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Until large-scale fault-tolerant quantum devices become available, one has to find ways to make the most of
current noisy intermediate-scale quantum devices. One possibility is to seek smaller repetitive hybrid quantum-
classical tasks with higher fidelity, rather than directly pursuing large complex tasks. We present an approach in
this direction in which quantum computation is supplemented by a classical result. While the presence of the
supplementary classical information is helpful in and of itself, taking advantage of its anticipation also leads to a
distinct type of quantum measurement, which we call anticipative. Anticipative quantum measurements lead to
an improved success rate compared with cases in which quantum measurements are optimized without assuming
the subsequent arrival of supplementary information. Importantly, in an anticipative quantum measurement, we
do not combine the results from classical and quantum computations until the end of the process, and there is
no need for feedback from one computation to the other, thus both computations can be run in parallel. We
demonstrate the method using an IBMQ device, and we show that it leads to an improved success rate even in a
noisy setting.
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I. INTRODUCTION

It is a trope of quantum computation to seek out prob-
lems with a more advantageous complexity than that of their
classical counterparts. With the advent of practical quantum
computation, it became apparent that it is worthwhile also
to look at problems in which even a modest speedup can
become useful. At this point, an additional aspect to be aware
of is constituted by the limited resources of these devices. In
particular, current noisy intermediate-scale quantum (NISQ)
devices have too many imperfections to be used for general
universal quantum computation [1,2], hence approaches that
are able to deal with these imperfections are sought both in
circuits [3–5] and in measurements [6–9]. A possible appli-
cation of limited NISQ devices is quantum-classical hybrid
computation [10–14], where the NISQ device has only a par-
tial role, for example as a subroutine that is able to speed up
a repeated computation task. One of the questions arising in
these kinds of schemes is how to optimally combine classical
and quantum computations so that their overall functioning is
as good as possible.

We are considering a class of tasks in which one is required
to compute the value of a function g : X → Y on any given
input x ∈ X . Concrete examples of interest could be the fol-
lowing:

(i) X = {2, . . . , n}, Y = {1, 2, . . . , �n/2�}, g(x) = the
largest proper divisor of x.

(ii) X = the set of graphs with at most n vertices, Y =
{1, 2, . . . , n}, g(x) = the chromatic number of x.

In the current work, we do not concentrate on any par-
ticular problem, but rather on a method that is applicable
to a variety of such tasks. We focus on a scheme in which
the computation has two parallel parts: a classical part and a
quantum part. The essential assumption in our investigation
is that these computations are run in parallel, meaning that
they take an input at the same time and the computations are
carried out simultaneously. The combination of the compu-
tations and the final inference happens only after both parts
have been completed (see Fig. 1). The question is then if
there is a way to optimize the two parts jointly that would
lead to a better performance than individually optimizing each
part.

The motivation for this parallel computing assumption
is the following. Naturally, we want the total computing
time to be minimal, which can be achieved by increasing
the total success rate. Considering current NISQ devices,
the motivation may be even more practical. The available
quantum computer may be small and less efficient than the
computational problem would require, leading to intrinsically
imperfect computation. A classical computer may provide a
useful aid even if it cannot solve the problem efficiently alone.
For instance, the classical computation can be used to rule
out some wrong answers, which is much easier than to solve
the question in full. This partial information can still help
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Task:

x=?

Q-program

Measurement

C-program
x=13?
x=41?

RESULT
x=42

FIG. 1. We consider hybrid computation in which classical and
quantum computations are performed simultaneously. The outputs of
the two computations are then combined to reduce the possible final
answers and to provide a more precise output than from either of the
two computations alone.

improving the quantum computation part, and that is exactly
the main idea of the current study.

We note that the method we are introducing does not
prevent us from having also sequential steps in the total com-
putation process. Indeed, the method can be applied separately
in all phases. We can even find further motivation in the
sequential arrangement, since this kind of hybrid task uses
classical computation between separate quantum computa-
tions, and thus during each run of the quantum computation,
classical computers are idle. In fact, the advantage of our
approach is that it allows us to make use of this ineffective
time.

II. PARALLEL QUANTUM-CLASSICAL COMPUTATION
WITH ANTICIPATIVE MEASUREMENTS

A. Parallel quantum-classical computation

In our setting, the quantum computing part uses a d-level
quantum system in the encoding of inputs, and this size ev-
idently limits the power of the quantum device. Each input
x is encoded into a quantum state �x. Then, the quantum
system is acted on by a quantum process �, hence the state
is transformed into �(�x ). The process can be a complicated
array of quantum gates, it can use higher-dimensional ancil-
lary systems, and the produced states may not be orthogonal.
Further, the transformed state �(�x ) can be a state of a dif-
ferent quantum system having a different dimension from d .
The system in the transformed state is measured by a quantum
measurement M, and an outcome z is recorded. The condi-
tional probability to obtain z is given by the Born rule

p(z | x) = tr[�(�x )M(z)]. (1)

In the most favorable case, one has p(z | x) = δz,g(x), i.e., the
recorded outcome is the value g(x) that we wanted to compute.
However, due to the limited size of the quantum computer and
the noise involved in the process and in the final measurement,
we expect p(z | x) to be a probability distribution that has
nonzero variance. The quantum computing part is therefore
giving a probabilistic information about the correct answer for
the value g(x).

In addition to the quantum computation, we assume that
there is a classical computation part where the aim is to rule
out one or more wrong answers. We denote by S ⊂ Y the
set of values that the classical computation determines to be
wrong. For example, in NP-problems checking answers is a
fast process that can be used to generate the set S. Getting back
to our earlier examples, if g(x) is the largest proper divisor of
an integer x � 2, the set S may be obtained by performing
divisibility tests for some choice of potential divisors. Or, if x
is a graph and g(x) is the chromatic number of x, S could be
the result of some random coloring heuristics carried out on x.
The aim of the current investigation is not to identify specific
problems in which the classical computation can be explicitly
described, and we actually let the set S be any nontrivial subset
of Y .

The limits on the computation time and the efficiency of
the classical computer may imply that S is a singleton set or
has some other fixed size. In a typical application that we
have in mind, S is a small set compared to the size of Y .
The information in the form of S is provided only after the
quantum part has concluded, and we will therefore call it the
classical posterior information, abbreviated as CPOST. We
further assume that the classical computation is error-free, so
that g(x) /∈ S. However, we allow it to be nondeterministic,
and we denote the conditional probability to obtain S given
x as p(S | x). For instance, if we used a quantum computer
to speed up some NP-problem, we could simultaneously run
some number of classical computations in which we ran-
domly choose potential answers y1, y2, . . . , ym ∈ Y , and either
learn that one of our choices is the correct answer, or learn
that g(x) �∈ S = {y1, y2, . . . , ym}. As the classical and quantum
computations work in parallel and do not interact up to this
point, we further require that the set S of the excluded answers
is independent of the measurement outcome z when condi-
tioned on the input x, that is, p(S, z | x) = p(S | x) p(z | x).

The final step is then to combine the results from the two
parts and make the final guess y, based on the outcome z of the
quantum computation and the set S consisting of wrong val-
ues. In general, again, this guess is probabilistic and described
by the conditional probability p(y | S, z). Moreover, it de-
pends on the input x solely through the classical and quantum
computations, meaning that p(y | S, z) = p(y | S, z, x). The ef-
ficiency of the full computation is characterized by its success
probability, i.e., the probability of having y = g(x) when the
input x is sampled from X . For simplicity, we will consider
uniform sampling, although we remark that this is not a nec-
essary requirement in our approach.

Let us now discuss different ways of utilizing posterior
information. The setting provides a fourfold distinction be-
tween different scenarios. First, we can distinguish between
the cases in which CPOST is present or absent. A motiva-
tion for this distinction can be the case when CPOST might
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improve the quality of the result from the quantum compu-
tation, but the result might be useful even without CPOST.
Secondly, and more importantly, we distinguish the cases in
which the quantum measurement is optimized without con-
sidering CPOST (the resulting measurements will be called
standard) and where the quantum measurement is optimized
by having CPOST in mind (measurements of this kind will be
called anticipative).

The focus of this paper is on the anticipative measurements
with CPOST. Our method thus optimizes the quantum and
classical steps together instead of treating them separately,
even if they are run independently in parallel. In practice, this
means that we adjust the measurement performed in the end
of the quantum computation (see Fig. 1). The crux is to take
into account that there will be CPOST, in our case in the form
of wrong answers, before we have to make the final decision,
although we cannot know the specific wrong answers before
we have to perform the measurement.

It is not evident from this general description that the
anticipative measurement method works, and, in fact, it does
not necessarily lead to a better success probability than the in-
dependently optimized parts. However, we demonstrate with
examples that the anticipative measurement provides a benefit
for a class of problems. The main goal of the current inves-
tigation is to show that the anticipative method can be better
than the standard method and therefore might be a valuable
tool in hybrid quantum-classical computation.

To summarize, for a given task, we have four scenarios to
which we assign the respective success probabilities P .

(i) P st
0 : standard quantum measurement without CPOST.

In this scenario, we use quantum computation only.
(ii) P st

CPOST: standard quantum measurement with CPOST.
This means that we run both quantum and classical computa-
tions, optimize them independently, and combine in the end.

(iii) P an
CPOST: anticipative quantum measurement with

CPOST. In this scenario, quantum measurement is optimized
already having in mind the later arrival of classical informa-
tion. This scenario is our main interest.

(iv) P an
0 : anticipative quantum measurement without

CPOST. This scenario is for comparison only. One can think
of it as a scenario in which classical computation breaks down
and does not give any information even if we were waiting for
it, and hence we chose the anticipative measurement instead
of the standard measurement.

In general, we have

P an
0 � P st

0 � P st
CPOST � P an

CPOST. (2)

The first and last inequalities follow from the definitions.
Indeed, the standard measurement means the optimal mea-
surement for the problem without CPOST, and the anticipative
measurement means the optimal measurement for the task
with CPOST. The middle inequality is true as posterior in-
formation cannot make the guessing probability worse if
properly optimized (the optimal solution must be at least as
good as if one does not act based on CPOST). Depending
on the task in question, these inequalities may be equalities,
which would mean that for that task, posterior informa-
tion or the anticipative method does not help. Clearly, the
anticipative method becomes interesting in tasks in which

P st
CPOST < P an

CPOST. In Sec. III, we demonstrate that this is
actually the case already in a simple class of tasks.

B. Mathematical framework for anticipative measurements

We now present the mathematical framework for antic-
ipative measurements that is needed in the applications to
concrete problems.

We denote X = {1, . . . , m}, Y = {1, . . . , n}, and we
let f : X × Y → {0, 1} be the function that defines the
computational task by determining the wanted and unwanted
input-output pairs (x, y) ∈ X × Y . If each x ∈ X is associated
with only one correct answer g(x) ∈ Y , then the wanted
pairs constitute the set {(x, g(x)) : x ∈ X } and the task is
defined by the Kronecker δ function f (x, y) = δg(x),y. More
generally, an input x may have several correct answers, which
therefore constitute a subset Gx ⊂ Y . In this case, we choose
f (x, y) = 1Gx (y), where 1Gx is the indicator function of the
set Gx.

In the current setting, we do not separate the initial quan-
tum state encoding and the quantum process that transforms
the states. This is due to the fact that the anticipative method
alters only the final measurement and therefore only the form
of the quantum states just before the measurement matters.
We denote E (x) = (1/m) �(�x ), so that the mapping x �→
E (x) describes everything that happens to the input x before
the quantum measurement is performed. We call E the state
ensemble of our computational task. The uniform sampling
of the inputs is included in the normalization constant 1/m
of E . A quantum measurement is mathematically described
as a positive operator valued measure M. Denoting by Z the
outcome set of M, the probability of choosing the input x ∈ X
and getting the outcome z ∈ Z is hence tr[E (x)M(z)].

On the classical side, we write α(S | x) = p(S | x) to denote
the conditional probability of getting S from the classical com-
putation when x ∈ X is the input. We say that α is the partial
information map of our quantum-classical hybrid computa-
tion. Note that the formalism allows S to be any information
about the task, not just the exclusion of outcomes, but for
simplicity we just deal with the exclusion.

Finally, the combination of classical and quantum out-
comes is a postprocessing that gives the final answer y ∈ Y
with probability νS (y | z) = p(y | S, z). We refer to ν as the
postprocessing map. With these notations, the probability of
guessing a correct answer is

PCPOST =
∑

x,y,z,S

f (x, y) νS (y | z) α(S | x) tr[E (x)M(z)]. (3)

We typically assume that the state ensemble E and the partial
information map α are fixed, but we need to find a quantum
measurement M and a postprocessing map ν performed after
CPOST, so that the success probability of Eq. (3) is as high as
possible.

Note that even though Eq. (3) describes the success rate
including the arrival of CPOST, its two extreme cases also de-
scribe situations when no classical information is provided, or
when all wrong answers are excluded. The latter case means
that α(S | x) = 1 if S = Y \ Gx, where Gx is the set of the
correct answers for the input x. The optimal postprocessing
map then necessarily satisfies νY \Gx (y | z) = 0 for all y /∈ Gx,
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and the final guess y can be chosen independently of the
measurement outcome z. In this way, when all wrong answers
are excluded, we can trivially achieve the equality PCPOST = 1
for any measurement M. The former case of a situation with
no CPOST instead corresponds to setting α(S | x) = α(S) in-
dependently of the input x. In this case, the summation over
S can be carried out on the postprocessings νS , and the right-
hand side of Eq. (3) becomes the probability

P0 =
∑
x,y,z

f (x, y) ν0(y | z) tr[E (x)M(z)], (4)

where

ν0(y | z) =
∑

S

νS (y | z) α(S). (5)

Different optimizations of the previous equations then lead
to the cases described above:

P an
CPOST = max

M,ν
PCPOST(M, ν), (6)

P st
0 = max

M,ν0

P0(M, ν0), (7)

where on the right-hand side we have explicitly indicated the
dependence of the probabilities PCPOST and P0 on the chosen
measurement M and the postprocessings ν and ν0. If we label
the respective optimized measurements as Man and Mst, we
further have

P an
0 = max

ν0

P0(Man, ν0), (8)

P st
CPOST = max

ν
PCPOST(Mst, ν). (9)

C. Anticipative measurements with the exclusion of k wrong
answers

For simplicity, from now on we assume that the number of
wrong answers obtained by means of classical computation is
fixed, and we denote this number by k. Hence, the set S of the
excluded answers is an element of the set

T = {S ⊂ Y : |S| = k}, (10)

which in turn is a subset of the power set 2Y . We further
assume that S is drawn with uniform probability from the
subset of all the elements of T which are disjoint from Gx.

Having written the computational task in Eq. (3), we
can interpret it as a quantum guessing game with posterior
information and apply the mathematical results developed
in [15,16]. The same mathematical formalism can be used
to construct and study incompatibility witnesses [17,18], but
here our aim is different. One of the main facts contained in
the aforementioned works is that any quantum guessing game
with posterior information reduces to a usual state discrimina-
tion task for an auxiliary state ensemble. The reduction means
that, even if the tasks are different, the optimal measurements
are the same and the success probabilities are connected via
a simple formula. To see the reduction in practice, let us first
assume that k = 1, i.e., the classical computation part is giving
one wrong answer. Moreover, let us suppose that each input
x is associated with only one correct answer g(x). In this
case, we can identify the set T of Eq. (10) with Y and write
the partial information map as α(t | x) = (1 − δg(x),t )/(n − 1).

The auxiliary state ensemble, denoted by Ē , is then defined on
the Cartesian product Y n and given as

Ē (y1, . . . , yn) = 1

|Y ||T |−1�

∑
x,t

f (x, yt ) α(t | x) E (x)

= 1

(n − 1) nn−1

∑
x

r(x) E (x), (11)

where

� =
∑
x,y

f (x, y) tr[E (x)] = 1, (12)

r(x) = |{t ∈ Y : yt = g(x) and t �= g(x)}|. (13)

With the known techniques of minimum-error state discrim-
ination [19,20], one can then find the optimal measurement
M̄ that yields the largest success probability in discriminat-
ing Ē . It turns out that the same measurement M̄ is optimal
also for the original guessing game. Indeed, the interpretation
of M̄ in the initial setting is that we obtain a measurement
outcome that is a tuple, namely (y1, . . . , yn) ∈ Y n, and the
wrong answer given as the posterior information t from the
classical computation refines this outcome to the final guess
yt . The success probabilities of the original task and of the
auxiliary state discrimination task are not the same but have a
simple relation: if the success probability in the auxiliary state
discrimination problem is P , then

P an
CPOST = nn−1 P . (14)

The mathematical machinery works in the same way also
in the cases with k > 1. Only the form of the auxiliary state
ensemble Ē is different, and it can be obtained from Ref. [16],
Sec. 4.4.

III. QUBIT APPLICATION

While the intention of the anticipative method is to be
used for hybrid computation tasks, in order to illustrate the
method and test it in current quantum devices, we consider a
simple example having no direct computational interest, but
exhibiting the same quantum features that may appear during
quantum computations with a NISQ device. In this example,
two bits of information are encoded into one qubit, hence the
size of the quantum device is smaller than one would need for
perfect encoding. After all quantum processing, we assume
that the final states are from two bases. The task is to infer the
values of the original bits with as high success probability as
possible.

Qubit states can be identified with vectors on the Bloch
sphere. The final states belong to two bases, and the an-
gle between these bases in the Bloch sphere description is
parametrized by θ ∈ (0, π/2]. There is a global unitary free-
dom to choose the directions, hence we can fix the states
corresponding to the Bloch vectors ±a and ±b with

a = cos
(

1
2θ

)
i + sin

(
1
2θ

)
j, b = cos

(
1
2θ

)
i − sin

(
1
2θ

)
j,
(15)

where i and j are two orthogonal coordinate vectors. The
setting is depicted in Fig. 2. With respect to the framework
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FIG. 2. Discrimination problem for four qubit states labeled by
±a and ±b. The standard optimal measurement is a probabilistic
projective measurement in the two bases given by the four states. The
anticipative measurement is a probabilistic projective measurement
in the two bases given by the vectors ±m and ±n.

explained earlier, we have

X = {+a, −a, +b, −b} (16)

and the state ensemble E is

E (±a) = 1
8 (1 ± a · σ ), E (±b) = 1

8 (1 ± b · σ). (17)

Although the states within each of the two bases are or-
thogonal and hence perfectly distinguishable, the four states
together are not. We will look now at the minimum-error
discrimination schemes with or without CPOST both for the
standard measurements and the anticipative measurements.
In the following, we denote by P st

k and P an
k the success

probabilities when CPOST consists of k wrong answers. This
notation agrees also with the previous case of no CPOST,
which corresponds to k = 0. Furthermore, we take Y = X and
f (x, y) = δx,y, which stems from the definition of the problem
and our intention to identify the states with the highest proba-
bility.

A. Standard measurement

One of the optimal quantum measurements to distinguish
the four different inputs (without CPOST) is

Mst (±a) = 1
4 (1 ± a · σ ), Mst (±b) = 1

4 (1 ± b · σ). (18)

This measurement results from the maximization of Eq. (4)
with the fixed postprocessing ν0(y | z) = δy,z, as can be
checked, e.g., by testing the optimality conditions in Ref. [19],
Eqs. (4) and (5) (the latter choice of ν0 is not restrictive, since
we can always include the postprocessing in the optimized
measurement). For the forthcoming calculations, we need all
the input-output probabilities of the Born rule tr[E (x)Mst (z)],
which are given in the following table:

Measurement outcome (z)

Input (x) +a −a +b −b

+a 1
8 0 1

8 cos2 θ

2
1
8 sin2 θ

2

−a 0 1
8

1
8 sin2 θ

2
1
8 cos2 θ

2

+b 1
8 cos2 θ

2
1
8 sin2 θ

2
1
8 0

−b 1
8 sin2 θ

2
1
8 cos2 θ

2 0 1
8

The success probability for the standard measurement without
CPOST given by Eq. (7) simply reduces to

P st
0 =

∑
x

tr[E (x)Mst (x)] = 1

2
. (19)

This is the sum of the probabilities from the diagonal of the
table.

By using Eq. (9), we can also infer the success probabilities
P st

k when k outcomes are excluded by CPOST. The optimal
strategy consists in guessing the nonexcluded input having the
highest probability conditioned to the outcome of the mea-
surement Mst. For k = 1, 2, one then obtains the best guess
following the mapping rules of the next table:

Relabeling priority (y)

Measurement outcome (z) 1st 2nd 3rd 4th

+a +a +b −b −a
−a −a −b +b +a
+b +b +a −a −b
−b −b −a +a +b

This mapping is determined based on the mapping priority
where only the leftmost nonexcluded outcome from the right
edge of the table is used. For example, having obtained the
outcome +a and excluded the outcomes {+a,−b}, the next
best available choice is +b. If {+a,+b} are excluded, the
next best choice is −b. This observation has also a visual
interpretation. Looking at the setting from Fig. 2, we see that
the mapping priority is ordered from the closest state to the
orthogonal one. Performing the calculations, we obtain

P st
1 = 1

6

(
3 + cos2 θ

2

)
, (20)

P st
2 = 1

6

(
4 + cos2 θ

2

)
. (21)

B. Anticipative measurement

As explained in Sec. II B, the anticipative measurement
strategy for the given qubit state ensemble with the exclusion
of one or two wrong answers can be calculated with the
mathematical framework developed in [16]. If there is one
excluded answer, then the problem is the same as the quantum
guessing game studied in Ref. [16], Sec. 7.4, and one of the
corresponding anticipative quantum measurements was found
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to be

Man(±m) = 1
4 (1 ± m · σ ), Man(±n) = 1

4 (1 ± n · σ ),
(22)

where

m = a + 3b√
10 + 6 cos θ

, n = 3a + b√
10 + 6 cos θ

. (23)

In Appendix A, we summarize that proof and, in addition, we
show that the measurement of Eq. (22) is optimal also in the
case with k = 2, i.e., when classical information excludes two
wrong answers. The Born rule probabilities tr[E (x)Man(z)] are
the following:

Measurement outcome (z)

Input (x) +m −m +n −n

+a Q+ Q− P+ P−
−a Q− Q+ P− P+
+b P+ P− Q+ Q−
−b P− P+ Q− Q+

Here we have denoted

P± = 1

16

(
1 ± 1 + 3 cos θ√

10 + 6 cos θ

)
,

Q± = 1

16

(
1 ± cos θ + 3√

10 + 6 cos θ

)
. (24)

It is easy to check that Q+ � P+ � P− � Q−.
As for the standard measurements, we can visualize the

assignment of the measured results to the final guess as a table.
Since the input-output probabilities are ordered in the same
way as in the standard measurement case and differ only in
their magnitude, the mapping follows the same ordering:

Relabeling priority (y)

Measurement outcome (z) 1st 2nd 3rd 4th

+n +a +b −b −a
−n −a −b +b +a
+m +b +a −a −b
−m −b −a +a +b

This yields the following expressions for the success proba-
bilities defined in Eq. (6):

P an
1 = 1

12 (4 + √
10 + 6 cos θ ), (25)

P an
2 = 1

12 (6 + √
10 + 6 cos θ ). (26)

Finally, to calculate the success probability P an
0 defined

in Eq. (8), we observe that the optimal assignment without
CPOST is ±m �→ ±b and ±n �→ ±a, which again consists in
guessing the nonexcluded input having the highest probability
conditioned on the outcome of the measurement Man. In this
way, we get

P an
0 = 4Q+ = 1

4

(
1 + cos θ + 3√

10 + 6 cos θ

)
. (27)

FIG. 3. Success probabilities of the discrimination task for four
qubit states from two bases spanning the angle θ . The comparison
is made between standard (blue) and anticipative (orange) measure-
ments for different posterior information—k = 0 for measurements
without CPOST, k = 1 for CPOST excluding one wrong answer,
and k = 2 for CPOST excluding two wrong answers. Solid lines
correspond to the theoretical predictions, and dashed lines are results
from the ibmq_manila.

All the studied situations are depicted for different θ an-
gles in Fig. 3 (solid lines). We can notice that while for the
case without CPOST (k = 0) the anticipative measurement
operates worse than the standard measurement, with CPOST
(k = 1, 2) the anticipative measurement improves the success
probability.

C. Demonstrations

The investigated state discrimination problem can be eas-
ily applied to current quantum devices. The possibility to
do so comes from the fact that the measurements involved,
whether standard or anticipative, are probabilistic projective
measurements. These measurements, a subclass of projective
simulatable measurements [21,22], are implementable as a
random choice from the set of projective measurements [23].
In the qubit case, this relates to a random choice of a base
change prior to the standard z-measurement. For example,
the statistics of the measurement Man can be obtained as a
union of the statistics of the projective measurement in the
direction ±m and the projective measurement in the direction
±n with an equal number of runs. If the measurements would
not belong to the subclass of projective simulatable measure-
ments, we could still implement them, but that would require
ancillary dimensions.

Using IBMQ device ibmq_manila, we implemented the
measurements in Qiskit, where for the rotations we used only
RY gates (see Appendix B for additional information). Since
the native gate set does not contain the RY gate, prior to the
computation it needs to be decomposed using the SX and
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FIG. 4. Diagram of circuit preparation for the data collection
phase. For each choice of the angle θ , the prepared state and the
measurement direction, one circuit was constructed and executed
20 000 times.

RZ native gates. This was automatically performed by the
transpiler.

For the standard measurement in the basis ±a, we used
the angle +θ/2, while for the measurement in the basis ±b
we used the angle −θ/2. For the anticipative measurement
we needed to rotate the basis either to the ±n direction by the
angle +ω/2 or to the ±m direction by the angle −ω/2. The
angle ω is obtained from the dot product of the vectors m and
n defined in Eq. (23):

cos ω = m · n = 3 + 5 cos θ

5 + 3 cos θ
. (28)

As explained earlier, this angle remains the same in both cases
with k = 1 and 2.

The submissions to ibmq_manila contained circuits with
25 different choices for the parameter θ , four choices for the
initial state (±a or ±b), two choices for the measurement
(anticipative/standard), and two choices for the measurement
basis (a or b for standard and m or n for anticipative), thus
leading to 400 circuits, which were run for 20 000 repetitions
each. The preparation scheme of these circuits is illustrated in
Fig. 4.

All computations were performed on qubit 0 with applied
optimization for the circuits, possibly combining preparation
and measurement rotations into a more convenient form. Col-
lected data were then postprocessed to obtain the probabilities.
The postprocessings were not simulated anymore but were
computed from obtained data—each data point (executed cir-
cuit) was used to obtain the success probability for all allowed
exclusions (those not containing the prepared state) and, there-
fore, it was used multiple times. The number of repetitions
was high enough to make variances minimal and so there
was no need to keep track of the precise number of shots for
each measurement and postprocessing, allowing us to extract
probabilities this way.

Data obtained in the demonstration are depicted in Fig. 3
as dashed lines. We can observe the general behavior that was
theoretically described above—the anticipative measurement
is worse than the standard measurement in the absence of
CPOST, but it shows improvement over the standard mea-
surement with CPOST at hand. An interesting point is the
region close to θ = π/2, where we can not only see that the
anticipative measurement is better than the standard measure-

ment (for k = 1 and 2), but, even more, the results of the
demonstration show an improvement over the theoretically
best standard measurement.

IV. DISCUSSION

In this paper, we have investigated a specific type of hybrid
quantum-classical computation, namely parallel quantum-
classical computation, where one performs quantum and
classical computations simultaneously and combines the re-
sults in the end. Quantum computation necessarily ends with a
quantum measurement, and we have focused on this particular
part of the process. We have introduced a method of anticipa-
tive quantum measurements where the quantum measurement
is optimized not in isolation but taking into account that there
will be classical supplementing information later. Crucially,
the optimization does not depend on the actual outcome of the
classical information but just on the general form of it. As an
exemplary case, we highlighted classical posterior informa-
tion that rules out some wrong answers. We demonstrated that
the method works even with a noisy real quantum device.

The success of the anticipative method raises some imme-
diate thoughts and questions. First, the scaling properties of
the approach are not studied in this paper, but they are im-
portant for further considerations. With the scaled dimensions
and scaled number of outcomes, we generally observe scaling
of the algorithmic time. This in turn provides space for ad-
ditional (time) resources of the parallel classical computation
that shall provide a more informative posterior information.
Further research is needed to ascertain to what extent a mea-
surable advantage is retained. It may well be that this question
is even specific to the chosen task. Still, in the worst case,
anticipative measurements might find their place in compu-
tations on current NISQ devices with limited resources and
small tasks.

Second, one could possibly anticipate the classical pos-
terior information not only in the last step of the quantum
computation, namely in the quantum measurement, but also in
the earlier steps of it. This would mean that one would modify
the quantum process as a whole, allowing for more freedom
in the optimization and thus potentially leading even to higher
success rates. A drawback is that the method can no longer
be developed in the general form as we have done here, but it
should take into account the actual computational task.

Finally, we have observed several peculiar properties in
the specific exemplary qubit task. Namely, we saw that the
anticipative measurement is the same for the cases of exclud-
ing one wrong answer and two wrong answers, although in
general every type of CPOST can lead to a different solution.
Further, in these cases the anticipative measurement has only
four outcomes that are nonzero. As explained in Sec. II C, the
anticipative measurement is optimal also with respect to the
auxiliary state ensemble discrimination, hence in both cases
one would have expected more outcomes than four. A further
investigation will show to what extent these observations are
general and to what extent they are specific to the task.
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APPENDIX A: ANTICIPATIVE QUBIT MEASUREMENTS

We fix the set of inputs X and the state ensemble E as in
Eqs. (16) and (17), respectively. Our task is to discriminate
any given input x ∈ X , so we let the output and input sets
coincide, Y = X , and we choose f (x, y) = δx,y following the
notations of Sec. II B (we use the bold symbols x, y in place
of x, y to stress that we deal with vectors in R3). We consider
the parallel quantum-classical computation in which CPOST
consists in excluding k wrong answers with either k = 1
or 2. The set S of the excluded answers is thus an element
of the collection of sets T defined in Eq. (10). More precisely,
for any fixed value of the input x, the set S is drawn from the
subcollection

Tx = {S ⊂ Y : |S| = k and x /∈ S}. (A1)

We further assume that S is randomly picked with uniform
probability within Tx, which means that the partial information
map α is

α(S | x) = 1
3 1X\S (x) ∀S ∈ T . (A2)

In the particular case with k = 1, we can canonically identify
T � X and Tx � X \ {x}, so that the partial information map
is α(t | x) = (1/3)(1 − δx,t ) as described in Sec. II C.

If we perform a measurement M with the outcome set Z
and we postprocess its outcome by means of a postprocess-
ing map ν, we guess a correct answer with the probability
PCPOST of Eq. (3). As we did in Eqs. (6) and (9), we rewrite
such probability as PCPOST(M, ν) in order to stress its depen-
dence on M and ν. Further, following Eqs. (6), we denote by
P an

CPOST the value of PCPOST(M, ν) optimized over all mea-
surements M and all postprocessing maps ν. The aim of this
Appendix is then to determine the maximum P an

CPOST, find the
measurements Man at which it is attained, and describe the
corresponding optimal postprocessings. The essential tool is
the following relation proved in Ref. [16], Proposition 2:

P an
CPOST = max

M̄
PCPOST(M̄, π ). (A3)

In this expression, the maximum on the right-hand side ranges
over all measurements M̄ with the outcome set X T , where X T

is the set of all functions φ : T → X . Moreover, π denotes the
postprocessing map

πS (x | φ) = δx,φ(S). (A4)

Note that the outcome set X T of M̄ and the postprocessing map
π are fixed on the right-hand side of Eq. (A3). This compares
with the definition of P an

CPOST, which in principle would require
us to optimize PCPOST over both M and ν, also allowing the
outcome set of M to vary among all finite sets.

Theorem 1. For j ∈ {+,−}, let φa,b
j be an element of X T

defined as follows:
(i) If k = 1,

φa,b
j (S) =

{
ja if ja /∈ S,

jb if ja ∈ S.
(A5a)

(ii) If k = 2,

φa,b
j (S) =

⎧⎨
⎩

ja if ja /∈ S,

jb if ja ∈ S and jb /∈ S,

− jb if ja ∈ S and jb ∈ S.

(A5b)

Then, a measurement attaining the maximum in Eq. (A3) is
the measurement M̄ = M̄a,b given by

M̄a,b(φ) = 0 for φ /∈ {φa,b
+ , φa,b

− },

M̄a,b(φa,b
j

) = 1

2

(
1 + j

3a + b
‖3a + b‖ · σ

)
.

(A6)

Moreover, we have

P an
CPOST = 1

12 (2 + 2r + √
10 + 6 a · b).

By exchanging the vectors a and b in Eqs. (A5a), (A5b),
and (A6), we also obtain the optimal measurement

M̄b,a(φ) = 0 for φ /∈ {φb,a
+ , φb,a

− },

M̄b,a(φb,a
j ) = 1

2

(
1 + j

a + 3b
‖a + 3b‖ · σ

)
,

(A7)

and any convex combination of M̄a,b and M̄b,a is still a mea-
surement attaining the maximum in Eq. (A3). As an example,
the optimal measurement for the case with k = 1 that was
derived in Ref. [16], Eqs. (65) and (66) coincides with the sum
(1/2) M̄a,b + (1/2) M̄b,a. In the particular case with a · b = 0,
Theorem 1 yields two additional optimal measurements be-
sides M̄a,b and M̄b,a, namely the measurements M̄−a,b and
M̄b,−a that are obtained by replacing a with −a in Eqs. (A6)
and (A7), respectively. The supports of the four measurements
M̄a,b, M̄b,a, M̄−a,b, and M̄b,−a are mutually disjoint subsets
of X T , and each one contains two elements. By restrict-
ing the convex sum (1/2) M̄a,b + (1/2) M̄b,a to its support
{φa,b

+ , φa,b
− , φb,a

+ , φb,a
− }, evaluating the corresponding restric-

tion of the postprocessing map π and relabeling φa,b
j → jn

and φb,a
j → jm, we reduce the sum (1/2) M̄a,b + (1/2) M̄b,a

to the anticipative measurement Man of Eq. (22), while π

becomes the postprocessing map ν defined as follows:
(i) If k = 1,

νS (x | jn) = δx, ja 1X\S ( ja) + δx, jb 1S ( ja),

νS (x | jm) = δx, jb 1X\S ( jb) + δx, ja 1S ( jb).

(ii) If k = 2,

νS (x | jn) = δx, ja 1X\S ( ja) + δx, jb 1S ( ja) 1X\S ( jb)

+ δx,− jb 1S ( ja) 1S ( jb),

νS (x | jm) = δx, jb 1X\S ( jb) + δx, ja 1X\S ( ja) 1S ( jb)

+ δx,− ja 1S ( ja) 1S ( jb).

We observe that ν coincides with the relabeling priority
described in the second table of Sec. III B for both cases with
k = 1 and 2.

Proof. From Ref. [16], Eq. (25), we have

P (M̄, π ) = C PĒ (M̄),
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where Ē is an auxiliary state ensemble associated with E and
defined as

Ē (φ) = 1

24C

∑
x

|φ−1(x) ∩ Tx|(1 + x · σ)

for all φ ∈ X T , the scalar C > 0 is a suitable normalization
constant, and

PĒ (M̄) =
∑

φ

tr[Ē (φ)M̄(φ)]

is the guessing probability of the usual state discrimination
task for the auxiliary state ensemble Ē and the measurement
M̄. In particular, the measurements M̄ that maximize the prob-
abilities PCPOST(M̄, π ) and PĒ (M̄) coincide. Thus, optimizing
the state discrimination task with posterior information for the
original ensemble E reduces to a standard state discrimination
problem for the auxiliary ensemble Ē . To solve the latter
problem, we denote by �(Ē ) the largest eigenvalue of all the
operators Ē (φ), φ ∈ X T , and we observe that any measure-
ment M̄ satisfies the inequality

PĒ (M̄) � 2 �(Ē )

as a consequence of Ref. [16], Proposition 1. By the same
proposition, the above bound is attained if and only if M̄
satisfies the relation

Ē (φ) M̄(φ) = �(Ē ) M̄(φ)

for all φ ∈ X T . We will show that this is actually the case for
the measurement M̄a,b of Eq. (A6), and therefore

PCPOST(M̄a,b, π ) = max
M̄

PCPOST(M̄, π ) = 2C �(Ē )

for the value of �(Ē ) that we will explicitly determine below.
For notational convenience, for all φ ∈ X T and j ∈ {+,−},

we introduce the non-negative integer numbers

α
φ
j = ∣∣φ−1( ja) ∩ Tja

∣∣, β
φ
j = |φ−1( jb) ∩ Tjb|,

so that the auxiliary state ensemble rewrites

Ē (φ) = 1

24C
{(αφ

+ + α
φ
− + β

φ
+ + β

φ
−)1

+ [(αφ
+ − α

φ
−) a + (βφ

+ − β
φ
−) b] · σ}.

The largest eigenvalue of the operator Ē (φ) is

λ(φ) = 1

24C
{αφ

+ + α
φ
− + β

φ
+ + β

φ
−

+ ‖(αφ
+ − α

φ
−) a + (βφ

+ − β
φ
−) b‖}

= 1

24C
γ (αφ

+, α
φ
−, β

φ
+, β

φ
−),

where γ is the function

γ (α+, α−, β+, β−) = α+ + α− + β+ + β−

+ [(α+ − α−)2 + (β+ − β−)2

+ 2 (α+ − α−)(β+ − β−) a · b]
1
2 .

If α
φ
+ �= α

φ
− or β

φ
+ �= β

φ
−, the projection onto the λ(φ)-

eigenspace of Ē (φ) is the rank-1 operator

�(φ) = 1

2

(
1 + (αφ

+ − α
φ
−) a + (βφ

+ − β
φ
−) b∥∥(αφ

+ − α
φ
−) a + (βφ

+ − β
φ
−) b

∥∥ · σ

)
.

We now proceed to separately evaluate

�(Ē ) = max
φ

λ(φ) = 1

24C
max

φ
γ (αφ

+, α
φ
−, β

φ
+, β

φ
−)

in the two cases with k = 1 and 2.
Case k = 1. Since |Tx| = 3 for all x ∈ X and∑
x |φ−1(x)| = |T | = 4, the numbers α

φ
+, α

φ
−, β

φ
+, and

β
φ
− satisfy the constraints

α
φ
+, α

φ
−, β

φ
+, β

φ
− ∈ {0, 1, 2, 3}, α

φ
+ + α

φ
− + β

φ
+ + β

φ
− � 4.

For a · b > 0, the constrained maximum

max γ (α+, α−, β+, β−) subject to

α+, α−, β+, β− ∈ {0, 1, 2, 3}, (A8)

α+ + α− + β+ + β− � 4

was evaluated in Ref. [16], Appendix A, and found to be equal
to 4 + √

10 + 6 a · b. By an easy continuity argument, this
result extends also to the case with a · b = 0. We have

(αφ
+, α

φ
−, β

φ
+, β

φ
−) =

{
(3, 0, 1, 0) if φ = φa,b

+ ,

(0, 3, 0, 1) if φ = φa,b
− ,

which are two feasible points attaining the maximum (A8).
Therefore,

�(Ē ) = 1

24C

(
4 + √

10 + 6 a · b
)
.

Case k = 2. We still have |Tx| = 3 for all x ∈ X , but
now

∑
x |φ−1(x)| = |T | = 6. Moreover, if x �= y, we have

{x, y} /∈ Tx ∪ Ty and φ−1(x) ∩ φ−1(y) = ∅, hence it must be
|φ−1(x) ∩ Tx| + |φ−1(y) ∩ Ty| � |T | − 1 = 5. It follows that
the numbers α

φ
+, α

φ
−, β

φ
+, and β

φ
− now satisfy the constraints

α
φ
+, α

φ
−, β

φ
+, β

φ
− ∈ {0, 1, 2, 3}, α

φ
+ + α

φ
− + β

φ
+ + β

φ
− � 6,

α
φ
+ + β

φ
+ � 5, α

φ
− + β

φ
− � 5.

As in the previous case, we first evaluate the constrained
maximum

max γ (α+, α−, β+, β−) subject to

α+, α−, β+, β− ∈ {0, 1, 2, 3},
α+ + α− + β+ + β− � 6,

α+ + β+ � 5, α− + β− � 5,

(A9)

and next we prove that (αφ
+, α

φ
−, β

φ
+, β

φ
−) is an optimal point

for all φ ∈ {φa,b
+ , φa,b

− }. To this aim, we fix a feasible point
(α+, α−, β+, β−) and we start by assuming that α j − αh = 3
for some j, h ∈ {+,−}. It follows that α j = 3, αh = 0 and

γ (α+, α−, β+, β−) = 3 + β+ + β−

+ [9 + (β+ − β−)2 + 6 (β j − βh) a · b]
1
2

because α+, α− ∈ {0, 1, 2, 3}. If (α+, α−, β+, β−) is a
feasible point with β j � βh, then (α′

+, α′
−, β ′

+, β ′
−) =
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(α+, α−, β−, β+) is a feasible point such that
γ (α′

+, α′
−, β ′

+, β ′
−) � γ (α+, α−, β+, β−) and β ′

j � β ′
h.

Therefore, in order to find the constrained maximum (A9),
we can restrict to the feasible points that satisfy β j � βh. For
any such point, the relation α j + β j � 5 requires that β j � 2.
The possibility β+ = β− = 2 is excluded by the inequality
α+ + α− + β+ + β− � 6. Therefore, the only remaining
possibilities are as follows:

(i) (β j, βh) = (2, 1), and then

γ (α+, α−, β+, β−) = 6 + √
10 + 6 a · b.

(ii) (β j, βh) = (2, 0), and then

γ (α+, α−, β+, β−) = 5 + √
13 + 12 a · b

� 6 + √
10 + 6 a · b.

(iii) (β j, βh) = (1, 0), and then

γ (α+, α−, β+, β−) = 4 + √
10 + 6 a · b

< 6 + √
10 + 6 a · b.

(iv) (β j, βh) = (1, 1) or (β j, βh) = (0, 0), and then

γ (α+, α−, β+, β−) = 6 + β+ + β− � 8

< 6 + √
10 + 6 a · b.

Next, we consider the case with β j − βh = 3, and we observe
that it is similar to the previous case with α j − αh = 3. In
particular,

γ (α+, α−, β+, β−) � 6 + √
10 + 6 a · b

also in this case. Finally, since the constraint
α+, α−, β+, β− ∈ {0, 1, 2, 3} requires that max{|α+ −
α−|, |β+ − β−|} � 3, the only remaining possibility is
max{|α+ − α−|, |β+ − β−|} � 2, which implies

γ (α+, α−, β+, β−) � 6 + √
8 + 8 a · b

� 6 + √
10 + 6 a · b.

In summary, the constrained maximum (A9) is 6 +√
10 + 6 a · b, and it is attained, e.g., at the feasible points

(αφ
+, α

φ
−, β

φ
+, β

φ
−) =

{
(3, 0, 2, 1) if φ = φa,b

+ ,

(0, 3, 1, 2) if φ = φa,b
− .

Similarly to the case with k = 1, it then follows that

�(Ē ) = 1

24C

(
6 + √

10 + 6 a · b
)
.

In both cases with k = 1 and 2, the measurement of
Eq. (A6) satisfies the equality

M̄a,b(φ) =
{
�(φ) if φ ∈ {φa,b

+ , φa,b
− },

0 otherwise,

hence Ē (φ) M̄a,b(φ) = �(Ē ) M̄a,b(φ) for all φ ∈ X T . The op-
timality of M̄a,b and the formula for Pan

CPOST in the statement
of Theorem 1 then follow from the previous discussion.

APPENDIX B: IBMQ MANILA SPECIFICATIONS

Our demonstrations were performed on ibmq_manila,
which is one of the 5-qubit IBM Quantum Falcon Processors,
r5.11L (linearly coupled qubits), at that time having backend
version 1.0.17 (dated 9 November 2021). Even though we
performed computations on qubit 0 only, we present data for
all qubits in the table at the end of the appendix, where we list
qubit frequencies f , times T1 and T2, single-qubit errors ε1,
and z-measurement errors εM .

The native gate set is CX (controlled X), ID (identity),
IF_ELSE (classical dynamical conditioning), RZ (parametric
z-rotation), SX (square root of X), X (bit flip/NOT operation in
the computational z-basis).

For completeness we describe also some of the operations.
The gate X can be represented by the Pauli σx matrix, and as a
result SX performs a unitary rotation described by the matrix

√
σx = 1

2

(
1 + i 1 − i
1 − i 1 + i

)
.

The gate RZ performs a parametric unitary rotation given by
the matrix

Rz(θ ) =
(

e−i θ
2 0

0 e+i θ
2

)
.

Finally, we have used the gate RY which performs the para-
metric rotation

Ry(θ ) =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
.

Since this gate does not belong to the native gate set of
ibmq_manila, it needs to be further decomposed. One can use
the identity

Ry(θ ) = i
√

σxRz(π − θ )
√

σxRz(π ).

As we used the automatic regime of Qiskit transpiler, the
actual decomposition might vary and is possibly further opti-
mized by the transpiler together with the rest of the optimized
circuit.

Qubit f (GHz) T1 (μs) T2 (μs) ε1 εM

0 4.96(3) 208 116 2.06 × 10−4 2.30 × 10−2

1 4.83(8) 227 86 2.46 × 10−4 2.80 × 10−2

2 5.03(7) 179 25 2.41 × 10−4 2.27 × 10−2

3 4.95(1) 134 62 1.69 × 10−4 2.14 × 10−2

4 5.06(6) 147 41 3.13 × 10−4 2.29 × 10−2
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