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Simulating scalar field theories on quantum computers with limited resources
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We present a quantum algorithm for implementing φ4 lattice scalar field theory on qubit computers. The field
is represented in the discretized field amplitude basis. The number of qubits and elementary gates required by
the implementation of the evolution operator is proportional to the lattice size. The algorithm allows efficient
φ4 state preparation for a large range of input parameters in both the normal and broken-symmetry phases.
The states are prepared using a combination of variational and adiabatic evolution methods. First, the ground
state of a local Hamiltonian, which includes the φ4 self-interaction, is prepared using short variational circuits.
Next, this state is evolved by switching on the coupling between the lattice sites adiabatically. The parameters
defining the local Hamiltonian are adjustable and constitute the input of our algorithm. We present a method
to optimize these parameters in order to reduce the adiabatic time required for state preparation. For preparing
broken-symmetry states, the adiabatic evolution problems caused by crossing the phase transition critical line
and by the degeneracy of the broken-symmetry ground state can be addressed using an auxiliary external field
which gradually turns off during the adiabatic process. We show that the time dependence of the external field
during the adiabatic evolution is important for addressing the broken-symmetry ground state degeneracy. The
adiabatic time dependence on the inverse error tolerance can be reduced from quadratic to linear by using a field
strength that decreases exponentially in time relative to one that decreases linearly.

DOI: 10.1103/PhysRevA.107.032603

I. INTRODUCTION

Simulating highly entangled quantum systems is among
the first applications of quantum computers expected to show
a practical advantage over classical computers [1,2]. The
development and application of new quantum processors
[3–5] may allow for revolutionary calculations in quantum
chemistry [6–11], condensed-matter physics [12–17], nuclear
physics [18,19] and high-energy physics [20–24]. The simula-
tion of relativistic quantum field theory on quantum hardware
[20,21,24–27] has been an active research topic in recent
years. In practice, the mapping and preparation of continuous
fields on near-future quantum hardware of limited size and
with limited control fidelity provides a number of challenges.
In this paper, we address the simulation of the φ4 scalar field
on digital quantum computers.

The φ4 scalar field model [28,29] is a simplified model of
the Higgs field of the standard model of particle physics and
has been intensively studied over the years. Despite its appar-
ent simplicity, it has rich physics. For example, in (1 + 1) and
(2 + 1) space-time dimensions, it exhibits a phase transition
to a broken symmetry phase characterized by a finite vacuum
expectation value 〈φ〉 [30,31]. Perturbative methods based on
a diagrammatic expansion are only valid in the weak interac-
tion regime. As a result, the strong interacting regime has been
studied numerically. Calculations of the critical coupling and
exponent for (1 + 1) dimensions have been performed using
DMRG [32], tensor network methods [33,34], Monte Carlo
methods [35,36] and diagonaliztion methods [37,38]. How-
ever, since the Hilbert space of the φ4 model is exponentially
large, the field degrees of freedom must be truncated, making

the extrapolation of the numerical results to the continuous
limit challenging and not always reliable.

Quantum simulations can overcome the size problems re-
lated to the Hilbert space and, unlike most classical Monte
Carlo methods, can calculate the real-time correlations and
nonequilibrium dynamics of the system. The bosonic fields
can be represented efficiently on qubits in a discretized field
amplitude basis [12,13,39]. However the preparation of field
eigenstates on qubits is not straightforward. For example,
the method proposed in Refs [20,26,27] prepares an initial
noninteracting multivariate Gaussian state and uses adiabatic
continuation to reach the desired interacting state. However,
the construction of a multivariate Gaussian wave function
using the Kitaev-Webb method [40] requires a very large
number of qubits and is not feasible on near-term quan-
tum hardware. Moreover, the preparation of broken-symmetry
states using adiabatic continuation of noninteracting states is
challenging since the adiabatic path has to cross a critical re-
gion with a vanishing excitation gap. Furthermore, the ground
state of broken-symmetry states is degenerate, causing further
complications.

Here, we present a quantum algorithm for lattice φ4 field
evolution on qubits and a method for initial state preparation
suitable for near-term quantum computers. A relatively small
number of qubits per lattice site, nq ≈ 6 ∼ 8, is sufficient to
address even strong-coupling regimes. The number of qubits
and the number of gates scale proportionally to the system size
N . The most expensive part of the algorithm arises from the
implementation of the φ4 interaction, which requires O(N n4

q)
two-qubit gates, while the implementation of the other terms
in the Hamiltonian requires O(N n2

q) two-qubit gates. The field
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state preparation combines variational and adiabatic evolution
approaches. The Hamiltonian is split into two parts, a local
one that sums contributions from each individual site and a
nonlocal one containing coupling between sites. The adiabatic
process starts from the ground state of the local Hamiltonian.
Then the coupling between sites is turned on adiabatically.
Unlike previous approaches in the literature [20], our method
introduces self-interactions from the start. The ground state
of the local Hamiltonian is prepared accurately using short
variational circuits. Instead of preparing the full lattice states
using variational ansatzes [41], which would be difficult to
scale up due to Barren plateaus [42], our variational circuits
prepare local states. The calculation of these circuits’ param-
eters is independent of the system size and can be done easily
on classical computers using various optimization methods.
The input parameters of the local Hamiltonian can be adjusted
to minimize the time of the adiabatic process. We find a direct
correlation between the adiabatic time and the local overlap
of the initial wave function and the target wave function. We
propose a strategy to determine the optimal parameters of the
local Hamiltonian by maximizing this local overlap.

We also address the problems associated with the prepa-
ration of the broken-symmetry states, namely, the crossing
of the critical phase transition region characterized by a
vanishing excitation gap and the double degeneracy of the
broken-symmetry state. Both of these problems can be mit-
igated by coupling the scalar field to an external field. We
propose a two step adiabatic process for preparing broken-
symmetry states. The first adiabatic process starts from a local
state in the presence of a significant external field. Then,
adiabatically, the intersite coupling term is turned on and the
external field is decreased. Due to the presence of the external
field, the excitation gap is robust during this process. The
second adiabatic process starts from the terminus of the first
one. During this step the external field is decreased to van-
ishing values. We find an reduction of the required adiabatic
time from O(ε−2) to O(ε−1 ln[ε−1]) with ε being the error
bound when the external field decreases exponentially in time
compared to the case of linear decrease in time.

This paper is organized as follows. We review the φ4 model
and its lattice discretization in Sec. II. We then discuss the
qubit encoding and circuits to simulate the scalar field evolu-
tion on quantum computers in Sec. III. In Sec. IV we introduce
our state preparation protocol consisting of the variational
local-state preparation (Sec. IV A) and adiabatic evolution for
the normal phase Sec. (IV B 1) and for the broken-symmetry
phase (Sec. IV B 2) supported by numerical simulation of the
lattice φ4 model with up to four sites. Our summary and
conclusions are provided in Sec. V.

II. THE φ4 MODEL

The Hamiltonian density of the φ4 model can be written as
(h̄ = c = 1)

H = 1
2π2 + 1

2 m2
bφ

2 + 1
2 (∇φ)2 + λb

4!
φ4 + fbφ, (1)

where mb and λb are the unrenormalized (bare) mass and
interaction strength, respectively. In order to investigate the
broken-symmetry phase, it is convenient to consider a cou-

pling term between the scalar field and a external field fb. The
field operator φ and the conjugate-field operator π obey the
commutation relation,

[π (x), φ(y)] = iδ(x − y). (2)

For quantum simulation, we consider the lattice version of
the φ4 model in d + 1 spacetime dimensions given by

Hlat = ad
∑

j

[
1

2
π2

j + 1

2
m2

bφ
2
j + 1

2a2

d∑
e=1

(φ j+e − φ j )
2

+ λb

4!
φ4

j + fbφ j

]
, (3)

where a is the lattice constant and j labels lattice sites. The
label j + e represents the next-nearest neighbor site of the site
j in the direction e. Note that in Eq. (3) only the space di-
mension is discretized and on a lattice. This differs from most
models employed in Monte Carlo-based simulations, where
both space and imaginary time dimensions are discretized on
a lattice. Nonetheless, the implementation of our algorithm on
quantum computers also requires time discretization, conse-
quence of the Trotter-Suzuki expansion [43–45] of the time
evolution operator. The lattice field operators in Eq. (3) obey
the commutation relations

[φi, π j] = ia−dδi, j and [φi, φ j] = [πi, π j] = 0. (4)

The continuous limit is achieved by taking a → 0. It is con-
venient to introduce dimensionless field variables

� j = a
d−1

2 φ j and � j = a
d+1

2 π j (5)

which obey the canonical commutation relations

[�i, � j] = iδi, j and [�i, � j] = [�i, � j] = 0. (6)

Using these dimensionless operators, the Hamiltonian is given
by

H =
∑

j

[
1

2
�2

j + 1

2
m2

0�
2
j + 1

2

d∑
e=1

(� j+e − � j )
2

+ λ0

4!
�4

j + f0� j

]
, (7)

where H ≡ Hlata, m2
0 ≡ m2

ba2, λ0 ≡ λba3−d , and f0 ≡
fba(3+d )/2 are dimensionless. This Hamiltonian (with f0 = 0)
was previously used in numerical simulations of the scalar
field model [25,33]. It represents a set of coupled harmonic
oscillators with an anharmonic interaction.

The correlation length is a measurable parameter which
determines how the correlation between the field values at two
separate points decays with the distance between these points.
To extrapolate the lattice results to a meaningful continuous
limit with a finite correlation length, it is necessary to simulate
large lattices for Hamiltonian parameters corresponding to
large lattice correlation lengths (measured in units of a). The
physics of the φ4 theory is extracted from the lattice results
by taking a/ξ → 0 (continuous limit) and L/ξ → ∞ (macro-
scopic limit), where L is the lattice size and ξ is the lattice
correlation length. Equivalently, this implies simulations with
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mpa → 0 and mpa 
 1/N where N is the number of lattice
sites per dimension and mp ∝ 1/ξ is the physical mass.

While the lattice physical parameters are needed for the
extrapolation from the lattice to the continuous theory, the
bare parameters define the input of the simulations. To be use-
ful, a quantum algorithm should be able to prepare efficiently
quantum states for a large range of bare parameters, including
both negative and positive input parameter m2

0. In principle,
the relation between the physical and the bare parameters
can be established from simulations, since the lattice physical
parameters can be extracted from the correlation functions.
For the extrapolation to the continuous limit the bare lattice
parameters need to be chosen dependent on the lattice constant
a. This dependence is significant since the renormalization
theory shows that, in order to extrapolate to a continuous
theory with finite physical observables, the bare parameters
diverge with a → 0 in many cases. For example, in (1 + 1)
and (2 + 1) dimensions, the bare squared mass m2

0 becomes
negative and proportional to ln(mpa) and −1/(mpa), respec-
tively [46], for small a.

The φ4 model (with f0 = 0) has a discrete Z2 symmetry
from the transformation φ → −φ. In (3 + 1) dimensions, the
theory is “believed” to be trivial (i.e., the theory is actually
noninteracting in the continuum limit), although no rigorous
proof exists [47–51]. For higher dimensions, the triviality can
be rigorously proven [28]. In (1 + 1) and (2 + 1) dimen-
sions, the model exhibits a phase transition from a symmetric
state with 〈φ〉 = 0 to a broken-symmetry phase with finite
〈φ〉 [30,31]. However, in finite size systems, like the ones
used for simulations, the ground state cannot have a broken
symmetry and there is no phase transition. Nonetheless, the
broken-symmetry phase can be investigated numerically by
considering the coupling term f0� in Eq. (7) and extrapolating
the results to the large lattice size (L → ∞) and the zero
external field ( f0 → 0) limits.

It is interesting that, for negative values of m2
0 and small

interaction strength (i.e., when |m0|3/λ0 
 1), the ground
state is nearly twofold degenerate and exhibits properties
characteristic of the broken-symmetry phase even for small
lattices. A single site system reduces to a double-well po-
tential Hamiltonian for negative m2

0. The field distribution in
the ground state is symmetric and double-peaked around zero,
with the two maxima located at the points ±�m which mini-
mize the potential. The gap is small, decreasing exponentially
fast with increasing magnitude of |m0|3/λ0. A small external
field f0 (of the order of the gap) coupled to the scalar field
amplitude produces a ground state with finite 〈�〉 ≈ �m (or
〈�〉 ≈ −�m, depending on f0 sign). Numerical calculations
of small size systems show that the system remains nearly
twofold degenerate when the number of sites is increased.
The gap decreases with an increasing number of sites, while
the energy difference between the second and the first excited
states does not decrease, as can be seen in Fig. 1. This is
a consequence of the kinetic term in the Hamiltonian [the
third term in Eq. (7)] which favors similar field configurations
at neighboring sites. These properties of small size systems
allows us to investigate quantum state preparation methods
for broken-symmetry phase by using classical simulations of
small lattices, as discussed in Sec. IV B 2.

FIG. 1. The gap, E10 = E1 − E0, and the energy difference be-
tween the second and the first excited states, E21 = E2 − E1, for
one-site, two-site, and four-site φ4 lattices for negative values of
m2

0. The system is nearly double degenerate when m2
0/λ

2/3
0 � −1.

The gap decreases exponentially with increasing the magnitude of
|m2

0|. On the other hand, E21 increases slightly with increasing the
magnitude of |m2

0|. With increasing the number of sites, the gap E10

decreases while E21 increases.

III. �4 FIELD ON QUBITS

This section describes the qubit encoding of the bosonic
states and the implementation of the evolution operator
corresponding to the lattice Hamiltonian Hlat in Eq. (7).
Discretizing continuous groups is important for simulating
quantum field theories and has been studied for several models
[52–54]. The representation of bosonic fields on qubits was
discussed in detail in [39]. We will review briefly the gen-
eral methodology in Sec. III A, present the qubit encoding in
Sec. III B, and address the evolution operator implementation
in Sec. III C.

A. Finite representation of bosonic fields

The lattice Hilbert space is a direct product of local Hilbert
spaces (one at each lattice site) such that H = ∏N

j=1 ⊗H j ,
where j labels the lattice site and N is the number of lattice
sites. A local Hilbert space H j is infinite dimensional. The
number of bosons contributing to the wave function is, in
principle, unbounded. However, since we are interested in
the low-energy physics of the system, we postulate that, at
every lattice site, the number of bosons can be truncated with
negligible error by a cutoff number Nb.

The eigenvectors {|ϕ〉 j} of the field operator,

� j |ϕ〉 j = ϕ|ϕ〉 j, (8)

form a convenient basis choice for representing the evolution
operator since the Hamiltonian interaction terms are diagonal
in this basis. However, the eigenvalues ϕ ∈ R are continuous
and unbounded. Therefore, discretization procedures are nec-
essary to represent the truncated Hilbert space in the field
amplitude basis. We introduce the discretization procedure
below.
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The low-energy subspace of the local Hilbert space H j

is spanned by the states with a number of bosons below the
cutoff Nb and can be represented with good accuracy by a
finite Hilbert space H j of dimension Nϕ , with Nϕ > Nb, as
described below. Let {|ϕα〉 j} be a set of orthonormal vectors
belonging to H j with α ∈ {0, 1, . . . , Nϕ − 1} . We define the
discrete field operators � j and � j acting on H j as

� j |ϕα〉 j = ϕα|ϕα〉 j, (9)

� j = μF j� jF−1
j , (10)

where ϕα is the discrete eigenvalue,

ϕα = �ϕ

(
α − Nϕ − 1

2

)
, α ∈ {0, 1, . . . , Nϕ − 1}, (11)

�ϕ =
√

2π

Nϕμ
, (12)

and F j is the finite Fourier transform,

F j = 1√
Nϕ

Nϕ−1∑
α,β=0

ei 2π
Nϕ

(α− Nϕ−1
2 )(β− Nϕ−1

2 )|ϕα〉 j〈ϕβ | j . (13)

In Eq. (10), μ > 0 is the boson mass which is the parameter
entering in the definition of the lattice boson creation and
annihilation operators,

a†
j =

√
μ

2
� j − i

√
1

2μ
� j, a j =

√
μ

2
� j + i

√
1

2μ
� j . (14)

The definition of � j given by Eqs. (9), (11), and (12)
represents the discretized and truncated version of Eq. (8).
The set of states {|κβ〉 j}β∈{0,1,...,Nϕ−1} obtained by applying the
Fourier transform to the set {|ϕα〉 j},

|κβ〉 j ≡ F j |ϕβ〉 j

= 1√
Nϕ

Nϕ−1∑
α=0

ei 2π
Nϕ

(α− Nϕ−1
2 )(β− Nϕ−1

2 )|ϕα〉 j, (15)

are the eigenvectors of the discrete conjugate-field operator
� j defined by Eq. (10) such that

� j |κβ〉 j = κβ |κβ〉 j, (16)

where

κβ = �κ

(
β − Nϕ − 1

2

)
, β ∈ {0, 1, . . . , Nϕ − 1}, (17)

�κ =
√

2πμ

Nϕ

. (18)

Equation 16 is the discretized version of the conjugate-field
operator eigenvalue equation, � j |κ〉 j = κ|κ〉 j , with continu-
ous and unbounded κ ∈ R.

Different representations corresponding to different values
of μ can be chosen to construct the finite representation. For a
given problem and desired accuracy, the cutoff Nb depends on
the boson mass μ. In principle μ should be optimized for the
lowest possible cutoff Nb to reduce the computing resources.
Moreover, as can be seen from Eqs. (12) and (18), the dis-
cretization interval �ϕ of the field amplitude variable and the

discretization interval �κ of the conjugate-field variable are
also dependent on the boson mass parameter μ. The parameter
μ can be tuned to adjust the accuracy of the discretization.
Increasing μ decreases the field variable discretization inter-
val and increases the conjugate-field discretization interval.
The discretized field and conjugate-field variables are related
by a finite Fourier transform, thus �ϕ�κ = 2π/Nϕ . To de-
crease both discretization intervals, �ϕ and �κ , the number
of discretization points Nϕ should be increased. For quantum
simulations, tuning μ to increase the accuracy of the wave
function’s discretization is much easier than the process of
optimizing μ to decrease the boson number cutoff Nb, as
discussed in [39].

On the subspace of H j spanned by the first Nb eigen-
states of the harmonic oscillator Hamiltonian (Hh j = 1

2�2
j +

1
2μ2�2

j ), the discrete field and conjugate-field operators obey,
with O(ε) accuracy, the canonical commutation relation,

INb[� j,� j]INb = iINb + O(ε). (19)

Here INb is the projector on the Nb size low-energy subspace of
the harmonic oscillator. This is a consequence of the Nyquist-
Shannon sampling theorem applied to the fast decaying boson
number wave functions, as discussed in [39]. For a problem
of interest, as long as Nb is taken large enough such that
the contribution of states with more than Nb bosons can be
neglected, the infinite Hilbert space H j can be replaced by the
finite Nϕ-size Hilbert space H j , and the lattice field operators
� j and � j [Eq. (5)] can be replaced by the discrete operators
� j and � j [Eqs. (9) and (10)] with O(ε) accuracy. For a fixed
Nb, the error O(ε) decreases exponentially by increasing Nϕ .
For practical purpose, we find numerically that a number of
discretization points Nϕ = 2Nb yields an accuracy of order
10−4.

The finite lattice representation is given by the finite Hilbert
space H = ∏N

j=1 ⊗H j of dimension NN
ϕ and the set of lo-

cal field and conjugate field-operators {� j} j∈{1,2,...,N} and
{� j} j∈{1,2,...,N} defined by Eq. (9) and Eq. (10), respectively.
The discretized field amplitude basis vectors are

|ϕα〉 ≡ |ϕα1〉1|ϕα2〉2· · ·|ϕαN 〉N , (20)

where

α = {α1, α2, . . . , αN } with α j ∈ {0, 1, . . . , Nϕ − 1}. (21)

B. Qubit encoding of the finite representation

The discretized field amplitude basis {|ϕα〉} [Eq. (20)] can
be encoded on qubits using the binary representation of the
label α [Eq. (21)]. For each site, a register of nq = log2(Nϕ )
qubits is assigned. A local field amplitude state |ϕα j 〉 j at site j
is encoded as

|ϕα j 〉 j ≡ |α0 j〉 j |α1 j〉 j · · ·|α(nq−1) j〉 j, (22)

where |αq j〉 j ∈ {|0〉, |1〉} is the qth qubit state from the register
j (i.e., allocated to represent the field at the site j) such that

α j =
nq−1∑
q=0

αq j2
nq−1−q. (23)
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Note that the binary variables αq j ∈ {0, 1} defined by
Eq. (23) yield the binary representation of the integer α j ≡
[α0 jα1 j · · ·α(nq−1) j]. A lattice state [Eq. (20)] is encoded as
a direct product of N local states encoded by Eq. (22). The
lattice states require N log2(Nϕ ) qubits for encoding.

The discrete field operator � j acting on the nq qubits
assigned to encode the field at site j can be written as

� j = −�ϕ

nq−1∑
q=0

2nq−1−q
σ z

q j

2
, (24)

where σ z
q j = |0〉〈0|q j − |1〉〈1|q j is the Pauli Z operator and q

is the qubit index. It can be directly checked that � j defined
here and the vector encoded as in Eq. (22) satisfy the eigen-
value equation defined by Eqs. (9) and (11).

The definition of the conjugate-field operator � j on the
qubit space requires first the qubit implementation of the
Fourier transform F j [see Eq. (10)]. The implementation of
Quantum Fourier transform (QFT) on qubits is well known
[55]. However, the Fourier transform F j defined by Eq. (13)
is centered, i.e., the summation index runs from −(Nϕ − 1)/2
to (Nϕ − 1)/2, unlike the off-centered QFT where the summa-
tion index runs from 0 to Nϕ − 1. As shown in Appendix A,
the Fourier transform is related to the QFT by

F j = e−i
Nϕ δ2

2π

nq−1∏
q=0

Rz
q j (2

nq−1−qδ) QFT j

×
nq−1∏
q=0

Rz
q j (2

nq−1−qδ), (25)

where δ = π
Nϕ−1

Nϕ
and Rz

q j is a single-qubit z rotation acting
on the qubit q at site j given by

Rz
q j (θ ) ≡ e−iθ

σ z
q j
2 = e−i θ

2 |0〉〈0∣∣
q j + ei θ

2
∣∣1〉〈1|q j . (26)

According to Eq. (10), the discrete conjugate-field operator
is

� j = F j

⎛
⎝−�k

nq−1∑
q=0

2q
σ z

q j

2

⎞
⎠F−1

j . (27)

Note that the factor before Pauli σ z
q j gate is 2q, unlike the

factor in Eq. (24) which is 2nq−1−q. This is caused by the
fact that the qubit order is reversed after a QFT gate (unless
additional swap operations are performed to manually reverse
the qubit order) [55].

C. Evolution operator

In order to implement the evolution operator we employ
the Trotter-Suzuki expansion [43–45]. The evolution operator
is written as a product of short-time evolution operators cor-
responding to the different terms in the Hamiltonian, called
Trotter steps. Here we present the qubit implementation of the
Trotter steps corresponding to the different terms present in
the φ4 Hamiltonian.

We start with the operator e−iθ� j , where θ is the time
interval of the Trotter step. This Trotter step implements the

evolution of the term f0� j in Eq. (7). Employing Eq. (24) one
has

e−iθ� j =
nq−1∏
q=0

Rz
q j (−2nq−1−q�ϕθ ). (28)

It reduces to nq single-qubit z rotations.
The Trotter step e−iθ�2

j can be written as

e−iθ�2
j = e−iθ�2

ϕ

N2
ϕ−1

12

nq−1∏
p=0

p−1∏
q=0

ZZpj;q j (νpq), (29)

where

ZZpj;q j (ν) = e−iνσ z
p jσ

z
q j (30)

νpq = 22nq−3−p−q�2
ϕθ. (31)

The two-qubit gate ZZpj;q j acts on the qubit p at site j and on
the qubit q at site j. Note that one ZZpj;q j can be decomposed
into two CNOT gates and one Rz gate [56]. Hence, the Trotter
step Eq. (29) consists of nq(nq − 1) CNOT gates.

The implementation of the Trotter step e−iθ�2
j is given by

e−iθ�2
j = F je

−iμθ�2
jF−1

j

= e−iθ�2
κ

N2
ϕ−1

12 F j

⎡
⎣nq−1∏

p=0

p−1∏
q=0

ZZpj;q j (ν
′
pq)

⎤
⎦F−1

j , (32)

where ν ′
pq = 2p+q−1θ�2

κ . The ZZ gate’s parameter ν ′
pq entering

in Eq. (32) can be obtained from Eq. (30) by replacing nq −
1 − p −→ p and nq − 1 − q −→ q, (consequence of reverse
qubit order after applying QFT) and �ϕ −→ �κ . Since QFT
requires nq(nq − 1)/2 CNOT gates, this Trotter step consists of
3nq(nq − 1) CNOT gates.

The Trotter step e−iθ� j�l corresponding to the coupling
term between the sites j and l is

e−iθ� j�l =
nq−1∏
p=0

nq−1∏
q=0

ZZpj;ql (ν
′′
pq), (33)

where ν ′′
pq = 22nq−4−p−qθ�2

ϕ . This Trotter steps consists of
n2

q ZZ gates or 2n2
q CNOT gates. Since the interaction is not

local, in this case the ZZ gates act on one qubit belonging to
the qubit register allocated for the field at site j and on one
qubit belonging to the qubit register allocated for the field at
site l .

The Trotter step corresponding to the φ4 interaction term is

e−iθ�4
j =

⎡
⎣nq−1∏

p=0

p−1∏
q=0

q−1∏
r=0

r−1∏
s=0

ZZZZpj;q j;r j;s j (ρqprs)

⎤
⎦

×
⎡
⎣nq−1∏

p=0

p−1∏
q=0

ZZpj;q j (ηpq)

⎤
⎦eiξ , (34)

where

ZZZZpj;q j;r j;s j (ρ) = e−iρσ z
p jσ

z
q jσ

z
r jσ

z
s j (35)
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TABLE I. CNOT gates count of the Trotter steps required for
the implementation of the φ4 evolution operator. All-to-all qubit
connectivity is assumed.

Operator e−i�θ e−i�2θ e−i�2θ e−i� j�kθ e−i�4θ

Number of
CNOTs 0 n2

q − nq 3n2
q − 3nq 2n2

q

1
4 n4

q − 3
2 n3

q

+ 15
4 n2

q − 5
2 nq

and

ρpqrs = 3N4
ϕ

32

1

2p+q+r+s
θ�4

ϕ, (36)

ηpq = N4
ϕ

16

1

2p+q

(
1 − 1

N2
ϕ

− 1

22p+1
− 1

22q+1

)
θ�4

ϕ, (37)

ξ =
⎡
⎣(

N2
ϕ − 1

)2

48
− N4

ϕ − 1

120

⎤
⎦θ�4

ϕ. (38)

This step requires nq(nq − 1)(nq − 3)(nq − 3)/24 four-
qubit ZZ ZZ gates and nq(nq − 1)/2 two-qubit ZZ gates.

Quantum simulation on near-term quantum devices is
mainly limited by the two-qubit gate fidelities. The implemen-
tation of the Trotter step corresponding to the φ4 interaction
term is computationally the most expensive one, since it re-
quires O(n4

q) of two-qubit gates. The number of CNOT gates
for all Trotter steps relevant for the implementation of the φ4

evolution are summarized in Table I. For comparison purpose,
the ZZ and the ZZZZ gates are decomposed in two-qubit CX
(CNOT) gates and single-qubit Rz rotations [56],

ZZp;q(ν) = CXp;qRz
q(ν)CXp;q, (39)

ZZZZp;q;r;s(ρ) = CXp;qCXq;rCXr;sR
z
s(ρ)

× CXr;sCXq;rCXp;q. (40)

Since the number of Trotter steps is proportional to the lattice
size, the computational cost of this algorithm scales linearly
with N .

IV. STATE PREPARATION

This section addresses the preparation of the ground state
on qubits for both normal and broken-symmetry phases. Our
method combines variational quantum circuits and adiabatic
evolution, and it is flexible enough to allow tuning of different
parameters to minimize circuit depth. To prepare broken-
symmetry states, an interaction between the scalar field and
an external field is introduced that explicitly breaks the Z2

symmetry. By properly choosing the strength of the external
field as a function of time during the adiabatic process, the
dual problems of degeneracy and broken symmetry in the
ground state are mitigated, as we discuss in Sec. IV B 2.

The Hamiltonian H employed for the quantum simulations
of the φ4 model is given by (7) with the lattice field opera-
tors replaced by the discrete field operators, as described in
Sec. III A. To prepare the ground state, we divide H in two

parts,

H = Hloc + Hc, (41)

where

Hloc =
N∑

j=1

Hloc, j

=
N∑

j=1

(
1

2
�2

j + 1

2
m2

I �
2
j + λI

4!
�4

j + fI� j

)
, (42)

Hc =
N∑

j=1

[
1

2

d∑
e=0

(� j+e − � j )
2 + 1

2
δm2�2

j

+ δλ

4!
�4

j + δ f � j

]
, (43)

where δm2 = m2
0 − m2

I , δλ = λ0 − λI , and δ f = f0 − fI . The
Hamiltonian Hloc is a sum of uncoupled local Hamiltonians
Hloc, j acting only at the lattice site j. The input parameters,
m2

I , λI and fI should be chosen to ensure that the adiabatic
evolution part of the state preparation is efficient, as we dis-
cuss in Sec. IV B. The first term in Hc couples the fields at
neighboring sites, while the last three terms in Hc are local.

Our state preparation protocol consists of two parts.
(1) The ground state of Hloc is prepared using variational

circuits, as we describe in Sec. IV A. It is a direct product of
the ground state of Hloc, j at each lattice site j, |ψ loc

g 〉 j :

∣∣ψ loc
g

〉 =
N∏

j=1

⊗∣∣ψ loc
g

〉
j
. (44)

(2) The ground state of the full Hamiltonian is obtained
by adiabatic evolution. The Hamiltonian Hc is turned on
adiabatically. The system evolves under the time dependent
Hamiltonian,

H (s) = Hloc + α(s)Hc, (45)

from |ψ loc
g 〉 to the ground state of the Hamiltonian Eq. (7). The

time t enters in Eq. (45) via the variable s = t/T , where T is
the total time of the adiabatic process and the function α(s)
has boundary conditions α(0) = 0 and α(1) = 1 in the time
interval T .

A. Variational preparation of local states

The ground state |ψ loc
g 〉 j of the local Hamiltonian Hloc, j can

be prepared accurately using short circuits on the nq qubits
assigned to represent the field at the site j. We propose a
hardware-efficient circuit ansatz to prepare the local ground
state using one- and two-qubit gates. The circuit parameters
are determined using optimization algorithms on classical
computers, as discussed below.

First, the local wave function in the discrete field amplitude
basis, 〈ϕα|ψ loc

g 〉 j with α ∈ {0, 1, . . . , Nϕ − 1}, is calculated on
a classical computer. This requires the diagonalization of a
small size Nϕ × Nϕ matrix corresponding to the Hamiltonian
Hloc, j .

Second, parameterized quantum circuits are employed to
produce nq-qubit quantum states. We consider circuit ansatzes
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FIG. 2. Ground state wave functions, 〈ϕα|ψ loc
g 〉 j , of the lo-

cal Hamiltonian Hloc, j in Eq. (42) represented on nq = 6 qubits
(Nϕ = 64) vs the discretization index α ∈ {0, 1, . . . , Nϕ − 1} [see
Eq. (11)]. The black circles illustrate the harmonic oscillator ground
state (λI = 0), which is a Gaussian. The red squares (green di-
amonds) illustrate the anharmonic oscillator ground state with
strong interaction, λI/m3

I = 100, for a chosen discretization interval
� = �0 ≡ √

2π/(NϕmI ) (� = �0/2). The blue triangles illustrate
the ground state for the Hamiltonian with negative mass-squared
and small external field. The magenta stars illustrate the ground
state for the Hamiltonian with negative mass-squared and signif-
icant external field. These states are obtained by employing exact
diagonalization.

made by successive one-qubit and two-qubit layers. A one-
qubit layer consists of one Ry(θi ) rotation followed by one
Rz(θ j ) rotation on every qubit. A two-qubit layer, which is
responsible for introducing entanglement, consists of CZ gates
acting on neighboring qubits. Qubit pairing in successive
entanglement layers differs from each other and alternates.
The quantum state |φqc(θ)〉 depends on M rotation angles
θ = (θ1, . . . , θM ) of the Ry and Rz single-qubit gates in the
circuit. Since, typically, nq is a small number (6–8), the state
|φqc(θ)〉 can be computed on a classical computer without
memory limitation problems, using packages such as Cirq
[57] or Qiskit [58].

Third, the M rotation angles, θ, that parametrize the circuit
are chosen so that the fidelity

F (θ) = ∣∣〈φqc(θ)|ψ loc
g

〉
j

∣∣2
(46)

is as close to 1 as possible. This can be accomplished, for
example, by using the Covariance Matrix Adaptation Evalua-
tion Strategy (CMA-ES) [59] for optimization on a classical
computer. CMA-ES is an iterative, genetic algorithm that
generates a population of solutions at each iteration. The co-
variance matrix, calculated from a population subset with the
largest values of F (θ), determines the population of solutions
considered at the next iteration. The algorithm terminates
when the best F (θ) of the population stops improving. The
most difficult problem we encounter during the optimization
of F (θ) is trapping at points of local maxima. We find that
this problem can be avoided when CMA-ES runs with a large
population of solutions.

In Fig. 2 we show the ground states of the local Hamil-
tonian Hloc, j represented on nq = 6 qubits for different

FIG. 3. (a) Fidelity of the quantum states illustrated in Fig. 2
(same legend) prepared using an optimized quantum circuit vs the
number of circuit’s entanglement layers. (b) The same as in (a) when
the quantum states are represented on nq = 7 qubits (Nϕ = 128).
(c) The same as in (a) when the quantum states are represented on
nq = 8 qubits (Nϕ = 256). The fidelity generally increases with the
number of entanglement layers of the variational circuit. However,
the fidelity is not strictly monotonic since the circuit structure with
an odd number of entanglement layer is different than that with an
even number. For the cases with seven, seven, and eight qubits, the
variational method reaches a fidelity >0.9999 with six entanglement
layers.

Hamiltonian parameters calculated using exact diagonaliza-
tion. We are going to prepare these states by the parameterized
circuits to demonstrate the efficiency of the variational
preparation. For illustration, we have chosen parameters rep-
resenting different regimes, such as noninteracting, strong
interacting with positive squared mass, negative squared mass
with small external field strength and negative squared mass
with a significant external field strength. Since, as mentioned
in Sec. III A and discussed at large in [39], the discretization
interval �ϕ in an interacting model can be tuned to optimize
the performance of the algorithm, we present examples with
�ϕ = √

2π/(NϕmI ), 1/2
√

2π/(NϕmI ), and 2
√

2π/(NϕmI ).
Note that the wave function representation on qubits depends
significantly on �ϕ . For example, the wave function plotted
with red squares and the one plotted with green diamonds both
correspond to the same Hamiltonian parameters λI/m3

I = 100
but the discretization interval of the latter is a factor of 2
smaller.

The state preparation fidelity of our parametrized circuits
is shown in Fig. 3 as a function of entanglement layers, for
nq = 6, nq = 7, and nq = 8 qubits. The target states are the
one illustrated in Fig. 2. For all examples, the fidelity of the
local ground states is larger that 0.9999 when at least six
entanglement layers are used. This is sufficient to accurately
simulate a large lattice model. For example, the fidelity to
prepare the local ground state of a lattice with N = 100 sites
is estimated to be 0.9999100 ≈ 0.99, which is comparable to
the typical two-qubit gate fidelity (∼0.995) on NISQ devices
[3–5]. If a higher fidelity is needed, more entanglement layers
can be added to the variational circuit.
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We do not encounter the difficulties seen in common varia-
tional quantum approaches such as the variational quantum
eigensolver (VQE) [6,7] since the calculation of the quan-
tum circuit required for state preparation is done on classical
computers. We do not require a global minimum and any
solution with high enough fidelity (i.e., larger than the target
accuracy) is acceptable. The number of qubits nq needed to
prepare the local wave function is not very large. For example,
nq = 8 is enough even for the strong interacting regime, since
it can accommodate ≈200 bosons per lattice site with great
precision [39]. Hence, the barren plateau issue [42] is not
a significant concern in our optimization. The optimization
problem does not worsen when the system size is increased,
since the optimized wave functions are local. For the prepa-
ration of an N-site lattice wave function |ψ loc

g 〉 [Eq. (44)], a
quantum circuit running N parallel nq quantum circuits should
be used.

The variational circuit ansatz used here and constructed
from RY, RZ, and CZ gates is just a representative example.
Different hardware-efficient circuit ansatzes can be employed.
For example, the results of this section will be similar if one
changes the CZ gate to the CNOT gate and the RY to the RX.

B. Adiabatic evolution

Our state preparation method relies on the adiabatic the-
orem [60], which relates the ground state of the interacting
φ4 Hamiltonian H [Eq. (41)] to the ground state of the
local Hamiltonian Hloc [Eq. (42)] under the action of the
time-dependent Hamiltonian H (s = t/T ) [Eq. (45)] for a suf-
ficiently long time T .

There is a vast literature [61] addressing the necessary and
sufficient conditions the adiabatic time T should fulfill. A
necessary condition is given by

T 
 1

ε
max

s∈[0,1]
|Am0(s)| for all m �= 0, with (47)

Am0(s) = 〈Em(s)|Ė0(s)〉
Em(s) − E0(s)

, (48)

where |Em(s)〉 is the mth instantaneous eigenstate of H (s)
satisfying H (s)|Em(s)〉 = Em(s)|Em(s)〉. The system starts
evolving from |E0(0)〉 ≡ |ψ loc

g 〉. The dot denotes the deriva-

tive with respect to the s variable, |Ė0(s)〉 ≡ d
ds |E0(s)〉, and

ε = ||U (1)|ψ loc
g 〉 − |ψ trg

g 〉|| quantifies the difference between
the state at the end of the the adiabatic evolution U (1)|ψ loc

g 〉
and the target state |ψ trg

g 〉 ≡ |E0(1)〉. Equation 47 is not a
sufficient condition but provides a good estimate of T for a
large number of problems [62,63]. The combination of this
condition with the relation

〈Em(s)|Ė0(s)〉 =
〈
Em(s)

∣∣ dH (s)
ds

∣∣E0(s)
〉

Em(s) − E0(s)
for m �= 0 (49)

implies that T scales as the square of the minimum excita-
tion gap. When the excitation gap along the evolution path
vanishes, as it does when the system passes through a critical
region, the adiabatic process fails.

The condition (47) is not always sufficient to ensure
adiabatic evolution, typical examples where it fails being
Hamiltonians with oscillatory terms. A further, necessary con-

dition for the validity of the adiabatic approximation [63] is
given by

T 
 1

ε
max

s∈[0,1]

∣∣∣∣ d

ds
Am0(s)

∣∣∣∣ for all m �= 0. (50)

In our case, this second adiabatic condition is relevant for the
preparation of the broken-symmetry state, as we will discuss
in Sec. IV B 2.

The adiabatic time is shown to be proportional to the
changing rate of the ground state wave function along the
adiabatic path [64,65], i.e., T ∝ ∫ 1

0 ds|| |Ė0(s)〉 ||. Intuitively
we expect that, the closer are the initial and the target wave
functions, the smaller is the overall changing rate of the
ground state along the path, and implicitly the required adi-
abatic time. In fact, for both normal and broken-symmetry
phase preparations, we observe a direct correlation between
the adiabatic time and the local overlap of the initial and the
final wave functions. Namely, a larger overlap correlates with
a shorter adiabatic time, as we discuss in Secs. IV B 1 and
IV B 2.

The initial wave function is determined by the parameters
mI , λI and fI . In the next sections we will explore the in-
fluence of these parameters on the adiabatic process. Since
these parameters are adjustable in our algorithm, we will make
recommendations for their choices.

The time dependence of the adiabatic process might
significantly influence the adiabatic time. While for the prepa-
ration of normal phase states, we consider only adiabatic
paths with linear time dependence, for the preparation of
broken-symmetry states, we propose an adiabatic path with
an exponential time dependence. This choice of the time
dependence will mitigate the complications caused by the
degeneracy of the ground state, as we discuss in Sec. IV B 2.

1. Preparation of normal phase states

Finding the optimal adiabatic path for adiabatic evolution
is difficult without the knowledge of the system’s excitation
spectrum. However, our goal in this section is less ambitious,
and consists in investigating the effect of the initial wave
function |ψ loc

g 〉 [Eq. (44)] on the adiabatic process. For normal
phase preparation we consider only adiabatic paths with linear
time dependence, i.e., we take α(s) = s in Eq. (45).

The normal phase of the φ4 model is characterized by a
nondegenerate ground state. The symmetry-breaking external
field is unnecessary for ground state preparation in this case,
and we set fI = 0 and δ f = 0 in Eqs. (42) and (43). The
dependence of |ψ loc

g 〉 on mI and λI can be understood by
writing the local Hamiltonian [Eq. (42)] as

Hloc, j

|mI | = 1

2

(
� j√|mI |

)2

+ sgn
(
m2

I

)1

2
(
√

|mI |� j )
2

+ 1

4!

λI

|mI |3
(
√

|mI |� j )
4. (51)

Up to a field amplitude scaling factor
√|mI | the eigenfunc-

tions of Hloc, j are solely determined by the sign of m2
I and

the ratio λI/|mI |3, while |mI | acts as a scaling factor for the
energy.
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FIG. 4. Adiabatic time T required to prepare the φ4 normal state with 0.97 fidelity vs m2
I for different values of the parameters m2

0 and λ0

for (a) two-site and (b) four-site lattices. T sensitivity on m2
I increases with decreasing m2

0. (c) and (d) Local fidelity F , Eq. (52), measuring the
overlap of the initial and the final local density matrices, vs m2

I for two-site and, respectively, four-site lattices. The values of m2
I yielding the

smallest T yield the largest Floc. Note that the parameters and quantities displayed in this figure are dimensionless.

The adiabatic evolution on small lattices is simulated
on classical computers, using the Trotterization method de-
scribed in Sec. III C. We observe that mI has a strong influence
on the adiabatic time and there is an optimal value that min-
imizes the adiabatic time. Figures 4(a) and 4(b) show the
adiabatic time T needed to prepare the ground state with
0.97 fidelity as a function of m2

I for different values of the
dimensionless bare parameters m2

0 and λ0 for two- and four-
site lattices. The value of T is especially sensitive to the
mass parameter mI when m0 is small, a parameter regime
relevant when taking the continuous limit a → 0 (remember
that m0 = mba). We find that, in general, the optimal value of
m2

I is larger than the bare mass m2
0.

The dependence of the adiabatic time on mI can be un-
derstood by considering the strong influence of mI on the
initial wave function, since

√|mI | acts as a scale factor for
the field amplitude variable. Two competing effects come into
play to determine the optimal mI . On one hand, the initial
gap increases with increasing m2

I , which favors the adiabatic
process. On the other hand, increasing m2

I reduces the width of
the initial wave function in the field amplitude basis. When the
initial wave function is too narrow, significant changes of the
wave function are required during evolution, which increases

the adiabatic time. In fact, for small lattices, we observe a
direct correlation between the optimal adiabatic time and the
local fidelity defined as [55]

Floc = j
〈
ψ loc

g

∣∣ρ j

∣∣ψ loc
g

〉
j, (52)

where ρ j = ∏
k �= j Trk|ψ trg

g 〉〈ψ trg
g | is the reduced density ma-

trix at site j of the system final ground state |ψ trg
g 〉 ≡ |E0(s =

1)〉. In Eq. (52), Trk denotes the partial trace over a local basis
at site k. The smallest T is obtained for the values of m2

I which
yield the largest values of Floc, as can be seen by comparing
the top panel and bottom panel of Fig. 4.

Numerical simulations on small lattices reveal a weak de-
pendence of the adiabatic time on the coupling strength λI

used to prepare the initial state. Figure 5 shows the time
T required to prepare the two- and four-site lattice ground
state with fidelity 0.99 as a function of δλ = λ0 − λI . The
parameters m2

0 and λ0 chosen in these examples are small
to accentuate the region where T is sensitive to m2

I . The
chosen value of m2

I is close to the optimal one for δλ = 0.
Particularly for the four-site lattice, the adiabatic time is nearly
independent of λI .
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FIG. 5. Adiabatic time T as a function of δλ for m2
I = 0.1, different values of the parameters m2

0 and λ0 for (a) two-site and (b) four-site
lattices. The adiabatic time T dependence on δλ = λ0 − λI is weak. Note that the parameters and the adiabatic time T displayed in this
figure are dimensionless.

2. Preparation of broken-symmetry states

Two issues related to the vanishing of the excitation gap
must be addressed when preparing states in the broken-
symmetry phase. One is the potential crossing of the critical
region during adiabatic evolution. The other is the degeneracy
of the broken-symmetry ground state. These problems can be
overcome by introducing a time-dependent external field that
couples to the scalar field during the adiabatic evolution. The
linear term in the Hamiltonian breaks the symmetry φ → −φ

and, hence, the degeneracy of the ground state. The field
strength also controls the energy gap between the ground and
first excited state. By dividing the adiabatic evolution into two
steps, we can focus on and discuss the gap and degeneracy
problems independently. The first adiabatic evolution starts
from the ground state of the local Hamiltonian [Eq. (42)] and
ends in the ground state of the full Hamiltonian with a finite
external field. The second adiabatic evolution starts from the
terminus of the first one and ends when the external field is
brought to near vanishing values (of the order of the desired
error). Our notation is such that the external field changes
from fI to fM during the first stage of the evolution and from
fM to fF in the second stage.

a. First adiabatic path: Avoiding the critical region ( fI

−→ fM). Previous studies of quantum algorithms for φ4

field theory [20] proposed state preparation via adiabatic
evolution starting from the ground state of a noninteracting
Hamiltonian. Since the noninteracting ground state belongs
to the normal phase region of the phase diagram, preparing
broken-symmetry states in this way implies crossing the criti-
cal region characterized by a vanishing excitation gap. This
is problematic, since the adiabatic process requires a finite
gap. Here we avoid crossing the critical region by starting the
adiabatic evolution from a broken-symmetry state.

The first adiabatic path starts from a local state coupled
to an external field fI and ends in the ground state of the
φ4 model coupled to the external field fM . The initial state
is the ground state of Eq. (42) and is prepared variationally
as described in Sec. IV A. The first adiabatic process here is
described by Eq. (45) with linear time dependence, α(s) = s,

and by Eq. (43) with δ f = fM − fI . At the end of the first
adiabatic path, the term containing the nonlocal coupling be-
tween sites is fully switched on. Since the ground state of the
broken-symmetry phase of the φ4 model in zero external field
is doubly degenerate (or nearly double degenerate for finite
size lattices) and well separated from the rest of the spectrum
(as numerical simulations presented in Fig. 1 shows), fM can
be chosen small enough such that the low-energy spectrum of
the system at the end of the first adiabatic path can be approx-
imated by a coupled two-level system ( fM | ∑ j〈0|� j |1〉| �
E2 − E1, where E1 and E2 are the energies of the first and
second excited states, respectively). This choice of fM , while
providing a significant gap during the first adiabatic path,
will allow us to investigate analytically the second adiabatic
process where the external field is taken to vanishing values.

Our goal is to develop an algorithm that minimizes the
adiabatic time by varying the algorithm input parameters, i.e.,
the initial magnitude field fI , the initial mass m2

I and the
initial interaction strength λI . Similar to the normal phase
preparation, we find that the adiabatic time remains correlated
with the local overlap between the initial state at fI and the
intermediate state at fM . In the following, we investigate the
adiabatic time dependence on input parameters through nu-
merical simulations of two, three, and four site lattices.

Simulations on small size lattices show that the shortest
adiabatic times are correlated with the largest local overlap
between the initial and final wave functions, similar to the
normal-phase case discussed in Sec. IV B 1. An example is
shown in Fig. 6 for the Hamiltonian parameters m2

0 = −0.22,
λ0 = 0.1, and fM = 0.0011. For this choice of the parameters,
the coupling between sites [which is 1/2 in the dimensionless
units; see the first term in Eq. (43)] is the dominant term in
the Hamiltonian. The parameter λI is fixed and equal to λ0.
In Fig. 6(a) we show the adiabatic time required to reach the
fidelity 0.97 while in Fig. 6(b) we show the local overlap, both
as a function of m2

I and fI . The correlation can be clearly
observed in Fig. 6(c), where we plot the value of m2

I that
yields the smallest T (red upper triangles) and the largest local
overlap (blue upside down triangles) for a fixed fI . In Fig. 6(d)
we show the adiabatic time and local overlap versus fI , with
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FIG. 6. Diagnostics on the adiabatic evolution algorithm: (a) Time T to reach a fidelity of 0.97 as a function of initial m2
I and external field

strength; (b) the local overlap in the same coordinate space; (c) m2
I which minimizes the adiabatic time and maximizes the local overlap for

fixed fI vs fI ; (d) adiabatic time T and the local overlap vs fI for m2
I ( fI ) minimizing T and extracted from (c). (Dimensionless parameters:

m2
0 = −0.22, λ0 = λI = 0.1, fM = 0.0011).

m2
I = m2

I ( fI ) extracted from Fig. 6(c) to minimize T at fixed
fI . We find that for the optimal adiabatic time, the external
field fI 
 fM and the initial mass parameter m2

I > 0 > |m2
0|.

Similar investigations (with fixed λI ) for other parameters of
the Hamiltonian, including smaller m2

0 and λ0 lead to similar
conclusions (not shown).

The relation between the local overlap (and implicitly of
the adiabatic time) and the parameters m2

I and fI can be un-
derstood by investigating the effect of these parameters on the
initial wave function. The initial wave function’s main peak
position and the peak’s width are dependent on both fI and
m2

I . In Fig. 7 we show the initial wave function distribution
|〈ϕα|ψ loc

g 〉 j |2 for different input parameters m2
I and fI together

with the local (at site j) probability distribution of the target
wave function, defined as p(ϕ) j = 〈ϕα|ρ j |ϕα〉 [see Eq. (52)
for the definition of ρ j]. In the figure, the local field amplitude
|ϕα〉 is discretized to Nϕ = 32 points, corresponding to using
five qubits for each site. Figure 7(a) shows that the maxi-
mum overlap is obtained by choosing a value of fI 
 fM , in
agreement with the plot shown in Fig. 6(d). The initial wave
function with the largest local overlap (green crosses) with the
target wave function is centered at the same location and has
a similar width as the target wave function (black dots). By

increasing (decreasing) fI while keeping m2
I fixed, the wave

function peak moves to the left (right). If the initial mass m2
I

is increased (decreased) such to keep the peak aligned with
the target wave function’s peak, the wave function distribution
becomes too narrow (wide) compared to the target one, as
illustrated with red squares (blue pluses). Consequently the
overlap decreases. The case where the external field fI is
chosen small, comparable to fM , is shown in Fig. 7(b). In this
case, the local overlap is not optimal because the initial wave
function exhibits a double-peak structure (green crosses and
blue pluses).

An exhaustive, numerical search in a three dimensional
space for the point ( fI , mI , λI ) which minimizes the adiabatic
time is infeasible. Instead, we explore the adiabatic time de-
pendence in the vicinity of the point ( fI 0, mI 0, λ0), where fI 0
and mI 0 are the initial external field and initial mass parameter
which yield the shortest adiabatic time when λI = λ0, as de-
scribed in the example shown in Fig. 6. We find that modifying
λI in the vicinity this point does not reduce the adiabatic
time. For example, in Fig. 8 we show results for Hamiltonian
parameters m2

0 = −0.8, λ0 = 0.6, and fM = 0.001. We keep
fI = fI 0 = 4.0008 fixed and vary λI and m2

I . The adiabatic
time and the local overlap as a function of λI/λ0 and m2

I
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FIG. 7. Initial and target wave functions. The probability distribution along one of the field-amplitude coordinates (dimensionless) for
different initial wave functions and the target wave function being the ground state of the full Hamiltonian. (a) m2

I dependence; (b) external
field dependence. (Dimensionless parameters: m2

0 = −0.22, λ0 = λI = 0.1, fM = 0.0011).

FIG. 8. Adiabatic evolution time and local overlap as a function of m2
I and λI when fI is fixed to the value optimal for λ0 = λI . (a) The

time T to reach a fidelity of 0.97 as a function of input parameters m2
I and initial λI ; (b) the local overlap between the initial and the target wave

function as a function of input parameters m2
I and initial λI ; (c) m2

I yielding the shortest T (red upper triangles) and the largest local overlap
(blue upside down triangles) at fixed λI vs λI/λ0. (d) T and local overlap vs λI/λ0 for mI = mI (λI ) yielding the shortest adiabatic time at fixed
λI extracted from (c). The minimum adiabatic time and the maximum local overlap are found around λI = λ0. (Dimensionless parameters:
m2

0 = −0.8, λ0 = 0.6, fM = 0.0014).
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are shown in Figs. 8(a) and 8(b), respectively. The minimum
adiabatic time correlates with the maximum local overlap as
in the previous example, as can be seen from Fig. 8(c) where
the m2

I which yields the shortest adiabatic time and m2
I which

yields the largest local overlap for fixed λI are shown. While
the adiabatic time dependence on λI is not negligible, we
find that the shortest adiabatic time occurs when λI ≈ λ0, as
can be seen in Fig. 8(d). Simulations for other Hamiltonian
parameters (not shown), lead to the same conclusion: varying
the input parameter λI in the vicinity of λ0 does not decrease
the adiabatic time.

In Figs. 6 and 8, it appears that there is a nearly linear
relation between fI and the corresponding best m2

I for both
the adiabatic time and local overlap. This could be explained
by the fact that, in this case, the local overlap is maximized
when the potential energy minimum is the same for the initial
and final Hamiltonians. An approximation of that relation
can be obtained using the quasiclassical argument given in
Appendix B and is shown as black dashed lines.

b. Ground state degeneracy ( fM −→ fF ). The broken-
symmetry phase of the φ4 model is characterized by a twofold
degenerate ground state in the thermodynamic limit and a
nonzero value of the order parameter. In numerical simula-
tions, the broken-symmetry ground state |ψa0〉 can be obtained
from the ground state |ψa(L, f )〉 of a system of finite size L
coupled to an external field f

H ( f ) = H + f
N∑

j=1

� j (53)

by taking the limits

|ψa0〉 = lim
f →0

lim
L→∞

|ψa(L, f )〉. (54)

Equation 53 is the same as Eq. (7) with f ≡ f0 and with
the field operators replaced by the discrete field operators.
The limiting order in Eq. (54) is important. When L is finite,
the system in the absence of the external field is not truly
degenerate. An arbitrary small external field can drive the sys-
tem to a broken-symmetry state only after the limit L → ∞.
When estimating the limit Eq. (54) numerically, f should
be decreased and L increased subject to the condition that
| f 〈0| ∑ j � j |1〉| 
 �0, where the ground state of the system
in zero external field is |0〉, the first excited state is |1〉, and the
energy gap between them is �0 = E1 − E0.

The degeneracy of the ground state in the broken-
symmetry phase is a problem for the adiabatic process, since
the vanishing gap implies long adiabatic times. However, the
quadratic adiabatic time scaling of the vanishing gap problem
can be improved to linear by choosing an appropriate time
dependence of the external field during the adiabatic process,
as discussed in this section. We focus here on the adiabatic
evolution in the vicinity of the final state characterized by
vanishing external field. In this region, we assume that the
nearly double degenerate ground state is well separated from
the rest of the spectrum. The external field during our adi-
abatic process is always small such that the second term in
Eq. (53) can be considered a small perturbation.

We denote the two low-energy states in the presence of
the external field f by |ψa( f )〉 and |ψb( f )〉. As described in

Appendix C, a perturbative analysis reveals that the difference
between the ground state of the system coupled to the external
field f , |ψa( f )〉, and the broken-symmetry state, |ψa0〉, is

|||ψa( f )〉 − |ψa0〉|| = 1
2 f B + O( f 2), (55)

where B, explicitly derived in Eq. (C34), is a quantity inde-
pendent of f and dependent on the

∑
j � j matrix elements

coupling the low-energy and the high-energy states. The gap
dependence on f is given by [see Eq. (C35)]

�ba ≡ Eb − Ea = 2 f v + O( f 2), (56)

where

v = |〈ψa0|
∑

j

� j |ψa0〉| (57)

is equal to the order parameter in the broken-symmetry phase
[see also Eq. (C15)]. The wave function dependence on f
yields

〈ψb( f )| d

df
|ψa( f )〉 = B

2
+ O( f ), (58)

as derived in Eq. (C36).
The adiabatic process starts from |ψini〉, the ground state of

Hamiltonian Eq. (53) with the external field f (s = 0) ≡ fM .
At the end of the adiabatic evolution the external field is f (s =
1) ≡ fF . The error associated with the broken-symmetry state
preparation is

ε = ||U (1)|ψini〉 − |ψa0〉||, (59)

where U (1)|ψini〉 is the adiabatically prepared state and |ψa0〉
is the broken-symmetry state (target state). There are two
contribution to ε. The first one is caused by the finite value
of the final external field, and using Eq. (55) is given by

ε f = |||ψa( fF )〉 − |ψa0〉|| = 1
2 fF B, (60)

where |ψa( fF )〉 is the ground state of Hamiltonian Eq. (53)
with f = fF . The second contribution is the error of the
adiabatic process defined as the difference between the adia-
batically prepared state and the ground state when the external
field is fF ,

εad = ||U (1)|ψini〉 − |ψa( fF )〉||. (61)

The triangle inequality implies that the total error [defined by
Eq. (59)] is bounded by the sum of these two contributions

ε � ε f + εad . (62)

The challenge to preparing the broken-symmetry state
through adiabatic evolution can be understood by inspecting
the adiabatic condition Eq. (47). Employing Eqs. (56) and (58)
the term A10 reads

A10(s) = B

4v

1

f

df

ds
. (63)

When 1
f

df
ds is large, |A10| and, implicitly, the adiabatic time

become large.
For example, a large adiabatic time, with quadratic depen-

dence on accuracy, is required for an external field with linear
time dependence

f (s) = fM − δ f s, (64)
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where δ f = fM − fF . The magnitude of A10(s) at the end of
the adiabatic process becomes

|A10(s = 1)| = B2δ f

8v

1

ε f
= εs=0(εs=0 − ε f )

�s=0

1

ε f
, (65)

where �s=0 = 2 fMv is the initial gap of this adiabatic path
and εs=0 = B fM/2 is the difference between the initial state
and the target state. If one naively employs Eq. (47) to
estimate adiabatic time and assumes εad ≈ ε f ≈ ε/2, the

adiabatic time reads T ≈ B2δ f

8v
1

εad ε f
≈ B2δ f

2v
1
ε2 . However, the

second adiabatic condition Eq. (50), should also be consid-
ered for assessing the validity of the adiabatic approximation.
In this case it predicts an even longer adiabatic time, T ≈

1
εad

| dA10
ds (s = 1)| = B3δ2

f

16vεad ε2
f

≈ B3δ2
f

2vε3 , thus an adiabatic time scal-

ing as O(ε−3). Fortunately, in the perturbative region where
the system can be reduced to a two level effective model,
one can do better than employing the adiabatic conditions
Eqs. (47) and (50) for estimating the adiabatic time. Analytical
and numerical calculations, presented in Appendix C 3 a, find
that the best adiabatic time is obtained when fF is taken small
such that ε f � εad ≈ ε. In this case [see also Eq. (C61)]

T ≈ πB2δ f

16v

1

ε2
≈ π

2

εs=0

�s=0
(εs=0 − ε f )

1

ε2
. (66)

Thus, for an external field with linear time dependence the re-
quired adiabatic time scales as O(ε−2). This is an increase by
a factor of ε−1 when compared to systems with nonvanishing
excitation gaps.

Since the excitation gap vanishes at the end of the adiabatic
path, an external field time dependence which slows towards
the end of the adiabatic evolution is expected to improve the
adiabatic process. As Eq. (63) predicts, the adiabatic time
does not blow up when 1

f
df
ds is kept in bounds. For exam-

ple, if the external field decreases exponentially, T scales as
O(ε−1 ln[ε−1]), which is better then O(ε−2) for a linearly
decreasing field. Indeed, by choosing

f (s) = fM exp(−γ s), with γ = ln( fM/ fF ) = ln(εs=0/ε f ),
(67)

one has

|A10| = γ
B

4v
= γ

εs=0

�s=0
, and

d

ds
A10 = 0. (68)

The adiabatic conditions Eqs. (47) and (50) predict an
adiabatic time T ≈ ε−1

ad ln(ε−1
f ). Taking ε f ≈ εad ≈ ε/2 this

implies T ≈ ε−1 ln(ε−1). In fact, explicit analytical and nu-
merical calculations for a two-level systems, presented in
Appendix C 3 b, find that

T ≈ B

2vεad
ln

(
B fF

2ε f

)
= 2

εs=0

�s=0εad
ln

(
εs=0

ε f

)
. (69)

For a desired accuracy ε, one can show that [see Eqs. (C73)
and (C74)]

B

2vε
ln

(
B fF

2ε

)
� T � B

vε
ln

(
B fF

ε

)
. (70)

Note that T depends on the ratio B/v = 4εs=0/�s=0. A
small ratio B/v implies that the wave function’s dependence

on the external field is much weaker than the gap’s depen-
dence on the external field. For the small size lattices explored
here, we find that B/v is ∼10−2 [using the dimensionless
units defining the Hamiltonian Eq. (7)] close to the critical
region and is decreasing rapidly when moving further away
from the critical region. We conclude that, for the adiabatic
preparation of the broken-symmetry states, the farther away
from the critical region the states are the smaller adiabatic
time is needed.

3. Adiabatic evolution input parameters selection

Finding the optimal input parameters fI , m2
I , and λI for

the preparation of large size lattice states is challenging. We
propose a strategy that avoids very long quantum circuits
that are infeasible for limited-coherence near-term quantum
hardware. First, determine the optimal input parameters for
a small lattice, as discussed here. Then, use those values as
the starting point in a search for the optimal input parame-
ters in increasingly larger systems, guided by local overlap
measuring. The local overlap can be obtained by employing
the SWAP test method [66]. This strategy implies running
multiple evolution circuits for systems smaller than the target
one. However, the evolution time for these runs is close to
optimal, implying relatively short circuits.

V. CONCLUSION

In this paper, we present a circuit implementation of the
evolution operator of the φ4 lattice Hamiltonian on a qubit
quantum computer and an algorithm to prepare states in both
the normal and broken-symmetry phases. The implementation
is efficient in its use of resources and leverages the adjustable
parameters of the problem to produce high fidelity states. It is
suitable for near-term quantum computers.

The evolution operator is implemented using the Trotter-
ization method. The scalar field is encoded on the qubits
using the discretized field amplitude representation [39] and
requires a small number of qubits per site, nq ≈ 6–8. This
number of qubits is adequate for exponential precision in
even the strongly interacting regimes. The required number
of qubits and gates per Trotter step scale with the lattice size
N . The most computationally expensive part of the evolution
is the Trotter step associated with the φ4 interaction, which
requires a number of two-qubit gates proportional to Nn4

q.
Our state preparation combines a variational approach with

adiabatic evolution. The φ4 Hamiltonian is split into two parts:
a local Hamiltonian consisting of a sum of local terms (i.e
uncoupled terms describing interaction at each site) and an
intersite coupling Hamiltonian that is switched on adiabati-
cally to restore the full Hamiltonian. The adiabatic process
starts from the ground state of the local Hamiltonian, which is
determined variationally.

The ground state of the local Hamiltonian is prepared with
high fidelity using short quantum circuits. These quantum
circuits consists of a few (� 6) two-qubit entangling layers
(CZ in our example) and parameterized single-qubit gates. The
circuit parameters are calculated on a classical computer by
optimizing the overlap of the circuit final state and the local
Hamiltonian ground state obtained from exact diagonaliza-
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tion. Since the local Hamiltonian is a sum of uncoupled terms
at each site, the circuit optimization problem is reduced to
the optimization of a circuit with a small number of qubits
(nq ≈ 6–8) and is independent of the lattice size.

The local Hamiltonian contains the φ4 interaction and, for
the preparation of the broken-symmetry phase, a coupling of
the scalar field to an external field. The parameters defining
the local Hamiltonian, the initial mass mI , the initial inter-
action coupling λI and the initial external field fI , constitute
the input of our algorithm and can be adjusted. The system’s
Hamiltonian is restored by the adiabatic evolution. The initial
parameters can be optimized to decrease the adiabatic time
necessary to reach the full Hamiltonian ground state.

Our numerical investigation on small lattices finds a corre-
lation between the adiabatic time and the local overlap of the
final wave function and the initial wave function. To reduce
the adiabatic time, the input parameters mI , λI and fI , should
be chosen such that the final and the initial states have a
maximum local overlap. For state preparation in the normal
phase, we find a strong dependence of the adiabatic time on
m2

I and a weak dependence on λI . In this case, the optimal m2
I

is positive and larger than the φ4 Hamiltonian mass parameter
|m0|2. For state preparation in the broken-symmetry phase,
we find that the optimal adiabatic time is achieved when
the adiabatic process starts from the ground state of a local
Hamiltonian with significant external field fI and a positive
input mass parameter m2

I .
The correlation between the adiabatic time and the local

overlap allows us to use the overlap as a tool to optimize
the initial parameters. We propose an iterative strategy for
finding the optimal input parameters mI , λI and fI , starting
with the optimal values for small lattices and adjusting them in
increasingly larger systems by maximizing the local overlap.

There are two main challenges associated with the prepa-
ration of the broken-symmetry states that are addressed in
this paper. The first is when the adiabatic evolution crosses
the critical phase transition region for an initial state in the
symmetric phase. The second is the vanishing gap of the
double degenerate broken-symmetry phase. We avoid these
challenges by coupling the system to an external field during
the adiabatic evolution. We propose an adiabatic process con-
sisting of two steps. In the first step, the adiabatic evolution
starts from a broken-symmetry state prepared variationally
by coupling the local Hamiltonian to a finite external field.
During this step, the coupling term is switched on and the
external field is decreased. During the second step, the ex-
ternal field is decreased to vanishing values. The error in the
adiabatic process can be kept under control by choosing a
linear decrease of the external field in the first step and an
exponential decrease in the second step.

ACKNOWLEDGMENTS

A.M. is partially supported by the DOE/HEP QuantISED
program grant of the theory consortium “Intersections of QIS
and Theoretical Particle Physics” at Fermilab. A.C.Y.L. and
S.M. are partially supported by the DOE/HEP QuantISED
program grant “HEP Machine Learning and Optimiza-
tion Go Quantum,” identification number 0000240323. This
manuscript has been authored by Fermi Research Alliance,

LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High En-
ergy Physics.

APPENDIX A: FOURIER TRANSFORM GATE

In this Appendix, we prove Eq. (25), which expresses the
discrete Fourier transform gate F j in terms of the QFT gate
and single-qubit rotations. We begin from the definition of the
discrete Fourier operator in Eq. (13):

F j = 1√
Nϕ

Nϕ−1∑
α,β=0

ei 2π
Nϕ

(α− Nϕ−1
2 )(β− Nϕ−1

2 )|ϕα〉 j〈ϕβ | j . (A1)

Expanding the phase factor and inserting the identity operator
1 = ∑Nϕ−1

α=0 |ϕα〉 j〈ϕα| j leads to

F j = ei
Nϕ δ2

2π

⎛
⎝Nϕ−1∑

α=0

e−iδα|ϕα〉 j〈ϕα| j

⎞
⎠

×
⎛
⎝ 1√

Nϕ

Nϕ−1∑
μ,ν=0

ei 2π
Nϕ

μν |ϕμ〉 j〈ϕν | j

⎞
⎠

×
⎛
⎝Nϕ−1∑

β=0

e−iδβ |ϕβ〉 j〈ϕβ | j

⎞
⎠, (A2)

where δ = (Nϕ−1)π
Nϕ

. The first line is a phase factor, and it
is relevant if we would like to implement a control Fourier
transform gate. The third line is a standard QFT gate [55].
The second and the fourth lines can be implemented as single-
qubit z rotation gates similar to Eq. (28) such that

e−iδα|ϕα〉 j〈ϕα| j

= e−iδ
∑nq−1

q=0 αq j 2nq−1−q |ϕα〉 j〈ϕα| j

= e−iδ
∑nq−1

q=0
2αq j −1

2 2nq−1−q
e−iδ

Nϕ−1
2 |ϕα〉 j〈ϕα| j

= e−i
Nϕ δ2

2π

nq−1∏
q=0

e−iδ
σ z

q j
2 2nq−1−q

= e−iδ2 Nϕ δ2

2π

nq−1∏
q=0

Rz
q j (2

nq−1−qδ). (A3)

In the second line of the above equation, we used the binary
representation α j = ∑nq−1

q=0 αq j2nq−1−q [Eq. (23)]. Rewriting
Eq. (A2) with QFT and Rz gates, we arrive at Eq. (25):

F j = e−i
Nϕ δ2

2π

nq−1∏
q=0

Rz
q j (2

nq−1−qδ) QFT j

×
nq−1∏
q=0

Rz
q j (2

nq−1−qδ). (A4)
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APPENDIX B: SEMICLASSICAL DERIVATION OF THE
RELATION BETWEEN THE OPTIMAL INITIAL MASS

AND THE OPTIMAL INITIAL EXTERNAL FIELD

Here we present a semiclassical argument to explain the
nearly linear relation between the best m2

I and fM shown in
Figs. 6 and 8. The adiabatic preparation is optimized when the
local overlap between the initial ground state of H (s = 0) and
the final ground state of H (s = 1) is close to maximum. While
we do not have an analytic form of the ground-state wave
function to determine the local overlap, we can determine
the minimum of the classical potential energy, which in our
case approximately predicts the center of the wave function.
Hence, we find that, when the minima of the initial potential
energy and the final potential coincide, the adiabatic protocol
is close to optimal. The potential energy along the adiabatic
path is given by

V (s) =
N∑

j=1

[
m2

I + s δm2

2
�2

j + s

2

d∑
e=0

(� j+e − � j )
2

+ λI + s δλ

4!
�4

j + ( fI + s δ f )� j

]
. (B1)

Given m2
0 < 0 and assuming translational symmetry, the min-

imum of the potential energy is determined by

∂V (s)

∂� j

∣∣∣∣
� j=�0(s)

= 0, (B2)

where �0 = �1 = · · · = �N=1 = �0(s) is the location of the
minimum. By requiring the minimum to be at the same po-
sition in the beginning (s = 0) and at the end (s = 1), i.e.,
�0(0) = �0(1), we can find a relation between m2

I and fI as
shown in Figs. 6 and 8 as black dashed lines. In particular the
linear relation

fI = ∓
√

3!
∣∣m2

0

∣∣
λ0

(
m2

I + λI

λ0

∣∣m2
0

∣∣) + O( fM ) (B3)

is a good approximation. We emphasize that while this ap-
proximated relation aligns with the observations we made in
the numerical simulation, this does not mean that the system
properties in the low-energy subspace can be explained by a
semiclassical argument. At best, the semiclassical argument
gives us an insight about where the wave function is confined
by the semiclassical potential in the field-amplitude basis. The
distribution and most of the properties of the wave function
remain strongly influenced by quantum effects and cannot be
inferred from the semiclassical potential.

APPENDIX C: ADIABATIC PREPARATION OF A
BROKEN-SYMMETRY STATE IN AN EFFECTIVE

TWO-LEVEL SYSTEM

In this Appendix, we investigate the adiabatic condition for
the preparation of the broken-symmetry states near the end of
the path in Sec. IV B 2 b. Using an effective two-level system
to approximate a nearly degenerate subspace, we will derive
the adiabatic condition and propose more efficient adiabatic
paths.

We consider a finite system of size L in the parameter
regime corresponding to the broken-symmetry phase. The two
lowest energy states |0〉 and |1〉 are nearly degenerate and well
separated from the rest of the spectrum,

�0 ≡ E1 − E0 � E2 − E1 ≡ �1. (C1)

In the thermodynamic limit, the states |0〉 and |1〉 are degen-
erate,

�0(L) −−−→
L→∞

0. (C2)

The broken-symmetry state can be reached by coupling the
system to an external field

Hf = H + f �, where (C3)

� =
N∑

j=1

� j, (C4)

and then taking the limits L → ∞ followed by f → 0. Per-
turbation theory can be applied in this limit. We then apply
a Schrieffer-Wolff transformation [67] to obtain an effective
two-level Hamiltonian.

1. Review of Schrieffer-Wolff transformation

In this subsection, we will provide a quick review of the
Schrieffer-Wolff transformation. In general, we can separate
the full Hamiltonian into the unperturbed part H and the
leading-order perturbation � such that

Hf = H + f �. (C5)

The unperturbed part H is twofold degenerate due to a double-
well potential. We consider the nearly degenerate subspace to
be spanned by the states |0〉 and |1〉, each localized at one of
the potential wells with an energy E0( f = 0).

We carry out the perturbative calculation in this subspace
using a Schrieffer-Wolff transformation, which constructs an
effective Hamiltonian Heff = e−SHf eS decoupling the twofold
degenerate subspace from the higher-energy eigenstates up to
an arbitrary order of f . The generator S can be constructed
iteratively using a canonical van Vleck formalism [67].

To derive our result, we separate � into a block diagonal
piece VD and a piece VX that couples the degenerate subspace
and the higher-energy subspace. The generator S has a series
expansion

S =
∞∑
j=1

f jS( j). (C6)

Applying the Baker-Hausdorff lemma, we can expand the
transformed Hamiltonian into

Heff = e−S (H + f VD)eS + e−S f VX eS

= H ′ + [H + f VD, S] + 1
2 [[H, S], S]

+ f VX + f [VX , S] + O( f 3)

= H + f (VD + VX + [H, S(1)])

+ f 2
(

1
2 [[H, S(1)], S(1)] + [VX , S(1)] + [H, S(2)]

+ [Vd , S(1)]
) + O( f 3). (C7)
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To decouple the two subspaces, we pick

[H, S(1)] = −VX , (C8)

[H, S(2)] = −[Vd , S(1)]. (C9)

We can use the resolvent operator technique to determine the
generator such that

S(1)|m〉 = −Rm[H, S(1)]|m〉, (C10)

where the resolvent operator is given by

Rm =
∑
n �=m

|n〉〈n|
Em − En

. (C11)

This gives

S(1) =
∑

k=0,1

∑
γ�2

( 〈γ |VX |k〉
Ek − Eγ

|γ 〉〈k| − 〈k|VX |γ 〉
Ek − Eγ

|k〉〈γ |
)

.

The effective Hamiltonian up to the second order is given
by

Heff = H + f VD + f 2 1
2 [VX , S(1)]. (C12)

In the nearly degenerate subspace, Heff can be written as

Heff =
∑
j=0,1

Ej | j〉〈 j| + f
∑

j,k=0,1

Vjk| j〉〈k|

+ f 2
∑

j,k=0,1

Wjk| j〉〈k| + O( f 3), (C13)

where Wjk = ∑
γ�2

〈 j|�|γ 〉〈γ |�|k〉
2 ( 1

Eγ −E0
+ 1

Eγ −E1
) and Vjk =

〈 j|�|k〉. The first two terms in the equation are simply the
projection of H + f � in the nearly degenerate subspace. The
last term comes from the perturbative treatment and can be
understood as the virtual interaction between the two nearly
degenerate states through the higher-energy states.

2. Effective two-level model

Ignoring the higher-order terms in Eq. (C13), we get

Heff =
∑
j=0,1

Ej | j〉〈 j| + f
∑

j,k=0,1

Vjk| j〉〈k|

+ f 2
∑

j,k=0,1

Wjk| j〉〈k|. (C14)

Note that V00 = 0, and V11 = 0 since |0〉 and |1〉 have the
full symmetry of the Hamiltonian H , while � breaks the Z2

symmetry. For convenience we will denote

v = |V01| = |V10|. (C15)

The implicit assumption made when applying the perturbation
theory is that f is small such that f v � �1. We also assume
that the system is large such that �0 � f v. We ignore terms
of O(�0/[ f v]) in the following.

The effective Hamiltonian (C14) acts on the two-
dimensional space spanned by the states |0〉 and |1〉. The
following notation is convenient:

s = 1

2
[E0 + E1 + f 2(W00 + W11)], (C16)

δ = 1

2
[�0 + f 2(W11 − W00)], (C17)

t = f V01 + f 2W01, (C18)

D = δ√
δ2 + |t |2

, (C19)

t = |t |e−i2 f , (C20)

tan 2θ = −|t |
δ

, (C21)

cos2 θ = 1

2
(1 + D), cos θ =

√
1 + D

2
, (C22)

sin2 θ = 1

2
(1 − D), sin θ = −

√
1 − D

2
. (C23)

The eigenstates of the Hamiltonian (C14) can be written as

|ψa( f )〉 = e−i f cos θ |0〉 + ei f sin θ |1〉, (C24)

|ψb( f )〉 = −e−i f sin θ |0〉 + ei f cos θ |1〉, (C25)

while the corresponding energies are

Ea = s −
√

δ2 + |t |2, (C26)

Eb = s +
√

δ2 + |t |2. (C27)

Defining the broken-symmetry states as

|ψa0〉 = lim
f →0

|ψa( f )〉 = 1√
2

(e−i f |0〉 − ei f |1〉), (C28)

|ψb0〉 = lim
f →0

|ψb( f )〉 = 1√
2

(e−i f |0〉 + ei f |1〉), (C29)

the eigenstates of the system can be written as

|ψa( f )〉 = (cos θ − sin θ )√
2

|ψa0〉 + (cos θ + sin θ )√
2

|ψb0〉,

(C30)

|ψb( f )〉 = − (cos θ + sin θ )√
2

|ψa0〉 + (cos θ − sin θ )√
2

|ψb0〉.

(C31)

The quantity D in Eq. (C19) can be written as

D = f B − f 2AB + O( f 3) + O

(
�0

f v

)
, (C32)

where

A = (V01W10 + V10W01)

2v2
, (C33)

B = (W11 − W00)

2v
, (C34)
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are independent on the external field f . The following quanti-
ties, relevant for the investigation of the adiabatic process, can
be written up to O( f 3) and O(�0/[ f v]) as

�ba = Eb − Ea = 2 f v(1 + f A), (C35)

〈ψb( f )| d

df
|ψa( f )〉 = − sin θ

d

df
cos θ + cos θ

d

df
sin θ

= 1

2
B − f AB + 1

4
f 2B3 + O( f 3), (C36)

〈ψa( f )| d

df
|ψb( f )〉 = −〈ψb( f )| d

df
|ψa( f )〉, (C37)

|||ψa( f )〉 − |ψa0〉|| = 1

2
D = 1

2
f B − 1

2
f 2AB. (C38)

3. Adiabatic evolution in a two-level system

Here we investigate the two-level system’s evolution when
the external field f (s), depending on the variable s = t/T ,
changes during a time interval T from the initial value f (s =
0) = fi to the final value f (s = 1) = f f . Note that this evolu-
tion corresponds to the second stage of the adiabatic process
to prepare the broken-symmetry states in Sec. IV B 2 such
that fi = fM and f f = fF . The initial wave function is the
ground state of the system when f = fi, |ψini〉 ≡ |ψ (s =
0)〉 = |ψa( fi )〉. During the adiabatic evolution, the wave func-
tion is

|ψ (s)〉 = ca(s)|ψa[ f (s)]〉 + cb(s)|ψb[ f (s)]〉, (C39)

where |ψa( f )〉 and |ψb( f )〉 are the instantaneous eigenstates
of the Hamiltonian (C14) with external field f (s).

The state at the end of the adiabatic evolution is∣∣ψ f
〉 ≡ |ψ (s = 1)〉 = ca f

∣∣ψa( f f )
〉 + cb f

∣∣ψb( f f )
〉
, (C40)

where we denote ca f ≡ ca(1) and cb f ≡ cb(1). The adiabatic
error is given by the difference between the system’s state at
the end of the adiabatic evolution and the ground state when
f = f f ,

εad = |||ψ f 〉 − |ψa( f f )〉|| = √
2(1 − |ca f |)

≈ |cb f | + O(|cb f |4). (C41)

The error caused by the finite final field, defined as the
difference between the eigenstate when f = f f and the
broken-symmetry state, is obtained by applying Eq. (C38):

ε f ≡ |||ψa( f f )〉 − |ψa0〉|| = 1
2 B f f + O( f 2). (C42)

Employing Eqs. (C30), (C31), and (C39), the adiabatically
prepared state can be written as∣∣ψ f

〉 = cos θ f (ca f − cb f ) − sin θ f (ca f + cb f )√
2

|ψa0〉 (C43)

+ cos θ f (ca f + cb f ) + sin θ f (ca f − cb f )√
2

|ψb0〉,

where cos θ f and sin θ f are given by Eqs. (C22) and (C23)
when f = f f . The total error for preparing the broken-
symmetry state is

ε ≡ |||ψ f − |ψa0〉〉|| ≈ |ca f ε f + cb f |. (C44)

The coefficients ca(s) and cb(s), which describe the adiabatic
evolution, obey the differential equations

dca

ds
= −cb(s)

df

ds
〈ψa( f )| d

df
|ψb( f )〉e−iT

∫ s
0 �ba(u)du, (C45)

dcb

ds
= −ca(s)

df

ds
〈ψb( f )| d

df
|ψa( f )〉eiT

∫ s
0 �ba(u)du, (C46)

with the initial conditions ca(0) = 1 and cb(0) = 0. These
equations can be solved numerically. Next we will present
results for different choices of the time dependence of f : (1)
linear and (2) exponential.

a. Adiabatic evolution with linear dependence of the external field

In this scenario, the field’s time dependence is

f (s) = fi + ( f f − fi )s = fi − δ f s, (C47)

where δ f = fi − f f . Equations (C45) and (C46) reduce to

dca

ds
= −B

2
δ f e−iT v(2 fis−δ f s2 )cb(s), (C48)

dcb

ds
= B

2
δ f eiT v(2 fis−δ f s2 )ca(s). (C49)

At the end of this section we will present the numerical
solution to these equations. However, in order to have an ana-
lytical estimate of the error dependence on the adiabatic time
we proceed first by considering some simplifying approxima-
tions. We will judge the accuracy of these approximations by
comparing the approximate results with the exact numerical
solution.

First, taking into account that |1 − ca(s)| ≈ εad , Eq. (C49)
can be written as

cb(1) = B

2
δ f

∫ 1

0
dsei2T v

∫ s
0 ( fi−δ f u)du + O

(
ε2

ad

)

= B

2
δ f

∫ 1

0
dse

−iT vδ f (−2 fi
δ f

s+s2 ) + O
(
ε2

ad

)

= B

2
δ f e

iT v
f 2
i

δ f

∫ 1

0
dse

−iT vδ f (s− fi
δ f

)2

+ O
(
ε2

ad

)

= B

2
δ f e

iT v
f 2
i

δ f
1√

T vδ f

∫ √
T vδ f

fi
δ f

√
T vδ f

f f
δ f

dye−iy2 + O
(
ε2

ad

)
.

(C50)

The integral in Eq. (C50) can be expressed in terms of the
error function Erf(x), as

cb(1) = ei 3
4 π B

4

√
πδ f

T v
e

iT v
f 2
i

δ f

[
Erf

(
ei π

4

√
T v

δ f
fi

)

− Erf

(
ei π

4

√
T v

δ f
f f

)]
+ O(ε2). (C51)

The error function expansion at small argument is

Erf
(
ei π

4 x
) =

√
2

π
(1 + i)x − 2√

π
ei 3π

4
x3

3
+ O(x5), (C52)
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while at large argument is

Erf
(
ei π

4 x
) = 1 − e−ix2 1 − i√

2π

1

x
+ O(x−3). (C53)

We distinguish two cases.
Case I. The adiabatic time satisfies

δ f

v f 2
i

� T � δ f

v f 2
f

. (C54)

In this case, the first error function in Eq. (C51) has a large
argument while the second one has a small argument. The
adiabatic error is

εad = |cb(1)|

≈ B

√
π

4

√
δ f

T v

(
1 −

√
2

π

√
T v

δ f
f f

)
+ O

(
1

T

)

≈ B

√
π

4

√
δ f

T v
− B

f f

2
√

2
. (C55)

This implies

(
εad + 1√

2
ε f

)2

= πB2δ f

16T v
, (C56)

and an adiabatic time scaling as

T ≈ πB2δ f

16v

1(
εad + 1√

2
ε f

)2 . (C57)

Equation (C54) implies that this approximation is valid when

1

4
(
εad + 1√

2
ε f

)2 � 1

πε2
f

, (C58)

or equivalently when

ε f � 2√
π − √

2
εad ≈ 5.58εad , (C59)

i.e., when the final external field is chosen small enough that

ε ≈ εad 
 ε f . (C60)

In this case, the required adiabatic time scales inversely pro-
portionally with the squared accuracy,

T ≈ πB2δ f

16v

1

ε2
. (C61)

Case II. The adiabatic time satisfies

T 
 δ f

v f 2
f

= δ f B2

4ε2
f

. (C62)

FIG. 9. Errors for preparing the broken-symmetry state when the
external field has a linear time dependence in a two-level system
with B = 0.2, v = 10, and fi = 1. (a) Logarithmic scale. Errors ε,
ε f and εad vs the adiabatic time T when ε f = f f B/2 = 10−3. The
constants a = B/4

√
πδ f /v and b = δ f B2/(8vε f ), see Eq. (C61) and,

respectively, Eq. (C64). Inset: The error ε (light red line) has an
oscillatory component as a function of T . The points of maximum
are well approximated by ε f + εad (black line). (b) The total error
ε vs T for different choices of the final external field f f = 2ε f /B.
The adiabatic time for a fixed ε decreases with decreasing ε f . The
optimal adiabatic time is obtained in the parameter region where
ε f � ε ≈ εad . Note that the parameters and quantities displayed are
dimensionless.

In this case, both error functions appearing in Eq. (C51) have
a large argument. The adiabatic error can be approximated by

εad = |cb(1)| ≈ δ f B

4T v f f
= δ f B2

8T vε f
, (C63)

which implies

T ≈ δ f B2

8vε f εad
. (C64)

Equation (C62) implies that this approximation is valid when

ε f 
 εad . (C65)

Making the assumption (numerically verified) that both ε f and
εad are independent and the total error is the sum of these two
contributions, ε = ε f + εad , one gets

T >
δ f B2

2vε2
. (C66)

By comparing the adiabatic time estimates for the two cases,
Eqs. (C61) and (C64), one concludes that, for a desired ac-
curacy ε, the choice of a large final external field (when
ε ≈ ε f 
 εad ) requires a larger T than the choice of a small
final external field (when ε ≈ εad 
 ε f ).

The errors calculated by solving Eqs. (C48), and (C49)
numerically are shown in Fig. 9. Since the right hand side
of these differential equations contains imaginary terms, the
coefficients ca f (T ) and cb f (T ) have an oscillatory component.
As a consequence, ε and εad display an oscillatory behavior,
as can be seen from the inset. For our analysis of the nu-
merical data, we consider the points where ε(T ) reaches a
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local maxima. As shown in the inset, ε ≈ ε f + εad at these
points, i.e., the adiabatic error and the final field error can be
considered as independent contributions to the total error. In
Fig. 9(a) we show the errors ε, ε f and εad dependence on T
for a case where the final external field yields ε f = 10−3. The
numerical results are in agreement with the analytical analysis
discussed earlier. At small T , where εad 
 ε f the adiabatic
time scales as T ∝ ε−2, as predicted by Eq. (C61). At larger
T where εad � ε f the adiabatic time scales as T ∝ ε−1

f ε−1
ad , as

predicted by Eq. (C64).
In Fig. 9(b) we show the total error ε versus T for different

values of the final external field. As our analytical analysis
predicts, for a given ε (see, for example, the dashed black line)
the required adiabatic time decreases with decreasing ε f .

To conclude, we find that for an adiabatic process with
linear time dependence of the external field, the adiabatic time
scales as ε−2.

b. Adiabatic evolution with exponential dependence
of the external field

In this scenario, the external field’s time dependence is

f (s) = fie
−γ s with γ = ln

fi

f f
. (C67)

Equations (C45) and (C46) reduce to

dca

ds
= −1

2
γ f Be−i 2T v

γ
( fi− f )cb(s), (C68)

dcb

ds
= 1

2
γ f Bei 2T v

γ
( fi− f )ca(s). (C69)

Employing the approximation |1 − ca(s)| ≈ εad , one has

cb(1) ≈ −1

2
Bγ

∫ 1

0
ds f (s)ei2T v

∫ s
0 f (u)du + O

(
ε2

ad

)
= iBγ

4T v

(
ei2T v

∫ 1
0 f (s)ds − 1

) + O
(
ε2

ad

)
= iBγ

4T v

(
ei

2T vδ f
γ − 1

) + O
(
ε2

ad

)
. (C70)

As for the linear adiabatic path case, cb(1) as a function of T
has an oscillatory behavior. For the T values which yield local
maxima of |cb(1)| [T = (2k + 1)πγ /(2vδ f ), with k integer]
the adiabatic error is

εad = |cb(1)| ≈ Bγ

2T v
, (C71)

implying

T ≈ B

2v

1

εad
ln

fi

f f
= B

2v

1

εad
ln

B fi

2ε f
. (C72)

Since ε f , εad � ε, a lower bound for T is

T >
B

2vε
ln

B fi

2ε
. (C73)

For a desired accuracy ε, it is possible to determine the
optimal ε f and εad which minimize T numerically. To find

FIG. 10. Adiabatic time to prepare the broken-symmetry state in
a two-level system with B = 0.2, v = 10 and fi = 1. (a) External
field with exponential time dependence. T vs ε for different values of
the final external field f = 2ε f /B. When ε 
 ε f , T ≈ ε−1 ln(ε−1

f ) in
agreement with Eq. (C72). The approximation ε ≈ ε f + εad does not
hold well when ε approaches ε f , but the bounds for the adiabatic time
given by Eq. (C73) and Eq. (C74) are valid (see dashed lines where
c1 = B/(2v) and c2 = B fi/2). (b) Adiabatic time for the exponential
path [solid lines, same legend as in (a)] and for the linear path (dotted
lines) vs accuracy. The adiabatic time for the exponential path scales
as ε−1 ln ε−1 which is better than the ε−2 scaling for the linear path.
Note that the parameters and quantities displayed in this figure are
dimensionless.

an asymptotic estimate for T , we assume ε f and εad are in-
dependent contributions to the total error, ε ≈ ε f + εad . Then
the optimal T is smaller than or equal to the one obtained for
ε f = εad ≈ ε/2,

T � B

vε
ln

B fi

ε
. (C74)

The bounds provided by Eqs. (C73) and (C74) show that the
time required for adiabatic evolution scales as

T ∝ 1

ε
ln

1

ε
, (C75)

which is an improvement compared to using an external field
with linear time dependence, where T ≈ ε−2 [see Eq. (C61)].

The results obtained by solving the differential equa-
tions (C68) and (C69) numerically are shown in Fig. 10(a).
The adiabatic time satisfies Eq. (C72). The approximation ε ≈
ε f + εad does not hold well in the region where ε approaches
ε f (see the solid and dash-dotted lines with the lightest color
corresponding to ε f = 10−3). However, the inequalities (C73)
and (C74) are true. In Fig. 10(b) we compare the adiabatic
time for the linear adiabatic path (dotted lines) with the one
corresponding to the exponential adiabatic path (solid lines).
As Eqs. (C61), and (C75) predict, the adiabatic time for the
exponential case is much smaller than that for the linear case.
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