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Superresolution imaging with multiparameter quantum metrology in passive remote sensing
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We study super-resolution imaging theoretically using a distant n-mode interferometer in the microwave
regime for passive remote sensing, used, e.g., for satellites like the “Soil Moisture and Ocean Salinity” (SMOS)
mission to observe the surface of the Earth. We give a complete quantum-mechanical analysis of multiparameter
estimation of the temperatures on the source plane. We find the optimal detection modes by combining incoming
modes with an optimized unitary that enables the most informative measurement based on photon counting in
the detection modes and saturates the quantum Cramér-Rao bound from the symmetric logarithmic derivative for
the parameter set of temperatures. In our numerical analysis, we achieved a quantum-enhanced super-resolution
by reconstructing an image using the maximum likelihood estimator with a pixel size of 3 km, which is ten times
smaller than the spatial resolution of SMOS with comparable parameters. Further, we find the optimized unitary
for uniform temperature distribution on the source plane, with the temperatures corresponding to the average
temperatures of the image. Even though the corresponding unitary was not optimized for the specific image, it
still gives a super-resolution compared to local measurement scenarios for the theoretically possible maximum
number of measurements.
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I. INTRODUCTION

The technology of imaging is currently undergoing a rapid
evolution both due to enhanced computational techniques [1]
and due to insights from quantum information processing and
quantum metrology. It has become clear that the paradig-
matic resolution limit found by Abbe and Rayleigh, based
on the interference of classical waves set by the wavelength
of the light, is not the ultimate fundamental bound if the
quantum nature of light is taken into account. In quantum
optics it was realized already in the 1960s in the context of
the explication of the Hanbury–Brown Twiss effect [2,3] that
fundamentally the interference of light should be considered
in Hilbert space and can lead to higher-order correlations that
contain information beyond the first-order correlations rele-
vant to the interference patterns of classical electromagnetic
waves. Experimentally, super-resolution was demonstrated by
Hell in 1994 (see Refs. [4,5]), who resolved a molecule
with nanometer resolution with light in the optical domain
by a decoration of the molecule with pointlike emitters and
quenching them selectively. Early theoretical work used the
techniques of optimal parameter estimation to estimate the
ultimate sensitivities of radar and, in fact, led to the devel-
opment of quantum parameter estimation theory [6–9]. Much
later, quantum parameter estimation theory was applied to de-
termine optimal detection modes and ultimate sensitivities for
arbitrary parameters encoded in the quantum state of Gaussian
light [10,11]. In 2016, Nair and Tsang [17] wrote a seminal
paper that considered the problem of ultimate resolution as a
quantum parameter estimation problem for the distance be-

*saban-emre.koese@uni-tuebingen.de
†daniel.braun@uni-tuebingen.de

tween the two sources. They found that the quantum Fisher
information (QFI) that sets the ultimate bound remains finite
for two point sources of low, identical intensity in the limit of
vanishing separation, whereas the classical Fisher information
linked to intensity measurements in direct imaging vanishes.
A large amount of theoretical [12–36] and experimental re-
search [37–42] followed that corroborated and generalized
this insight.

Most of these works concentrated on estimating one or few
parameters, however, typically linked to geometrical informa-
tion like the spatial separation or position of point sources and,
in some cases, optical phase imaging, i.e., the joint estima-
tion of the phases with respect to a reference mode [43–46].
While this led to important insights and solid evidence that,
in many situations, quantum parameter estimation techniques
can enhance resolution beyond the classical diffraction limit,
imaging typically does not aim at recovering information
about the separation or, more generally, the spatial position of
point sources. Instead, in a typical image, the scene is covered
by pixels of known locations and one wants to know for each
pixel the intensity of the source in that point, its spectral com-
position, polarization, etc. Since an image typically consists
of many pixels, imaging is then inherently a (quantum) many-
parameter estimation problem, and corresponding techniques
should be applied to obtain the best possible image reconstruc-
tion quality based on the gathered measurement results.

In this paper, we take an important step in this direction in
passive remote sensing of Earth in the micro-wave domain,
building on our previous work [47]. Here, the state of the
art is interferometric antenna synthesis, with which a large
effective antenna can be formed from a set of small antennas,
with corresponding enhanced resolution. For example, the
“Soil Moisture and Ocean Salinity” (SMOS) satellite is an
interferometer with a Y-shaped array of 69 antennas where
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FIG. 1. The Gaussian state ρ(θ) of the n-mode interferometer
contains the spatial and the radiometric information from current
density sources. The incoming modes b̂i are combined with an
optimized U to have detection modes d̂i of the photon counting
measurement. For experimental realization, one can decompose U
into SU (2) group elements similar to optical quantum computing,
i.e., using beam splitters and phase shifters. After the measurements,
one estimates the parameter set using an estimator function such as a
maximum likelihood estimator (MLE).

each arm has a length of around 4 m [48–51]. It achieves a
resolution of about d � 35 km, from a distance R � 758 km
above the surface of Earth by measuring the thermal noise
in a narrow frequency band of electromagnetic fields (1420–
1427 MHz, central wavelength λ � 21 cm). The electric fields
are sampled in real time, filtered, and interfered numeri-
cally, implementing thus purely classical interference. The
diffraction limit analogous to the ones by Abbe and Rayleigh
is given here by the van Cittert–Zernike theorem [52–54],
d � λR/�xi j , where �xi j is the maximal spatial separation
between two antennas. From the interferometric data one can,
via inverse spatial Fourier transform, estimate the local bright-
ness temperatures Teff on the surface of Earth with resolution
d , and from these, with appropriate models, the soil moisture
and ocean salinity. This information is of great importance for
the geosciences, monitoring of Earth, climate modeling, flood
predictions, and much more. Driven by these applications,
there is the desire to enhance the spatial resolution but simply
increasing the size of the satellite becomes unpractical and
lowering its orbit reduces its lifetime.

Here we show that with appropriate techniques from mul-
tiparameter quantum estimation theory, one can reconstruct
images of Earth with roughly a factor 10 better spatial res-
olution than SMOS with a satellite of comparable size. We
demonstrate this with images of up to 30 pixels, showing
that they can be reconstructed faithfully with a pixel size of
3 km. Instead of local measurement of the incoming modes
of the interferometer, we combine the modes with a unitary
transformation that enables nonlocal measurements. We find
the optimal unitary matrix that minimizes the scalar classi-
cal Cramér-Rao bound (CCRB) [55] for the classical Fisher
information matrix for the chosen measurements contracted
with a weight matrix. The corresponding unitary matrix can
be decomposed into phase shifters and, at most, n(n − 1)/2
beam splitters, as is well known from linear optical quantum
computing [56]. This allows us to quantum program optimal
measurement schemes for imaging. Contrary to classical com-
putational imaging [1], the quantum computation for this new
kind of “quantum-computational imaging” is done before the
measurements (see Fig. 1).

Multiparameter quantum estimation theory is by itself
a rapidly evolving field. Recently, there have been many
different works, e.g., multiparameter estimation of several

phases [43], estimation of all three components of a magnetic
field [57], optimal estimation of the Bloch vector components
of a qubit [58], multiparameter estimation from Markovian
dynamics [59], etc. (see the review article [60]). For a limited
sample size, like in passive sensing, it is crucial to estimate
the image’s parameters simultaneously. The multiparameter
quantum Cramér-Rao bound (QCRB) can, in general, not be
saturated. Optimal measurements linked to different parame-
ters do not typically commute and hence lead to incompatible
measurements. Once the commutation on average is satisfied,
the quantum limit is asymptotically attainable [61].

We build on our previous work [47,54,62], where we
showed that thermal fluctuations of the microscopic currents
lead to Gaussian states of the microwave field and hence
allow one to use the QCRB for Gaussian states [10,11,63,64].
As before, we assume that only the current densities at the
surface of Earth contribute and neglect the cosmic microwave
background as well as additional technical noises [65–67].

We organize the rest of the paper as follows. In Sec. II,
we introduce the quantum state received by the n-mode
interferometer, as well as the QFI, the symmetric loga-
rithmic derivative (SLD), and the corresponding quantum
Cramér-Rao lower bound. Further, we present the optimal
positive operator-valued measure (POVM), which minimizes
the most informative bound for the multiparameter estima-
tion. In Sec. III, first, we discuss the simple problem as a
benchmark considering two-pixel sources with the two-mode
interferometer. We analyze the quantum advantage with the
optimal unitary compared to local measurement scenarios.
Second, we increase the number of pixels by considering a
one-dimensional (1D) array of sources with a 1D array in-
terferometer. We examine how closely we can approach the
quantum limit of sensitivity with our parameter set. Third,
we consider a two-dimensional (2D) source image with a 2D
array interferometer. Using the maximum likelihood estimator
(MLE), we reconstruct the image for the POVMs with the
optimized unitary specific to the image, the optimized unitary
for uniform temperature distribution, and local measurements.
We conclude in Sec. IV.

II. THEORY

A. State received by the n-mode interferometer

In previous work [47], we analyzed the quantum state radi-
ated from current current distribution j(r, t ) [62,68–77] on the
source plane. We show that the state of the incoming modes of
the n-mode interferometer from these radiated sources can be
modeled as circularly symmetric Gaussian states with a partial
coherence, which encodes the information of position and am-
plitudes distribution of the sources. Then after the scattering
process [78,79] from the interferometer, the partially coherent
state received in the n modes is represented by

ρ =
∫

d2nβ�({βi})|{βi}〉〈{βi}|, (1)

where |{βi}〉 is a multimode coherent state for spatial antenna
modes, {βi} = β1, β2, . . . , βn, and

�({βi}) = 1

πn det �
e−β̄†�−1β̄ , (2)
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where β̄T = (β1, β2, . . . , βn) is the Sudarshan-Glauber rep-
resentation, and d2nβ ≡ dReβ1dImβ1 . . . dReβndImβn. The
matrix � is the coherence matrix for n antenna modes, and its
elements are defined as �i j = 〈b̂†

i b̂ j〉. Considering the sources
of these fields are generated by random current distribution
on the source plane and assuming that each antenna has the
same polarization direction êl and they filter incoming fields
with the same frequency ω0 with a bandwidth B, then one
finds a relation between 〈b†

i b j〉 and the average current density
distribution on the source plane as [47]

〈b̂†
i b̂ j〉 = K

∫
d3r

〈|J̃t,l (r, ω)|2〉 eiω0(|r−r j |−|r−ri|)/c

|r − ri||r − r j |

× sinc

[
B

2c
(|r − r j | − |r − ri|)

]
, (3)

where d3r is the integral over the source volume, ri is the
location of the detector for received modes in the detec-
tion plane, and sinc(x) = sin(x)/x. J̃t,l (r, ω) is the Fourier
transform of the locally transverse component of the cur-
rent density J (r, t ) and l stands for the component parallel
to the source plane. Considering R as the distance between
source and detection planes, we can parametrize the inte-
gral over Earth’s surface as r = (x, y, R) with respect to
the coordinate system of the detection plane. Assuming that
we are in the far-field regime |�ri j | � R, where �ri j =
r j − ri is the distance between two antennas, we approx-
imate |r − r j | − |r − ri| ≈ �ri j · r/|r|. In the denominator,
we approximate |r − ri| ≈ R/ cos θ̃ (x, y) with θ̃ (x, y) the po-
lar angle between the z axis and the vector (x, y, R). We
find the relation of the average amplitude of current den-
sity distribution to brightness temperature as TB(x, y) by
〈|J̃t,i(r, ω)|2〉 = K1TB(x, y) cos θ̃ (x, y)δ(z − R), where K1 =
32τckB/(3l3

c μ0c). Further, one can define the effective temper-
ature as Teff (x, y) ≡ TB(x, y) cos3 θ̃ (x, y). We include an extra
constant prefactor μ for the additional losses, which can be
justified by tracing out modes of losses ĉ into which photons

might scatter by writing b̂ = √
μ ˆ̃b + √

1 − μĉ. Compared to
the actual physical temperature, the brilliance temperature is
additionally modified by the albedo of the surface from which
important information, such as the surface’s water content or
the ocean water’s salinity, can be extracted. For simplicity,
we work with the physical temperatures in the following,
i.e., set TB(x, y) = T (x, y). Following these assumptions and

dropping the ∼ from ˆ̃b, we simplify Eq. (3) as

〈b̂†
i b̂ j〉 = μκ

R2

∫
dxdy Teff (x, y)e2π i(vi j

x x+v
i j
y y). (4)

We introduced a new constant κ = K1K ≡ 2kB/(π h̄ω0) where
κ has the dimension of inverse temperature with SI units
(1/K) and v

i j
y = �xi j/(λR), v

i j
x = �yi j/(λR) with ω0/c =

2π/λ. Considering the parameters of SMOS, we find κ = 9.4
1/K. The SMOS has a Y shape where each arm has a length
of almost 4 m. Therefore, it is reasonable to set maximum
baselines �xmax = �ymax around 10 m.

B. Estimation theory of the sources

1. Quantum Cramér-Rao bound

For a quantum state ρθ that depends on a vector of l
parameters θ = (θ1, θ2, . . . , θl )T , an ultimate lower bound of
an unbiased estimator of the parameter set is given by the
quantum Cramér-Rao bound (CRB), which states that the
covariance matrix of any such estimator is equal to or greater
than the inverse of the QFI matrix (in the sense that their
difference is a positive-semidefinite matrix). The CCRB from
measurement is lower bounded by the QCRB [6,7,60] given
by

Cov(θ̃) � F (θ)−1, Fi j (θ) = 1
2 Tr(ρθ{Li,L j}), (5)

where Cov(θ̃) is a covariance matrix for the locally unbiased
estimator θ̃ [61,80], the {·, ·} means the anticommutator, and
Li is the SLD related to parameter i, which is defined sim-
ilarly to the single parameter case, 1

2 (Liρθ + ρθLi ) = ∂iρθ.

The SLD and the elements of the QFI matrix are given in
Ref. [81] for any Gaussian state. The SLD can be written as

Li = 1
2M

−1
αβ,γ δ (∂i�

γδ )(bαbβ − �αβ ), (6)

where M−1
αβ,γ δ is the fourth-order tensor form of the inverse of

the matrix M ≡ � ⊗ � + 1
4� ⊗ �, with � = ⊕n

k=1 iσy, and
the summation convention is used for repeated indices. In our
case, the mean displacement of the Gaussian state is zero. Co-
variance matrix elements are given by �αβ = 1

2 Tr[ρ(bαbβ +
bβbα )], with b = [b1, b†

1, b2, b†
2, . . . , bn, b†

n] [10,81–85]. Then
the elements of the QFI matrix in [81] become

Fi j = 1
2M

−1
αβ,γ δ∂ j�

αβ∂i�
γδ. (7)

Using the properties of the Gaussian state (circularly symmet-
ric and with zero mean) we can write the SLD for n mode
interferometers as [47]

Li =
n∑
j

gj
i b̂

†
j b̂ j +

n∑
j<k

[
gjk

i b̂†
j b̂k + (gjk

i )∗b̂†
kb̂ j

] + C, (8)

where C is a constant term that can be dropped for diago-
nalization purposes. In the single parameter case, the optimal
POVM is the set of projectors onto eigenstates of Li. It allows
one to saturate the QCRB in the limit of infinitely many mea-
surements using maximum likelihood estimation [6,86,87].
To find the POVMs from the SLD, we construct a Hermitian
matrix Mi whose diagonal elements are real-valued functions
which are defined as gj

i ≡ M−1
αβ,γ δ (∂i�

γδ ) with α = 2 j and
β = 2 j − 1. The off-diagonal elements are complex-valued
functions and defined as gjk

i = M−1
αβ,γ δ (∂i�

γδ ) with α = 2 j
and β = 2k − 1 and k > j. By introducing a new set for
the field operators such that b̄† ≡ [b̂†

1, b̂†
2, . . . , b̂†

n] and b̄ ≡
[b̂1, b̂2, . . . , b̂n]T , we write the SLD in the following form:

Li = b̄†Mib̄. (9)

As Mi is a Hermitian matrix it can be unitarily di-
agonalized by Mi = V†

i DiVi with V†
i Vi = I. A new set

of operators can be defined as d̄†
i = b̄†V†

i where d̄†
i =

[d̂†
i1, d̂†

i2, . . . , d̂†
in]. The optimal POVM for the single pa-

rameter case (i = 1, which we drop in the following)
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can be found as a set of projectors in the Fock ba-
sis {|m1, m2, . . . , mn〉 〈m1, m2, . . . , mn|}{m1,m2,...,mn} of the d̂l

with d̂†
l d̂l |m1, m2, . . . , mn〉 = ml |m1, m2, . . . , mn〉, where l ∈

{1, . . . , n}. The d̂l will be called “detection modes.” By intro-
ducing a positive weight matrix w, one can define the scalar
inequalities from the matrix valued QCRB as Tr[w Cov(θ̃)] �
Tr(wF (θ)−1) ≡ CS (θ,w). Contrary to the single parameter
case, the multiparameter QCRB can generally not be satu-
rated. Holevo realized this problem and proposed a tighter
and more fundamental bound [88] CH (θ,w), which is upper
bounded by 2CS (θ,w) [55,89]. If the SLD operators for differ-
ent parameters commute on average Tr(ρθ[Li, Lj]) = 0, then
the Holevo-CRB is equivalent to the QCRB, and the QCRB
for multiparameter estimation can be saturated asymptotically
with a collective measurement in the limit of an infinitely large
number of copies ρ⊗N

θ
[55,61]. The standard deviation of the

estimator decreases proportionally to 1/
√

N for the sample
size of N . The SMOS satellite travels at a constant speed of
around v � 7 km/s. It takes time τ = L/v to fly at a distance
L. Each sample has a lower bound for the detection time given
by tD � 1/B. In practice, the practical detection time might
be much larger due to, e.g., deadtimes of the sensors, slow
electronics, etc. In addition, zero temperature of the detector
and modes b̂i is implicitly assumed in our calculations but
would require cooling down to temperatures much smaller
than h̄ω0. If the actual detection time is t eff

D , the maximum
sample size becomes N = τ/t eff

D .

2. Most informative bound for multiparameter metrology

The most informative bound minimizes the classical scalar
Cramér-Rao bound over all the possible POVMs. In the single
parameter case, from the diagonalization of the SLD, we see
that one needs to combine the incoming modes with a unitary
transformation to saturate the QCRB single parameter case.
This transformation, even for a single parameter, depends
on the parameter itself. In the multiparameter case, any of
these specific unitary transformations for a specific parameter
usually gives a more significant mean-square error for the
remaining parameters. Using the clue from the SLD structure,
we drop the index i from the unitary transformation of the
modes and minimize the scalar bound of the classical Fisher
information matrix for multiparameter estimation over all pos-
sible unitaries. Then, a new set of operators for the detection
modes can be defined as d̄ = Ub̄ where d̄T = [d̂1, d̂2, . . . , d̂n],
where U is the corresponding unitary transformation of the
field modes. The average values of the elements of the new
coherence matrix �̃ can be found by using d̂i = ∑

l Uil b̂l as

�̃i j = 〈d†
i d j〉 =

∑
kl

U ∗
ikUjl〈b†

kbl〉. (10)

Then we will have the probabilities after measurement
P(m1, ..mn|θ1, θ2, . . . , θl ) as

P({mk}|θ) =
∫

d2nδ�̃({δi})|〈{mk}|{δi}〉|2

=
∫

d2nδ�̃({δi})
∏

i

e−|δi|2 |δi|2mi

mi!
, (11)

where |{δi}〉 is a coherent state of the detection modes and
�̃({δi}) is the Sudarshan-Glauber function for the state of the
detection modes. Due to the linear transformation from b̄ to
d̄, it is still a Gaussian. It is difficult to evaluate the integral
of P({mk}|θ) for all possible values of mk and keep track of
all possible combinations of photon number counts, both nu-
merically and experimentally. Hence, instead of considering
projections on the complete Fock basis as POVMs, we choose
the POVMs with at most one photon per measurement and
limit ourselves to

∑
k mk � 1. Clearly, the resulting informa-

tion loss is negligible for light that, from the very beginning,
is very faint, with at most one photon per mode. However,
it can be important for stronger light sources, for which one
should try to resolve the photon numbers. We have the order of
ten photons per mode for thermal microwave sources at room
temperature. We see below that even without resolving their
number, we can already largely surpass the classical resolution
limit, but there is room for further improvement by going
beyond the single-photon detection scheme we analyze in the
following.

The selected POVM elements of single-photon detection
are

�0 = |0, 0, . . . , 0〉 〈0, 0, . . . , 0|,
�k = |0, 0, . . . , 1k, . . . , 0〉 〈0, 0, . . . , 1k, . . . , 0|,

�n+1 = I −
n∑

l=0

�l , (12)

where the last element (n + 1) ensures
∑n+1

l=0 �l = I. The
measurement probability of no photon in any interferometer
mode becomes

P0(θ) = 1

πn det �̃

∫
d2nδe−δ†(�̃−1+I)δ

= 1

det(�̃ + I)
. (13)

The single-photon detection probabilities in each mode of the
interferometer follow as

Pk (θ) = 1

πn det �̃

∫
d2nδe−δ†(�̃−1+I)δ|δk|2

= [(�̃−1 + I)−1]kk

det(�̃ + I)
. (14)

The probability to find more than a single photon per mea-
surement can be found as

Pn+1(θ) = I −
n∑

k=0

Pk . (15)

We also show the first derivative of the probability distribu-
tions of no photon detection from measurements analytically
to be given by

∂P0(θ)

∂θi
=

(
1

det(�̃ + I)

)
Tr

(
−(�̃ + I)−1 ∂�̃

∂θi

)
. (16)
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The first derivative for at most single-photon detection for all
modes becomes

∂Pk (θ)

∂θi
=

(
1

det(�̃ + I)

)

×
{[

(�̃−1 + I)−1�̃−1 ∂�̃

∂θi
�̃−1(�̃−1 + I)−1

]
kk

− [(�̃−1 + I)−1]kk Tr

(
(�̃ + I)−1 ∂�̃

∂θi

)}
. (17)

Finally, using Eqs. (13)–(17), the elements of the classical
Fisher information can be found from

Fi j =
n+1∑

l

1

Pl (θ)

∂Pl (θ)

∂θi

∂Pl (θ)

∂θ j
. (18)

The most informative bound [55] in this case is the bound
minimized over all possible unitary matrices:

Tr[w Cov(θ̃)] � min
U

{Tr[wF−1(θ)]}. (19)

The weight matrix is a positive definite matrix to satisfy the
scalar Cramér-Rao bound. For simplicity, we consider w = I
to optimize the average variance of all parameters. One can
also consider a diagonal matrix with different weights. This
will result in directly decreasing the variances of preferred es-
timators. Further, choosing a weight matrix with off-diagonal
elements includes covariances of the estimators. Since we
assume spatially uncorrelated currents, we focus here for sim-
plicity on the temperatures, with equal weight, rather than
their correlations, which is also a preferred choice in the
literature (see Ref. [55]).

3. Maximum likelihood estimation

Maximum likelihood estimators are widely used in esti-
mation theory and play an essential role in interpreting the
Cramér-Rao theorem [90,91]. One can estimate the set of
parameters with a given probability distribution with some
observed data. The likelihood function is given by l (θ) =∏n+1

k (Pk (θ))Nk , where the total number of samples is given
by N = ∑n+1

k Nk with Nk realizations of outcome k. Since the
logarithm is a monotonously increasing function, the log of
the likelihood function is maximized by the same parameter
vector θ. Thus, the MLE θ̂MLE is a value of θ that maximizes
the log likelihood L(θ) = ln[l (θ)],

θ̂MLE = arg max
θ∈�

L(θ), (20)

where the max is taken over the entire parameter space �. For
sufficiently large sample size, N → ∞, θ̂MLE converges to the
true value of the parameter set θ.

III. RESULTS: ESTIMATION OF SOURCE
TEMPERATURES

In this paper, our purpose is to estimate the function
T (x, y). Equation (4) allows us to study any source distri-
bution on the source plane. For that aim, we partition the
electromagnetic field’s source on Earth’s surface into square
pixels of size a and effective pixel temperature Ti, located

under the interferometer in the x, y plane at a distance R
from the satellite. Thus, we are interested in estimating the
temperature distribution in the form

Teff (x, y) =
∑

i

TiBox(x − xi, y − yi ), (21)

where Box(x, y) is defined as

Box(x, y) �
{

1 |x| � a
2 and |y| � a

2
0 else

. (22)

Of course, this is a choice to simplify our problem to a limited
number of parameters. One could also describe T (x, y) using
different temperature distribution functions such as Gaussian
and define the parameter set according to this choice. Further,
we estimate the effective pixel temperatures Ti, assuming that
all the other parameters are known to a sufficiently large
precision. The diagonal elements of the coherence matrix (�)
of Gaussian states become

〈b̂†
kb̂k〉 = μκa2

R2

p∑
i

Ti, (23)

and the off-diagonal elements are

〈b̂†
kb̂l〉 =μκa2ηkl

R2

p∑
i

Tie
2π i(vx

kl xi+v
y
kl yi ), (24)

where k �= l and we defined ηkl ≡ sinc(vx
kl a) sinc(vy

kla). The
number of pixels along the x̂ and ŷ axis is px and py, respec-
tively, and the number of detection modes along these axes is
nx and ny, respectively. In total, we have p = px py pixels on
the surface and n = nxny detectors in the detection plane, of
which each measures one detection mode. We set the num-
ber of detection modes equal to the number of pixels in the
source plane, n = p, to leave no redundant parameter for the
estimation, and use nx = px and ny = py.

A. Resolution of two pixel sources

Let us start with two pixels (pixel 1 and pixel 2) with
temperatures T1 and T2 in the source plane with pixel size
a. Our goal is to estimate the temperatures of each source.
We set the central locations of these two sources in the
source plane to (−a/2, 0, R) and (a/2, 0, R), i.e., both are on
an axis parallel to the x̂ axis without any distance between
them. In the detection plane, we have two detection modes
d̂1 and d̂2 with detectors centered at positions (−�x/2, 0, 0)
and (�x/2, 0, 0) on the x̂ axis, respectively. In our previous
work [47], we showed that if the mean photon numbers in
each received mode of the two-mode interferometer, with
circular symmetric Gaussian state, are identical (〈b†

1b1〉 =
〈b†

2b2〉), then the SLDs for T1 and T2 commute on aver-
age Tr(ρθ[Li, Lj]) = 0. Thus the QCRB and Holevo-CRB
are equivalent: CS (θ,w) ≡ CH (θ,w). For each parameter, the
matrix Mi from the SLD with i ∈ {T1, T2} is of the form

Mi =
[

gi
1 |gi

2|eiφi

|gi
2|e−iφi gi

1

]
, (25)

where the φi, in general, depend on both T1 and T2. The φ1

and φ2 differ for single parameter estimation of T1 and T2. The
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FIG. 2. Temperature estimation of two pixels. (a) The diago-
nal elements of the Fisher information matrix (dimensionless) as
a function of φ. The dashed curves are for FT1 , and solid curves
are for FT2 . (b) The scalar CRBs as a function of φ scaled with
the average temperature T̄ square of the sources. The flat lines are
for the QCRBs, and the others are the CCRBs for the measurement.
(c) The scalar CRBs as a function of the temperature difference of
two pixels. Solid black is for QCRB, red dotted is for CCRB for opti-
mized φ, and the green dashed curve is for the scalar CCRB for local
measurement considering U = I. (d) The gain factor of the estimate
R as a function of φ. The flat lines are from the QCRBs, and the
others are the CCRBs from the measurement. In figures (a), (b), and
(d), the blue curves are for uniform temperature, T1 = T2 = 300 K,
and red curves are for nonuniform temperatures, T1 = 400 K and
T2 = 200 K. The source size is a = 4 km. The average temperature
in all figures is T̄ = 300 K and μ = 0.5.

unitary that diagonalizes each SLD is found as

Ui = 1√
2

[
1 eiφi

1 −eiφi

]
. (26)

Since the unitary is parametrized with a single parameter,
we can drop the index i and find the φ that gives the most
informative bound for joint estimation of both T1 and T2. In
Fig. 2(a), we plot the diagonal elements of the classical Fisher
information (CFI) matrix in Eq. (18) as a function of φ. If
T1 (dashed) and T2 (solid) are equal, T1 = T2 (blue lines),
a diagonal element F1 or F2 can be obtained by mirroring
the other with respect to φ = π/2. For different tempera-
tures, T1 > T2 (red lines), the CFI matrix elements are not
symmetric anymore. We observe that max(F1) > max(F2),
and their difference is related to temperature changes, which
means that we can estimate the pixel with higher temperature
better. We keep the average temperature (T̄ ) constant. In both
cases, we have the maximum value of CFI matrix elements
max(F1) = max(F2) at different φ and diagonalize the SLD
for each parameter for single parameter estimation.

In Fig. 2(b), we plot Tr(F−1)/(T̄ 2) as a function of φ for
T1 = T2 (blue) and T1 > T2 (red) temperature configurations.
The scalar QCRBs are given by solid blue (T1 = T2) and
dotted red (T1 > T2) flat lines, respectively. We see that for
T1 = T2 (dot-dashed blue curve), we have the minimum of the
scalar CCRB at φ = 0.5π , and for T1 > T2 (dashed red curve),

the minimum value is slightly shifted to the left. In both cases,
the QCRBs are saturated. We see that the magnitudes of scalar
QCRBs for T1 = T2 and T1 > T2 are close to each other if we
keep the same T̄ in both configurations. We also observe that
Tr(F−1)/(T̄ 2) for T1 > T2 (dashed red curve) at φ = π/2 is
still close to the QCRB (red dotted flat line). Even though to
saturate the QCRB, φ must depend on the temperatures of
all pixels, one can find the φ for T1 = T2 = T̄ and use it to
estimate different temperature configurations (T1 > T2).

In Fig. 2(c), we compare the most informative bound for
optimal φ with the CCRB of local measurement (i.e., U = I)
for joint estimation of T1 and T2 for a single measurement. We
see that the dimensionless CCRB for the local measurement
(green dashed line) goes to ∞ when the two sources have
the same temperature. For a temperature difference around
≈10 K, it is around ≈106, which is almost ≈104 times larger
than for an optimal nonlocal measurement using Uopt (red
dotted line). We also see that the optimal unitary saturates the
QCRBs (solid black line). The bounds given in Fig. 2 are for
a single measurement (N = 1) and reduced by a factor N for
N independent measurements.

One can wonder what is the advantage of joint estimation
of parameters over single parameter estimation. To answer
that question, we can define the gain factor of the joint esti-
mate [92,93]:

R = p
p∑
i

1/Fii

Tr (F−1)
, (27)

where p is the total number of the parameters we want to
estimate. The F stands for both the QFI matrix F and the
CFI matrix F . The gain factor R is upper bounded by p
(0 < R � p), where the factor p arises from the fact that
for p single parameter estimations, the number of samples
available for each parameter is reduced by a factor p compared
to the total sample size, as different optimal measurements are
typically required for different parameters. Since we have only
two parameters to estimate (T1 and T2), the upper bound of
the gain factor becomes R � 2. If the gain factor is smaller
than 1, R < 1, then we do not have any advantage from
joint estimation. In Fig. 2(d), we show the gain factor R of
the estimation as a function of φ. It is close to 2 for the
scalar QCRBs of T1 = T2 (solid blue) and T1 > T2 (dotted
red straight lines). Furthermore, this advantage is achieved by
the optimized unitary for CCRBs of T1 = T2 (dot-dashed blue
curve) and T1 > T2 (dashed red curve). We have almost twice
the advantage compared to single parameter estimation.

B. Resolution of a 1D array of pixel sources

We next consider a 1D array of pixels aligned parallel to the
detector modes on the x̂ axis (px = nx and py = ny = 1). The
size a of a pixel is the same for all pixels, and the separation
between the two nearest pixels vanishes. The central position
of each pixel is given by x̃ j = (2 j − px − 1)a/2, and the
position of detector k is xk = (2k − nx − 1)�xmax/nx, where
j ∈ {1, . . . , px} and k ∈ {1, . . . , nx}. The parameters that we
want to estimate are the temperatures of each pixel given by a
vector θ = {T1, T2, . . . , Tpx }.
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FIG. 3. (a)–(c) The temperature distribution of the 1D pixels with uniform temperature (blue bars) and different temperatures (red bars)
for three, five, and seven pixels of the sources from (a) to (c), respectively. (d)–(f) The scalar CRBs (dimensionless) as a function of μ for the
number of source pixels corresponding to (a)–(c). The solid blue and dashed red curves describe the QCRBs, and dotted red curves and dashed
dotted blue curves describe the CCRBs for uniform and random temperature configurations. The insets show the total photon number as a
function of μ with a solid green line. The pixel size for (d)–(f) is 2.5 km. (g)–(i) The scalar CRBs as a function of the source size a. The blue,
red, and black lines correspond to different μ = (0.1, 0.5, 1.0), respectively. The solid lines represent the QCRBs, and dashed, dash-dotted,
and dotted lines represent the scalar CCRBs of single-photon measurements with optimized unitary specific to different pixel configurations.
The insets show the total photon number in the detector as a function of pixel size a, with the corresponding color of different μ. The average
temperatures are assumed to be T̄ = 300 K, and the sample size is set to be N = 106.

The unitary U becomes a nx × nx matrix, and we need
n2

x real parameters. Varying all the parameters of U indepen-
dently to find a minimum for our cost function is a difficult
task. Therefore, for n > 2, we use the steepest decent algo-
rithm to minimize the most informative bound in Eq. (19). An
efficient algorithm to minimize a given cost function with an
argument of the Lie group of unitary matrices U (n) is pro-
posed in Ref. [94]. The unitary group U (n) is a real Lie group
of dimension n2. In each iteration step, the conjugate gradient
(CG) algorithm moves towards a minimum along the geodesic
on the Riemannian manifold, corresponding to a straight line
in Euclidean space. We explain the details of the CG algorithm
adapted from Refs. [94–97] in the Appendix. These types
of algorithms are widely used in classical communication
systems. This paper uses the algorithm to optimize the POVM
to achieve the quantum limit for imaging in passive remote
sensing. We verified numerically that for our choice of the
parameter set, the SLDs for different parameters commute on
average over the corresponding quantum state for the n-mode
interferometer.

In Fig. 3, we analyze the QCRB and the CCRB for dif-
ferent numbers of source pixels px (3, 5, and 7). The average

temperatures are fixed to T̄ = 300 K for both random temper-
ature distributions (left, red bars) and the uniform temperature
distribution of the pixel sources (right, blue bars). From
Figs. 3(d)–3(f), we show how the classical bounds from our
measurement with optimized unitary change as a function of
μ; insets show the changes of the corresponding total photon
numbers as a function of μ in each configuration. Since the
total mean photon number of the detection modes (solid green
lines) decreases with μ and tends to Tr(�) � 1, the POVMs
of single-photon detections (red dotted and blue dash-dotted)
saturate the QCRBs (red dashed and solid blue) for different
and uniform temperature configurations, respectively. When
Tr(�) gets close to 1, we see that the gap between the
QCRB and the CCRB for single-photon measurement with
optimized unitary (Uopt) increases. Additionally, the QCRBs
decrease as the number of photons increases with μ, which
means more photons from each pixel increase the QFI of
the parameters. Thus, one needs to perform photon-number
measurements rather than just single-photon ones to achieve
the QCRB in this limit. Increasing the number of pixels p
increases the total photon number on the interferometer. Thus
the gap between the QCRBs and the CCRBs for measurement
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with optimized Uopt in each figure from Fig. 3(d) to Fig. 3(f)
increases.

In Figs. 3(g)–3(i), we compare how both bounds change
as a function of source size a for different temperature
configurations. The black, red, and blue solid lines provide the
QCRBs, and dashed black, dot-dashed red, and dotted blue
provide the CRBs for single-photon POVMs measurement
for different μ (0.1, 0.5, 1.0), respectively. Further, the insets
provide the total photon numbers in the detection modes.
We observe that the blue dotted lines (μ = 0.1) are very
close to the quantum limit and almost saturate the QCRBs
for each source configuration for different source sizes. Once
we increase μ, the gap between the two bounds increases as
a function of source size a due to the increased number of
photons. For instance, compare the gap for black dashed lines
(μ = 1.0) and blue dotted lines (μ = 0.1). This is due to the
limitation of the single-photon statistics for sources with a
total photon number greater than 1 [Tr(�) > 1].

In general, the optimal unitary depends on the parameters
(temperature distributions) we want to estimate. However,
in real-life cases, we need to gain knowledge of the pa-
rameters to optimize the unitary completely. As we discuss
in the section on two-pixel sources, a unitary for uniform
temperature distributions can also be used to estimate dif-
ferent temperatures with the same T̄ value. Experimentally,
one can estimate the average temperature separately and
construct the optimized unitary for the uniform temperature
distribution (Uuniform

opt ). One then uses it to estimate the actual
nonuniform temperature distribution. Further, we examine
how both bounds change as a function of the number of
pixels (px). In Fig. 4, we show the CCRBs for different
μ = (0.05, 0.1, 0.5, 1.0) in Figs. 4(a)–4(d), respectively. The
blue circles represent the initial random unitary for the CG
algorithm. The black triangles are the scalar QCRBs. The red
upward wedges are the scalar CCRBs from the optimized uni-
tary (Uimage

opt ) specific to random temperature distributions of
pixels. Further, the green downward wedges are for the opti-
mized unitary for uniform temperature distributions (Uuniform

opt )
of the pixels, used to estimate the corresponding random
unitary temperature distributions with the same pixel number
and the same average temperatures. The bounds from Uuniform

opt

(green wedges) and Uimage
opt (red wedges) are very close to each

other in this logarithmic scale. Also, both almost saturate the
QCRBs for μ = 0.05 and 0.1 for different px. When we raise
the number of pixels (px), we see that all bounds increase.
Moreover, the gap between QCRBs and CCRBs from single-
photon measurements becomes more significant for μ = 0.5
and 1.0 compared to μ = 0.1.

C. Resolution of 2D sources

This section considers an image with a total number of pix-
els p = px py on the image plane. The number n of the modes
of the 2D array interferometers will be considered the same
as p, with n = nxny. The size of each pixel is set to a = 3 km,
which is around ten times smaller than the spatial resolution of
SMOS considering the van Cittert–Zernike theorem, and the
separation between the two nearest pixels is again set to zero.
The parameters that we want to estimate are the temperatures
of the 2D image θ = {T1, T2, . . . , Tp}. We consider the case

FIG. 4. (a)–(d) The scalar CRBs (dimensionless) for differ-
ent numbers of pixels px along the x̂ axis in a 1D array and
μ = (0.05, 0.1, 0.5, 1.0), respectively. The black triangles represent
QCRBs, and red upward wedges represent the scalar CCRBs that
we get using the optimized unitary Uimage

opt specific to the actual
temperature distributions of source pixels. Green downward wedges
are for the unitary Uuniform

opt optimized for the uniform temperature
of the pixels used to estimate the actual temperature distribution
with the same average temperature. Blue circles correspond to scalar
CRBs for the initial random unitary before optimization. Pixel size
is a = 2.5 km, average temperature T̄ = 300 K, and sample size
N = 106.

of drastic photon losses and set μ = 0.01, which for T̄ ≈
293 K gives the total photon number around Tr(�) � 0.39. In
Fig. 5(a), we consider an actual image of h̄ using 30 pixels on
the image plane and a 30-mode interferometer on the source
plane. The unitary optimized (Uimage

opt ) for this image or the
unitary for a uniform temperatures distribution (Uuniform

opt ) is
applied in the preprocessing stage to estimate the parameters.
For the classical measurement, we consider a local measure-
ment scenario with U = I. Further, the image from different
measurement strategies is reconstructed by using a maximum
likelihood estimator for a sample of size N . In Fig. 5(b),
we reconstructed the image by using Uimage

opt . We have the
advantage of the nonlocal measurement and the optimized
unitary specific to the image. The reconstructed image is close
to the actual image for this parameter regime. Though this
unitary depends on the parameter set, we estimate that the
same resolution limit may be achieved using adaptive types
of measurement [98] by iteratively updating the unitary for
each sample after measurement.

However, this is beyond the scope of this paper. On the
other hand, for easy experimental realization, we reconstruct
the image by using Uuniform

opt in Fig. 5(c). One can inde-
pendently estimate the average temperature from the source
distribution and construct this general unitary for any image.
As we see, the reconstructed image still reveals the actual
image nicely, but as expected, it is not as sharp as the im-
age from a specifically optimized unitary. We reconstructed
the image from local measurement in Fig. 5(d). Clearly, this
reconstructed image is not close to the original one. This is
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FIG. 5. (a) The image on the source plane with 30 pixels will
be estimated using a maximum likelihood estimator. (b) The re-
constructed image after single-photon detection in detection modes
d̂i obtained from using the optimized unitary Uimage

opt specific to the
temperature distribution. (c) The reconstructed image using a uni-
tary optimized for uniform temperature distribution Uuniform

opt . (d) The
reconstructed image using a local measurement of single photons
considering U = I. Pixel size a = 3.0 km, average temperature T̄ ≈
293 K, and sample size N = 108.

expected for our pixel size a = 3 km, well below the limit of
the Rayleigh resolution for SMOS, which is around 35 km,
based on the van Cittert–Zernike theorem [48–51].

IV. CONCLUSION

In summary, we formulated passive remote sensing as a
quantum multiparameter estimation problem, where we fo-
cused on the temperatures on the ground as parameters rather
than geometrical information of sources that are currently
at the center of attention in quantum imaging, such as the
separation, centroid, or phases of sources. An antenna array
with as many antennas as desired pixels in the source plane
receives thermal electromagnetic radiation in receiver modes
that are then mixed according to an optimized unitary trans-
formation. Single-photon detectors detect the photons in the
corresponding optimized detection modes. The function to be
optimized is a scalar classical Cramér-Rao bound obtained
by contracting the inverse Fisher information matrix for es-
timating the temperatures from the photon-counting results
with a positive weight matrix. With the latter one we can
give different preferences for high resolution to different parts
of the image. The optimization of the bound over all unitary
mode mixings leads to a “most-informative bound [55].” For a

uniform weight over all pixels, we show that with this pro-
cedure, one can, in the case of the Gaussian white-noise
characteristic of thermal states, approximatively saturate the
scalar quantum Cramér-Rao bound based on the contraction
of the quantum Fisher information matrix for the multiparam-
eter estimation problem with the same positive weight matrix
(chosen as the identity in the present paper). In principle, the
optimized unitary depends on the actual temperature distribu-
tion, but we showed that the unitary obtained from a uniform
temperature distribution gives still much better resolution than
direct photon counting in the incoming modes. For the op-
timization over the unitaries, we used a conjugate gradient
algorithm. We showed that the found optimal mode of mixing,
followed by single-photon detection, leads to a spatial reso-
lution of the reconstructed images that are at least about an
order of magnitude better than Rayleigh’s limit (about 3 km
instead of 35 km for an antenna array comparable with the
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one of SMOS, even for substantial photon losses), given in the
present case by the van Cittert–Zernike theorem. The optimal
unitary can be decomposed into SU (2) group elements using
beam splitters and phase shifters and can be realized as linear
optical quantum computing. Given the recent availability of
single-photon detection in the microwave domain, our results
show a path towards substantially enhanced resolution in pas-
sive remote sensing compared to classical interferometers that
essentially implement homodyne quadrature measurements.
Further improvements might be possible for larger photon
numbers or smaller losses if photon-number resolved mea-
surements are available.
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APPENDIX: CONJUGATE GRADIENT ALGORITHM FOR
OPTIMIZATION

This section summarizes a practical CG algorithm given
by Refs. [94,96,97]. The generic CG algorithm starts with
(k = 0) finding the conjugate gradient Gk of the cost function
F (Uk ) for an initial unitary matrix, where

Gk = ∂

∂U∗ F (Uk ). (A1)

Then, the Riemannian gradient Wk at that point can be found
by

Wk = GkU†
k − UkG†

k . (A2)

By determining the step size α using the Armijo method (see
Ref. [95]) along the geodesic direction (in the direction of
−Hk), one can update the unitary by

Uk+1 = exp(−αHk )Uk . (A3)

Further, the new search direction can be found by using the
Polak-Ribierre formula Hk+1 = Wk+1 + γkHk , where

γk := 〈Wk+1 − Wk, Wk〉
〈Wk, Wk〉 . (A4)

The inner product defined as 〈X,Y 〉 ≡ Tr(X †Y )/2 induces
a bi-invariant metric on the unitary group U (n). We reset
the search direction periodically to ensure the direction of
Hk is a descent direction. Then the next iteration continues
accordingly (see pseudocode in Algorithm 1). The algorithm
runs until it converges to a minimum value of the cost function
or a maximum number of iterations kmax. To efficiently deal
with the gradient of the cost functions, we used the PYTORCH

gradient function. PYTORCH is used in machine learning for its
GPU capabilities.
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