alao + wLy) + @(Aon — wL;0) cos(Q2t)

0 0
2 L0 sin(@1)
— —Lypsin
% Ly 0
The corresponding function I' = % fOT ®(1)dt is given by

w A .
= @(ALzo + wly) + @(Aon — wLy)sinc($20T)
0 0
A cos(2p7T) — 1
Q0 QT

As expected, we obtain in the limit 7 — 0 that ' >~ &. In the
general case, I" is a function of w in the interval [—1, 1]. At
each time step, we compute numerically the maximum, the
minimum, and the zeros of I" to find the corresponding value
of w.
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