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Individual addressing of trapped ion qubits with geometric phase gates
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We propose a scheme for individual addressing of trapped ion qubits, selecting them via their motional
frequency. We show that geometric phase gates can perform single-qubit rotations using the coherent interference
of spin-independent and (global) spin-dependent forces. The spin-independent forces, which can be generated
via localized electric fields, increase the gate speed while reducing its sensitivity to motional decoherence, which
we show analytically and numerically. While the scheme applies to most trapped ion experimental setups, we
numerically simulate a specific laser-free implementation, showing cross-talk errors below 10−6 for reasonable
parameters.
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I. INTRODUCTION

To achieve universal error-corrected quantum computation,
we require one- and two-qubit gates with infidelities below
∼10−5 and ∼10−4, respectively [1,2]. Perhaps more challeng-
ing, we must also perform them in a system that can scale to
thousands of qubits. Trapped ions are one of the most promis-
ing platforms for achieving these requirements [3–7] due to
their high gate fidelities, long coherence times, and all-to-all
connectivity [8–13]. Even so, there are challenges to address
before the platform can reliably operate with enough qubits
to perform useful computations. The now demonstrated quan-
tum charge-coupled device (QCCD) [14,15], where electrodes
are used to move ions between separated trap “zones,” each
with designated functions, could provide the modularization
needed to meet this challenge [5,16]. The question remains,
however, as to the best way of generating the gate fields
themselves.

There are two general approaches to creating these
fields, either with lasers or magnets. Laser-based approaches
have achieved one-qubit and two-qubit gates with infideli-
ties of ∼10−5 and ∼10−3 [10,11,13], respectively, and are
straightforwardly focused for individual addressing [17]. Un-
fortunately, they suffer from photon scattering [18], as well
as phase and amplitude noise. Laser-free gates, by contrast,
do not suffer from these issues [5,9,12,19–30]. Similarly, they
can operate at infidelities of ∼10−6 for one-qubit gates [9] and
∼10−3 for two-qubit gates [12,24,29]. Laser-free approaches
typically use microwaves and magnetic-field gradients, which
cannot be localized to individual ions; this makes single-qubit
addressing more difficult. One potential alternative architec-
ture is to use lasers to drive single-qubit gates and oscillatory
magnetic fields for two-qubit gates. While it is a promising
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compromise, this idea also has its drawbacks. First, this would
require optical access to the gate zone, an issue which could
be ameliorated with integrated phonics but would push their
current capabilities [31] and add experimental complexity.
Second, this would leave qubits sensitive to photon scattering,
which are less important for single-qubit error budgets, but
leads to state leakage that must be optically pumped, further
complicating the system.

The QCCD architecture makes this somewhat easier, as
it enables gate implementations in zones that are separated
by hundreds of microns. However, at these separations there
can still be significant cross-talk because magnetic fields from
current-carrying electrodes only decrease polynomially with
distance and there can potentially be inductive coupling to
other electrodes. While cross-talk can be mitigated somewhat
with active cancellation fields [32,33], schemes that require
fields resonant with qubit transitions will likely become more
complicated with qubit number N . This has been avoided by
separating the ions in qubit frequency space using magnetic-
field gradients [12,21,25,34,35]. Similarly, one could create
differential qubit frequency shifts between different zones in
a QCCD architecture, but this is limited in two ways. First,
the shifts should be stable and repeatable, requiring significant
book-keeping for larger systems. Second, the Rabi frequen-
cies of the gates must be smaller than the separations of their
qubit frequencies which could create a speed limit for larger
N . Most importantly, the ability to shift qubit frequencies
relative to one another is not possible while qubits are in
“clock” states, which would result in increased memory errors
by several orders of magnitude.

In this work, we propose the first geometric phase gate
[36–39] operation for directly implementing single-qubit ro-
tations; thus decreasing hardware complexity by enabling
single-qubit gates to be implemented with the same fields used
for two-qubit gates. Like its two-qubit parallel, our scheme
enables the separation of ions in motional frequency space by

2469-9926/2023/107(3)/032604(8) 032604-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5583-5150
https://orcid.org/0000-0002-8462-6072
https://orcid.org/0000-0002-7317-5560
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.032604&domain=pdf&date_stamp=2023-03-09
https://doi.org/10.1103/PhysRevA.107.032604


SUTHERLAND, SRINIVAS, AND ALLCOCK PHYSICAL REVIEW A 107, 032604 (2023)

FIG. 1. Illustration of the proposed single-qubit geometric phase
gate. (a) An E field, with strength �E , is combined with a similarly
detuned spin-dependent force, with Rabi frequency �p, producing
constructive and destructive interference with the |+〉 (blue) and |−〉
(red) eigenstates of the gate’s Pauli operator σ̂α , respectively. (b) This
interference causes the eigenstates to have distinct phase-space tra-
jectories. The difference in areas (purple) of the closed trajectories
� ≡ �+ − �− corresponds to the gate’s rotation angle.

differentiating zone potentials with locally tuned electrodes.
Thus, the scheme can be implemented exclusively with fields
that are detuned from all qubit transitions without modifying
their frequencies.

II. THEORY

Our scheme operates via the interference of spin-dependent
and spin-independent forces, both similarly detuned from the
motion. Here, both eigenstates of the spin-operator return to
the origin in phase space, but accumulate different geometric
phases (see Fig. 1). The scheme has an effective Rabi fre-
quency ∝ √

�E�p, where �E is the strength of an applied
E field and �p is that of an applied B-field gradient. The
dependence on

√
�E enables much faster single-qubit gates

compared to equivalent two-qubit gates; it is much easier
to generate large E -field couplings relative to those from
magnetic-field gradients. Compared to a ∝ �p two-qubit gate,
we show that infidelities are decreased by at least a factor of
∼�p/�E for static motional frequency shifts and motional
dephasing, as well as ∼(�p/�E )3/2 for heating. Lastly, we

perform numerical simulations using experimental parameters
similar to Ref. [12], showing we are able to reduce cross talk
to below 10−6.

We want to generate a single-qubit rotation

Ûg = e−iθσ̂α/2, (1)

where θ is the rotation angle of the gate while σ̂α ≡ n̂�σ ,
such that n̂ is a unit vector and �σ = (σ̂x, σ̂y, σ̂z ) is a vector
comprising the Pauli matrices. We will generate this effec-
tive interaction with accumulated geometric phases, where
the eigenstates |±〉 of σ̂α (eigenvalues ±1) acquire distinct
phases �± [see Fig. 1(b)]. Representing the system in the |±〉
eigenbasis, this gives a time propagator

Ûp |ψ〉 = c+ei�+ |+〉 + c−ei�− |−〉
= ei(�++�− )/2(c+e−i�/2 |+〉 + c−ei�/2 |−〉), (2)

where � ≡ �− − �+, showing, up to a global phase, that Ûg

is equivalent to Ûp when θ = �.
To generate Ûp, we add an E field to the typical geometric

phase-gate interaction

Ĥp = h̄�pσ̂α â†ei�t + h̄�E â†ei[�t+φ] + c.c., (3)

where � is the gate detuning, â†(â) is a creation(annihilation)
operator, and φ is the phase of the E field relative to the
spin-motion coupling. We considered Eq. (3) in a frame ro-
tating with respect to the qubit frequency, mode frequency
ωr , and assumed the rotating wave approximation for terms
oscillating near these frequencies. It is here worth noting that
the authors of Refs. [35,40–42] considered spin-dependent
interactions coupled to the traps’ rf micromotion, similarly
operating via spin-motion and E -field terms; this scheme
is disadvantageous compared to Eq. (3) because it leads to
temperature-dependent and nonzero higher-order terms in the
Magnus expansion (see the Appendix). Furthermore, using the
micromotion requires pushing ions off the rf null to induce
transitions. Aside from being sensitive to stray E fields which
can move the ions and lead to unwanted cross talk, this re-
quires an extra transport operation, which can be slow. We
can exactly describe Ûp with the Magnus expansion [43] up to
second order

Ûp = exp

(
− i

h̄

∫ tg

0
dt ′Ĥp(t ′) − 1

2h̄2

∫ tg

0

∫ t ′

0
dt ′dt ′′[Ĥp(t ′), Ĥp(t ′′)]

)
, (4)

where higher-order terms are exactly zero [44]. We ensure the
phase-space trajectories of |±〉 close by setting tg = 2πK/�,
where K is the number of loops traversed in phase space. Up
to a global phase this gives

Ûp = exp

(
4π iK�p�E

�2
cos[φ]σ̂α

)
, (5)

showing the gate is most efficient when the two interactions
in Ĥp are aligned, i.e., φ ∈ {0, π}; we henceforth assume
φ = 0. Setting � = (8πK�p�E/θ )1/2, we see Ûp = Ûg, up to
a global phase, with a gate time tg = (πKθ/2�p�E )1/2 and an
effective Rabi frequency of �eff ≡ θ/tg = (2�p�Eθ/πK )1/2.

Because its speed scales ∝ √
�E�p, it can potentially oper-

ate orders of magnitude faster than than a ∝ �p two-qubit
gate. All of the interactions used to generate the gate are
tuned to the frequency of the addressed well, affecting a gate
with potentially no fields on-resonant with any spectator qubit
transitions; this enables the elimination of cross-talk with
pulse-shaping.

While this derivation considered a single ion in a well, it
can be extended straightforwardly to include multiple ions in
a well. This could, in theory, be used to address individual ions
in the same well (see the Appendix). This requires the ability
to address a complete set of N orthogonal modes of motion,
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which could make the technique challenging to implement
when many ions are in the same well. In contrast to B-field
gradients, addressing some modes with an E field requires
a differential component; for example, the coupling strength
to the out-of-phase mode of a two-ion crystal is proportional
to the difference in the E -field amplitudes at the position of
each ion.

III. INSENSITIVITY TO MOTIONAL ERRORS

We now determine the infidelity of our scheme in the
presence of a nonzero heating rate ˙̄n, motional dephasing
rate η, and motional frequency shift gd . Trapped ion quan-
tum computers traditionally operate in a regime where the
infidelity is significantly lower for one-qubit gates than for
two-qubit gates. This is because two-qubit gates are slower
than one-qubit gates and they require a temporal window
where the qubits are entangled to the motion, rendering them
sensitive to motional decoherence as well as added control
errors [36,37,45]. As we are now proposing a scheme for
one-qubit gates that also requires spin-motion entanglement,
it is important to ensure that motional decoherence affects
I significantly less than its two-qubit counterpart. We here
consider the contribution of heating, motional dephasing, and
static motional frequency shifts to the gate infidelity I. To
evaluate I, we follow a technique that dates back to nuclear
magnetic resonance (NMR) [46], but was used more recently
to evaluate the contribution of various sources of noise to I
for two-qubit gates [45,47,48]. We consider a Hamiltonian in
the presence of an error term

Ĥt = Ĥp + Ĥe, (6)

where Ĥp is given by Eq. (3). Here, Ĥe represents the er-
ror term to be considered where Ĥe = 2h̄gh cos(ωt )(â†eiωr t +
âe−iωr t ) for heating and Ĥe = h̄gd cos(ωt )â†â for dephasing,
where gh(d ) are Rabi frequencies. For each source of error, we
evaluate the infidelity by first transforming into the interaction
picture with respect to either Ĥe (heating) or Ĥp (motional de-
phasing and motional frequency shifts) to produce a factorized
time propagator Ût,ω = ÛpÛe,ω, making the final equation for
infidelity

Iω =
∑

n′
|〈ψ (0)|〈n′|Ûe,ω|ψ (0)〉|n〉|2. (7)

We evaluate Ûe,ω either by Taylor expanding the exponential
(heating) or using perturbation theory (motional dephasing),
both up to second order. Finally, we determine I by averaging
over Sω, the normalized spectral power density

I =
∫ ∞

0
dωSωIω, (8)

subsequently making the Born-Markov approximation [45]
(see the Appendix). As shown in Ref. [45], this is mathe-
matically equivalent to the Lindblad formalism when I � 1.
We also determine I for static motional frequency shifts, i.e.,
the limit Sω → δ(ω) where δ(ω) is the Dirac delta function,
negating the need for the Born-Markov approximation. We
note that the insensitivity to static motional frequency shifts of
this gate also indicate an insensitivity to the Kerr-type interac-
tion between different modes [49]. This interaction takes the

TABLE I. Table of infidelities I for systems with motional states
with an initial Fock state n due to common sources of motional
decoherence.

Error type Effect on gate fidelity

Heating I = ˙̄n

√
�pθ3

8πK�3
E
λ2

σ̂α

Motional dephasing I = η

√
�pθ3

32πK�3
E

(
2n + 1 + 3θ�E

2πK�p

)
λ2

σ̂α

Motional frequency shifts I = g2
d θ2

16�2
E

(
2n + 1 + 2θ�E

πK�p

)
λ2

σ̂α

form of a static motional frequency shift that is proportional
to the phonon occupation of the spectator mode, assuming
the motional modes are initialized to a density matrix that is
diagonal in the Fock-state basis.

The results of these calculations, recorded in Table I, show
that we are proposing one-qubit gates that are significantly
less sensitive to motional decoherence than their two-qubit
counterparts. Compared to the analytic formulas for two-qubit
gates in Ref. [45], we find that I is reduced by at least a factor
of (�p/�E )3/2 for heating and of �p/�E for motional de-
phasing and static motional frequency shifts. Since �E is due
simply to an E field interacting with a charge, it can be several
orders-of-magnitude larger than �p (potentially limited by the
validity of the rotating wave approximation), leading to an
increase in speed and insensitivity to motional errors. This
insensitivity to motional decoherence is further illustrated in
Fig. 2, where we show I versus heating rate ˙̄n ≡ πg2

hSωr ,
motional decoherence rate η ≡ πε2S0/2 = 2/τ , where τ is

FIG. 2. Infidelity I versus (a) heating rate ˙̄n, (b) dephasing rate
η, and (c) static motional frequency shift magnitude |gd | for analytic
(dashed) and numerical (solid) calculations, when �p/2π = 2 kHz
and �E/2π = 100 kHz. In parts (a)–(c), we show calculations ini-
tialized to the motional ground state n = 0 with K = 1 loops in
phase space. We also illustrate that increasing K decreases the effect
each error source has on I, showing calculations where K = 4 and
n = 0. In parts (b) and (c), we illustrate the scheme’s temperature
dependence versus η and gd , showing calculations where K = 1 and
n = 10. Note that when I � 1, I is symmetric about gd = 0.
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the coherence time between neighboring Fock states and static
motional frequency shift magnitude |gd |. Here, we compare
the equations presented in Table I to direct numerical inte-
gration; this figure clearly demonstrates the accuracy of our
analytic formulas in the relevant parameter regimes. The de-
crease in sensitivity to these sources of motional decoherence
is larger than expected from the ∝ √

�E/�p increase to the
gate speed. This is due to the fact that the increased speed
comes from the interference of the gradient with the external
E - field, increasing the gate speed while simultaneously de-
creasing the time-averaged spin-motion entanglement.

IV. NUMERICAL EXAMPLE

Finally, we evaluate our scheme’s resilience to cross-talk
with a specific physical implementation [12,27,28], noting
that any protocol capable of generating a two-qubit geometric
phase gate (and the necessary E field) is capable of im-
plementing it. We here consider two ions in separate wells,
where one ion acts as the “target” qubit and the other as the
“spectator” qubit. The target well is designated a motional
frequency ωτ , while the spectator mode is designated a de-
tuned motional frequency ωs. Both are driven with a pair of
bichromatic microwave fields with Rabi frequency �μ, sym-
metrically detuned around the qubit frequency and an rf B-
field gradient with frequency ωg/2π = 5 MHz. The resulting
interaction is

Ĥμ = 2h̄
∑
γ=τ,s

�μσ̂+,γ cos(δt ) + �gσ̂z,γ cos(ωgt )â†
γ eiωγ t

+�E ,γ sin([ωτ − �]t )â†
γ eiωγ t + c.c., (9)

where σ̂α,γ is a Pauli operator acting on qubit γ , �E ,γ is
the E -field strength seen by qubit γ and δ is the detuning
of the microwave fields from the qubit frequency. The above
equation is in the rotating frame with respect to the motional
and qubit frequencies and we made the rotating wave ap-
proximation for terms oscillating near the qubit frequency.
Similar to Ref. [30], we can set δ = (ωτ − ωg) − �, and the
time propagator resulting from Eq. (9) can be evaluated in the
interaction picture with respect to the ∝ �μ term. Dropping
the fast rotating terms, this gives

Ĥμ,I � ih̄

(
�gJ1

[
4�μ

δ

]
σ̂y,τ + �E ,τ

)
â†

τ ei�t + c.c., (10)

taking the form of Eq. (3) acting on the target qubit.
We now determine the validity of Eq. (10), showing that

with pulse shaping it becomes a very good approximation.
As was shown in Ref. [28], if we perform this gate while
smoothly ramping �μ(g) on and off before and after the
gate, respectively, then the time propagator given by Eq. (10)
converges to the time propagator for Eq. (9). This enables
high-fidelity gates [12], despite the Rabi flopping due to the
∝ �μ term. There is no pulse shaping for the E fields in
our simulations. In Fig. 3, we show this convergence for
a θ = π/2 gate, where ωτ/2π = 6.5 MHz, �g/2π = 2 kHz,
�E ,τ /2π = 100 kHz, K = 1, and �μ/2π � 690 kHz, giving
a gate detuning of �/2π � 43 kHz. The ∝ �μ(g) fields are
simultaneously ramped on and off according to sin2(t/tr ),
where tr is the ramp time, ideally leading to Ûg → eiπσ̂y,τ /4

FIG. 3. (a) Numerically calculated infidelity I of target qubit
(red) and spectator qubit (gray) versus ramping time tr for
an effective θ = π/2 gate. Here, K = 1, and the motional fre-
quency of the target qubit is set to ωr,t/2π = 6.5 MHz, while
the motional frequency of the spectator qubit is set to ωr,s =
6.3 MHz. The inset shows the probability of measuring |↑〉 for
both qubits P↑ = |〈↑ |ψt,s(t )〉|2 when tr = 10μs. (b) Infidelity
of spectator qubit versus E -field amplitude �E ,s relative to the
E field seen by the target qubit �E ,τ when tr = 15μs. This is
shown for the same motional frequency of the target qubit and
the motional frequency of the spectator qubit is set to ωr,s/2π =
6.1 MHz (purple dashed), ωr,s/2π = 6.3 MHz (red solid), ωr,s/2π =
6.35 MHz (green dotted), and ωr,s/2π = 6.4 MHz (blue dot
dashed).

for the target qubit and Ûg → Î for the spectator qubit.
Figure 3(a) shows that, for values over tr � 13μs, �E ,s =
0, and ωs/2π = 6.3 MHz, I can be suppressed to below
10−6 for both the target and spectator qubits. We here opti-
mized tg to maximize the fidelity of the target qubit operation
when tr = 15μs, which makes tg � 40.2μs when includ-
ing the 2tr of pulse shaping time. We found no limit to
the degree to which the cross-talk can be reduced via in-
creasing tr in our simulations, indicating a trade-off between
reducing cross-talk and tg. The inset of Fig. 3 illustrates the
time dynamics of the target and spectator qubits, showing
that while both qubits experience high-frequency oscillations
during the gate, after the pulse-shaping sequence, both qubits
converge to the final states predicted by Eq. (10). Finally,
while �E ,s will likely decrease rapidly with spatial separation,
it will not vanish entirely. Because of this, Fig. 3(b) shows I
versus �s,E ; we here plot values of ωs/2π = 6.1–6.4 MHz,
showing that when ωs is further detuned from ωτ , one
should expect less cross-talk (keeping all other parameters
fixed) due to the fact that all spectator transitions are more
off-resonant.

V. CONCLUSION

We proposed a one-qubit geometric phase gate scheme that
is much faster and more robust to noise than its two-qubit
counterpart, while also enabling the suppression of cross-
talk to an arbitrary degree, even with global qubit control
fields. We first developed the theory for this gate sequence,
showing it requires a standard set of interactions present
in most trapped ion laboratories. We then showed, analyti-
cally and numerically, that our proposed one-qubit geometric
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phase gates are significantly less sensitive to motional de-
coherence compared to their two-qubit gate counterparts.
Finally, we provided a numerical simulation of one (of many)
possible physical implementations of our scheme, showing
that when it is combined with pulse shaping it can reduce
cross-talk to an arbitrary degree, even when both qubits
experience the same microwave fields and gradient. This
work is important to the prospects of scalable, laser-free
trapped ion architectures because it shows how to perform
targeted operations without spatially localized qubit control
fields.
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APPENDIX

1. Addressing with rf micromotion

As in Refs. [35,41], we consider a trapped ion system with
a sideband interaction and an E -field force, potentially from
the rf micromotion

Ĥlab = h̄ωr â†â + h̄ω0

2
σ̂z

+ 2h̄�rsb cos([ω0 − ωr + �]t )σ̂x(â† + â)

+ 2h̄�E cos([ωr − �]t )(â† + â), (A1)

where ω0 is the qubit frequency, and ωr is motional mode fre-
quency. Transforming into the interaction picture with respect
to the motional and qubit frequencies, as well as dropping
counterrotating terms, gives

Ĥ = h̄�rsb(σ̂−â†ei�t + σ̂+âe−i�t ) + h̄�E (â†ei�t + ae−i�t ).

(A2)

We now plug Eq. (A2) into the Magnus expansion [43] while
setting the gate time tg = 2πN/�, observing that the first-
order term in the Magnus expansion sinusoidally integrates
to zero. Dropping a global phase, this gives

Û = exp

(
itg
�

[
�2

rsbσ̂z

{
â†â + 1

2

}
+ �rsb�E σ̂x

])
, (A3)

up to second order. Because [Ĥ (t ′), [Ĥ (t ′′), Ĥ (t ′′′)]] �= 0, the
expansion cannot be exactly expressed in a straightforward
manner, which could limit the fidelity, even in ideal con-
ditions. Equation (A3) also reveals a temperature-dependent
∝ â†â term, further limiting the approach’s potential for high-
fidelity operations.

2. Single-qubit addressing for ions in the same well

Assuming a rotating frame with respect to the motional and
qubit frequencies, we consider a Hamiltonian describing the
jth mode of a chain of N ions driven with a geometric phase
gate interaction and a similarly detuned E field

Ĥ = h̄�p, j Ŝα, j (â
†
j e

i�t + â je
−i�t ) + h̄�e, j (â

†
j e

i�t + â je
−i�t ),

(A4)

where �p, j and �e, j are Rabi frequencies and Ŝα, j ≡∑
n en, j σ̂α,n is a collective Pauli operator. Importantly, the

contribution en, j of the nth ion to Ŝα, j is proportional to its
projection onto mode j. Plugging Eq. (A4) into the Magnus
expansion [43] and evaluating at a time tg = 2πK/� gives a
time propagator

Û ′
p = exp

(
itg
�

[
�2

p, j Ŝ
2
α, j + 2�p, j�e, j Ŝα, j

])
. (A5)

We can see that this operation leaves an extraneous ∝ Ŝ2
α, j

term, creating unwanted entanglement between the qubits;
because σ̂ 2

α = Î , this term corresponds to a global phase for
one qubit systems. This entanglement term can be eliminated
by dividing the operation into two K/2 loop operations while
flipping the sign of the detuning � → −� and the sign of
Ŝα, j → −Ŝα, j with a spin-echo sequence. Doing so results in
a total time propagator

Ûp = exp

(−itg
2�

[
�2

p, j Ŝ
2
α, j − 2�p, j�e, j Ŝα, j

])

× exp

(
itg
2�

[
�2

p, j Ŝ
2
α, j + 2�p, j�e, j Ŝα, j

])

= exp

(
2i�p, j�e, j

�
Ŝα, jtg

)

= exp

(
−i

θ

2
Ŝα, j

)
, (A6)

giving a single-qubit gate with an effective rotation angle of
θ ≡ −2�p, j�e, j/�.

Because en, j is proportional to each ion’s projection onto
each mode, the ability to perform this operation on a complete
set of N modes should, in theory, give experimentalists the
ability to perform individual qubit addressing. In a well with
two ions, for example, if we can address a center-of-mass
mode Ŝα,c = σ̂α,2 + σ̂α,1 and a stretch mode Ŝα,s = σ̂α,2 −
σ̂α,1, we can address qubit 2 by generating Eq. (A6) with an
angle θ for each rotation

Û2 = exp

(
−i

θ

2
Ŝα,c

)
exp

(
−i

θ

2
Ŝα,s

)
= exp(−iθσ̂α,2), (A7)

corresponding to a 2θ rotation on qubit 2. Similarly, perform-
ing two operations with opposite signed values of θ gives

Û2 = exp

(
i
θ

2
Ŝα,s

)
exp

(
−i

θ

2
Ŝα,c

)
= exp(−iθσ̂α,1), (A8)

giving a 2θ rotation on qubit 1. This process can, theoretically,
be extended to chains of N ions. In practice, however, it
may be difficult to produce an E -field differential pronounced
enough to generate large values of �e, j in wells with many
ions. We therefore focus the main body of this work on sys-
tems with one ion in a well, likely the most relevant to scalable
QCCD architectures.
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3. Infidelities from motional decoherence

In this section, we discuss the effect of three sources of
motional decoherence on the fidelity of the single-qubit geo-
metric phase gates we proposed in the main body. First, in a
frame rotating with respect to the qubit and trap frequencies,
we examine the geometric phase gate Hamiltonian acting in
the presence of an error Hamiltonian

Ĥt = Ĥp + Ĥe,

= h̄Â(â†ei�t + âe−i�t ) + Ĥe, (A9)

where we introduced Â = �pσ̂α + �E Î and assumed we can
apply the rotating wave approximation for Ĥe.

a. Static motional frequency shifts

We first consider static motional frequency shifts Ĥe ≡
h̄gd â†â, which gives

Ĥt = h̄Â(â†ei�t + âe−i�t ) + h̄gd â†â. (A10)

For static motional frequency shifts and motional dephasing,
we analyze the gate fidelity by following a technique laid out
in Ref. [45]. We first transform into the interaction picture
with respect to Ĥp using

Ûp = exp

(
− i

h̄

∫ t

0
dt ′Ĥp(t ′)

− 1

2h̄2

∫ t

0

∫ t ′

0
dt ′dt ′′[Ĥp(t ′), Ĥp(t ′′)]

)

= exp(Â[α(t )a† − α∗(t )â] + iÂ2 f (t )), (A11)

where α(t ) ≡ (1 − ei�t )/� and g(t ) ≡ (t − sin(�t )/�)/�;
the latter commutes with Ĥe, having no effect on the trans-
formation. The interaction picture Hamiltonian is then

ĤI = h̄gd (â†â + Â[α(t )â† + α∗(t )â] + Â2|α(t )|2).

(A12)

We begin the next section with Eq. (A12) because Ĥe for
motional dephasing deviates only through a gd → gd cos(ωt )
substitution. We use time-dependent perturbation theory to
evaluate the time propagator ÛI for ĤI up to second order

ÛI � Î − i

h̄

∫ tg

0
ĤI (t ′) − 1

h̄2

∫ tg

0

∫ t ′

0
dt ′dt ′′ĤI (t ′)ĤI (t ′′).

(A13)

Plugging this into Eq. (7) in the main text, dropping all terms
higher-order than O(g2

d ), and assuming the system is initial-
ized to a state with n phonons, gives

I � g2
d�

2
pt2

g

�2
λ2

σ̂α

(
2n + 1 + 16�2

E

�2

)

= g2
dθ

2

16�2
E

λ2
σ̂α

(
2n + 1 + 2θ�E

π�pK

)
, (A14)

where we substituted � ≡ √
8πK�p�E/θ in the second line.

b. Motional dephasing

We take motional dephasing to be the broadband limit
of Ĥe for static motional frequency shifts. To evaluate the
contribution to I, we let Ĥe = h̄gd â†â cos(ωt ), calculate the
infidelity for that frequency Iω, then average over the normal-
ized spectral power density Sω. We may begin our evaluation
with Eq. (A12), substituting gd → gd cos(ωt ), which gives

ĤI,ω = h̄gd cos(ωt )(â†â + Â[α(t )â† + α∗(t )â] + Â2|α(t )|2).

(A15)

Again, we evaluate the interaction picture time propagator
using second-order time-dependent perturbation theory

ÛI � Î − i

h̄

∫ tg

0
dt ′ĤI,ω(t ′)

− 1

h̄2

∫ tg

0

∫ t ′

0
dt ′dt ′′ĤI,ω(t ′)ĤI,ω(t ′′). (A16)

Plugging this into Eq. (7) of the main text and dropping all
terms higher-order than O(g2

d ) gives

Iω � 2

h̄2

∑
n′

∫ tg

0

∫ t ′

0
dt ′dt ′′ 〈ψ (0)| 〈n′| ĤI,ω(t ′)ĤI,ω(t ′′) |ψ (0)〉

× |n〉 − 1

h̄2

∑
n′

∫ tg

0

∫ tg

0
dt ′dt ′′ 〈ψ (0)| 〈n′| ĤI,ω(t ′) |ψ (0)〉

× |n〉 〈ψ (0)| 〈n| ĤI,ω(t ′′) |ψ (0)〉 |n′〉 . (A17)

We calculate I by integrating over Sω, assuming it is broad
enough to warrant the Born-Markov approximation

I =
∫ ∞

0
dωSωIω

� 2

h̄2

∑
n′

∫ ∞

0

∫ tg

0

∫ t ′

0
dωdt ′dt ′′Sω

〈ψ (0)| 〈n′| ĤI,ω(t ′)ĤI,ω(t ′′) |ψ (0)〉 |n〉

− 1

h̄2

∑
n′

∫ ∞

0

∫ tg

0

∫ tg

0
dωdt ′dt ′′Sω 〈ψ (0)| 〈n′| ĤI,ω(t ′)

× |ψ (0)〉 |n〉 〈ψ (0)| 〈n| ĤI,ω(t ′′) |ψ (0)〉 |n′〉 . (A18)

Similar to Ref. [45], upon plugging Eq. (A15) into Eq. (A18),
we are left with a sum of triple integrals that are proportional
to

ζ =
∫ ∞

0

∫ tg

0

∫ ts

0
dωdt ′dt ′′ Sω

2

×{cos(ω[t ′′ + t ′]) + cos(ω[t ′′ − t ′])}, (A19)

where ts ∈ {tg, t ′}. To evaluate Eq. (A19), we perform the
following manipulations:

ζ =
∫ ∞

−∞

∫ tg

0

∫ ts

0
dωdt ′dt ′′ Sω

4
{cos(ω[t ′′ + t ′])

+ cos(ω[t ′′ − t ′])}

032604-6



INDIVIDUAL ADDRESSING OF TRAPPED ION QUBITS … PHYSICAL REVIEW A 107, 032604 (2023)

� S0

4

∫ ∞

−∞

∫ tg

0

∫ ts

0
dωdt ′dt ′′{cos(ω[t ′′ + t ′])

+ cos(ω[t ′′ − t ′])}

= πS0

2

∫ tg

0

∫ ts

0
dt ′dt ′′{δ(t ′′ + t ′) + δ(t ′′ − t ′)}, (A20)

where we assumed that we can approximate Sω as S0, pulling
it outside the integral. We can now evaluate the required
integrals, and after some algebra, obtain a final equation:

I � 2η�2
ptg

�2

(
2n + 1 + 12�2

E

�2

)
λ2

σ̂α

= η

√
�pθ3

32πK�3
E

(
2n + 1 + 3θ�E

2πK�p

)
λ2

σ̂α
, (A21)

where we defined η ≡ πg2
d S0/2 as the motional dephasing

rate and set � ≡ √
8πK�p�E/θ as well as tg = 2πK/� in

the second line.

c. Heating

Finally, we discuss how heating affects gate fidelity.
As in Ref. [45], we represent Ĥe as an E field with

frequency ω:

Ĥt = Ĥp + Ĥe

= h̄Â(â†ei�t + âe−i�t ) + 2h̄gh cos(ωt )(â†eiωr t + e−iωr t )

� h̄Â(â†ei�t + âe−i�t ) + h̄gh(â†ei(ωr−ω)t + e−i(ωr−ω)t ),

(A22)

where we made the rotating wave approximation in the sec-
ond line. We now transform into the interaction picture with
respect to Ĥe using the transformation

Ûe = exp(β(t )â† − β̂∗(t )â), (A23)

where β(t ) ≡ gh

ωr−ω
(1 − ei[ωr−ω]t ). This gives

ĤI = h̄Â(â†ei�t + âe−i�t ) + h̄Â(β(t )∗ei�t + β(t )e−i�t )

≡ ĤI,p + ĤI,e, (A24)

showing the effect of the extraneous E field is an added ∝ Â
shift to the Hamiltonian in this frame. Importantly, ĤI,p = Ĥp

and [ĤI,p, ĤI,e] = 0. This allows us to write the time propaga-
tor as ÛpÛI,e, where

ÛI,e = exp

(
− i

h̄

∫ tg

0
dt ′ĤI,e(t ′)

)
. (A25)

We Taylor expand ÛI,e up to second order, and plug it into
Eq. (7) of the main text, which gives

Iω � 1 −
∑

n′

∣∣∣∣∣ 〈ψ (0)| 〈n′| Î − iÂ
∫ tg

0
dt ′(β∗(t ′)ei�t ′ + β(t ′)e−i�t ′

) − Â2

2

∫ tg

0

∫ t ′

0
dt ′dt ′′(β∗(t ′)ei�t ′ + β(t ′)e−i�t ′

)

×(β∗(t ′′)ei�t ′′ + β(t ′′)e−i�t ′′
) |ψ (0)〉 |n〉

∣∣∣∣∣
2

= λ2
Â

∫ tg

0

∫ tg

0
dt ′dt ′′(β∗(t ′)ei�t ′ + β(t ′)e−i�t ′

)(β∗(t ′′)ei�t ′′ + β(t ′′)e−i�t ′′
). (A26)

We can plug this into Eq. (8) from the main text and integrate over the normalized spectral density Sω:

I = λ2
Â

∫ ∞

0

∫ tg

0

∫ tg

0
dωdt ′dt ′′Sω

4g2
h

(ωr − ω)2
(cos(�t ′) − cos[(ωr − ω − �)t ′])(cos(�t ′′) − cos[(ωr − ω − �)t ′′])

= λ2
Â

∫ ∞

0

∫ tg

0

∫ tg

0
dωdt ′dt ′′Sω

4g2
h

(ωr − ω)2
cos([ωr − ω − �]t ′) cos([ωr − ω − �]t ′′)

� λ2
Â

∫ ∞

0

∫ tg

0

∫ ∞

−∞
dωdt ′dt ′′Sω

2g2
h

(ωr − ω)2
cos([ωr − ω − �]t ′) cos([ωr − ω − �]t ′′)

= λ2
Â

∫ ∞

0

∫ tg

0
dωdt ′Sω

4πg2
h

(ωr − ω)2
cos([ωr − ω − �]t ′)δ(ωr − ω − �)

= 4 ˙̄ntg
�2

λ2
Â, (A27)

where we substituted ˙̄n ≡ πg2
hSωr in the last line. Finally, we can substitute � ≡ √

8πK�p�E/θ and λ2
Â

= �2
pλ

2
σ̂α

, giving

I � ˙̄nλ2
σ̂α

√
�pθ3

8πK�3
E

. (A28)
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