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Quantum limits on localizing point objects against a uniformly bright disk
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We calculate the quantum Fisher information (QFI) for estimating, using a circular imaging aperture, the
two-dimensional location of a point source against a uniformly bright disk of known center and radius in the ideal
photon-counting limit. We present both a perturbative calculation of the QFI in powers of the background-to-
source brightness ratio and a numerically exact calculation of the QFI in the eigenbasis of the one-photon density
operator. A related problem of the quantum limit on estimating the location of a small-area brightness hole in
an otherwise uniformly bright disk, a problem of potential interest to the extrasolar planet detection community,
is also treated perturbatively in powers of the ratio of the areas of the hole and the background disk. We then
numerically evaluate the Cramér-Rao lower bound (CRB) for wavefront projections in three separate bases,
those comprising Zernike, Fourier-Bessel, and localized point-source modes, for unbiased estimation of the two
position coordinates of the point source and of the brightness hole center, respectively, for the two problems. By
comparing these CRBs with the corresponding quantum-limited minimum error variances, given by inverting
the QFI matrix, and with the CRBs associated with direct imaging, we assess the maximum efficiency of these
wavefront projections in performing such estimations.
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I. INTRODUCTION

A number of high-resolution imaging applications involve
optical localization of point objects against a luminous back-
ground. Single-molecule localization microscopy (SMLM)
[1,2] typically concerns the localization of individual labels
using their flourescence signal photons against finite back-
ground illumination presented by other molecules located
outside the field of view of an imaging frame. A less typical
but important application of SMLM involves a superresolu-
tion shadow imaging (SUSHI) technique [3] for visualizing
the extra-celluar space (ECS) in the brain in which the tis-
sue cells moving through the ECS cast shadows against the
fluorescence from a dye-labeled ECS background. Industrial
machinery and aircraft components may begin to fail due
to the development of tiny cracks and point imperfections
[4,5] from repetitive mechanical motion and general mate-
rial fatigue. Early interventions based on illuminating parts
suspected of imminent failure to detect such imperfections
seem to be greatly desirable. In the astronomical domain,
there is overwhelming interest in exoplanet (EP) detection [6],
using instruments like TESS [7] for detection of EPs transiting
across their parent star disks [8] and the Gemini Planet Imager
(GPI) [9] for direct optical detection of EPs.

Different operating conditions apply to the different appli-
cations. The background illumination could be relatively faint,
as for the typical SMLM problem, or bright as for SUSHI and
the EP detection problem, and the source localization may
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involve subdiffractive scales in the extreme faintness limit,
as for the latter problem. Cameras that count and correct
wavefronts at the level of individual photons, such as the
EMCCD-based wavefront sensor upgrade of GPI 2.0 [10],
must be utilized to collect remote optical data from such
source-background pairs in order to have the best chance of
overcoming these challenging conditions.

We present here the ultimate estimation theoretic limit,
that furnished by quantum Fisher information (QFI) [11–15],
on the variance of estimation of the two-dimensional (2D)
location of a point source against a fixed, uniformly bright,
circular background disk in the ideal photon-counting limit.
We also address a closely related problem of a brightness hole
in an otherwise uniformly bright disk source, which might
describe the problem of an EP partially occulting the disk of
its parent star.

A previous calculation of the quantum-limited minimum
error variances in estimating the separation of an asym-
metrically bright point-source pair, which might describe
a nonoverlapping EP-star pair, appeared in Ref. [16]. An
asymptotic error analysis of a related problem of detection,
rather than estimation of the separation, of a nonoverlapping
EP-star system based on quantum binary hypothesis testing
and an interferometric realization of such quantum-limited de-
tection in the laboratory have recently been presented [17,18].
Unlike the present work, however, all these previous studies
assumed that both the star and planet were themselves unre-
solved, or pointlike.

The two problems of localizing an unresolved source
and a tiny hole inside a finite-radius, uniformly bright
background disk require slightly different methods of math-
ematical analysis, but they both draw from our previous
eigenfunction-eigenvalue based numerically exact approach
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to compute QFI for estimating the spatial parameters of ex-
tended sources such as circular and elliptical disks [19]. Both
these problems are also well positioned for an accurate pertur-
bative treatment in certain limits. We develop a perturbative
analysis based on directly evaluating the symmetric logarith-
mic derivatives (SLDs), in terms of which the QFI is defined,
in the limits of a bright source against a faint background and
a tiny hole in the brightness of a larger disk. The perturbative
parameters in the two cases are evidently the ratio of the
background to source irradiances and the ratio of the hole area
to the disk area, respectively. We will validate the results of
the perturbative analysis against a numerically exact treatment
for the first problem. A perturbative analysis alone will suffice
for the second problem. Some preliminary results for the first
problem appeared in Ref. [20].

We will also consider the use of projections [21–23]
of the photon wavefront that is emitted by the point
source—background disk combination and the hole contain-
ing luminous disk into an orthonormal basis of modes as a
way of estimating the 2D location of the source and the hole,
respectively. We will assess the theoretical efficiency of three
different modal projection bases, namely, the Zernike basis
[24], Fourier-Bessel basis [25,26], and a novel localized point-
source basis, and of direct imaging to perform this localization
task by computing the corresponding Fisher information (FI)
matrix [27]. We will then compare the lowest possible estima-
tion error variance, the Cramér-Rao bound (CRB), given by
the diagonal elements of the inverse of the FI matrix, for each
localization protocol with the ultimate quantum-mechanically
admissible lower bound, the quantum CRB (QCRB), obtained
by inverting the QFI matrix.

II. LOCALIZATION OF A POINT SOURCE AGAINST
A UNIFORM BACKGROUND DISK

Figure 1 depicts our first problem, that of estimating the
coordinates, (x0, y0), of the position of a point source within
an otherwise uniformly bright disk of fixed radius, R, and
center, which we choose to be the origin of the coordinate
system. Let the ratio of the integrated background and point-
source brightnesses be b:1 − b. Assuming that the entire disk
is in the field of view of a well-corrected imaging system with
a circular exit pupil, we may express the density operator of
a single photon emitted from either the point source or the
background disk and then captured by the imager as [19]

� = (1 − b)|K0〉〈K0| + b

πR2

∫
B

dA |Kr〉〈Kr|

= (1 − b)�0 + b�B, (1)

in which |K0〉 denotes the normalized state vector of the
photon emitted by the point source located at position vector
r0 = (x0, y0), |Kr〉 the state of the photon emitted by a point r
in the background disk, and

�0 = |K0〉〈K0| and �B = 1

πR2

∫
B

dA |Kr〉〈Kr| (2)

are the states of the photon emitted by the point source and the
background disk, respectively. The subscript B on the integral
sign denotes integration over the background disk area. The

FIG. 1. A point source at position (x0, y0 ) within a uniformly
bright disk background of radius R.

mixed-state single-photon density operator (SPDO) of Eq. (1)
for emission by either the point source or a background-disk
point reflects the perfectly incoherent emission of the photon
from these sources.

The normalized wave function of the photon emanated
from point r of the source and subsequently received by the
circular exit pupil of the imager may be expressed as

〈u〉Kr = 1√
π

�P(u) exp(−i2πu · r), (3)

where �P(u) is the indicator function of the clear pupil, taking
the values 1 inside and 0 outside, and whose radius, R0, has
been scaled to be 1 by means of the variable transformation,
u → R0u. The position vector r of a source point is also
expressed in scaled units, with the scale factor being the
characteristic diffraction parameter, wd = λ̄zI/R0, for mean
imaging wavelength λ̄ and image-plane distance from the exit
pupil zI . The latter scaling amounts to the variable transfor-
mation, r → wd r, in the image plane. The background disk
radius, R, is also expressed in the same units by dividing the
physical disk radius in the image plane by wd . Expressing
transverse separations in the image plane in units of wd has the
immediate benefit that all so-scaled separations smaller than
1 are in the subdiffractive, superresolution-imaging domain,
while those larger than 1 are in the superdiffractive, conven-
tionally resolvable domain.

Typical values of wd are of the order of a few μm both for
a high-numerical-aperture, high-magnification microscope [2]
and an EP transit-detection telescope [8] operating in visible
light. The SMLM problem when idealized as the localization
of a point source against a luminous background disk entails a
background brightness of about 50–100 photons per pixel over
50–70 pixels of a single-molecule image containing mean
signal photon numbers of order 104 [28,29]. That corresponds
to a typical value for b in the range of 0.2–0.4.

A. A perturbative computation of QFI for b � 1

A perturbative approach to computing the QFI is war-
ranted in two opposite limits for this problem, namely, when
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b � 1 and 1 − b � 1, corresponding to the limits of weak
and strong background illumination. We will defer address-
ing the latter limit until after we have introduced the second
problem, that of localizing an unresolved brightness hole in
the background disk, to which it is trivially isomorphic. The
perturbative approach we follow here is simpler and better
adapted than the recently discussed Frechét-derivative-based
operator-expansion method [30] for evaluating the QFI.

The QFI is the supremum of Fisher information (FI) over
all possible measurements that can be made on a quantum
system, corresponding to all possible positive-operator valued
measures (POVMs) on its Hilbert space. For a state described
by the density operator � that depends differentiably on the
parameters, θ1, . . . , θn, the QFI is a symmetric real matrix
with elements,

Hμν = 1
2 [Tr(�LμLν ) + Tr(�LνLμ)]

= Tr(∂μ�Lν ) = Tr(∂ν�Lμ), (4)

in which ∂μ is a shorthand notation for the partial derivative
∂

∂θμ
, further understood to operate on the single quantity im-

mediately following it. The operator Lν denotes the SLD of
the density operator with respect to the parameter θν , and is
defined by the relation

∂ν� = 1
2 (Lν� + �Lν ). (5)

The second line of Eq. (4) results from using the cyclic prop-
erty of the operator trace and substituting the defining relation
(5) for either Lμ or Lν into the first line of Eq. (4).

For the SPDO (1), only its �0 part contains the parameters
to be estimated, namely the coordinates x0, y0 of the point-
source position. We may therefore express the corresponding
QFI using the second line of Eq. (4) and the relation (5)
defining the SLD as

Hμν = (1 − b) Tr(∂μ�0 Lν )

= (1 − b)(∂μ〈K0|Lν |K0〉 + c.c.),

∂ν�0 = 1
2 [Lν (�0 + α�B) + H.a.], (6)

where the symbols c.c. and H.a. denote the complex conjugate
and Hermitian adjoint, respectively, of the terms inside the
parentheses or brackets, and α defined as

α = b

1 − b
(7)

will be treated as a small parameter in the faint-background
limit. To arrive at the second identity in the first of Eqs. (6),
we used the fact that ∂μ�0 = ∂μ|K0〉〈K0| + |K0〉∂μ〈K0| and the
property of the trace, Tr(|
〉〈�|A) = 〈�|A|
〉.

We next expand the SLD in powers of α as

Lν = L(0)
ν + αL(1)

ν + α2L(2)
ν + · · · . (8)

If we now substitute expansion (8) into the first of Eqs. (6),
we arrive at a perturbative expansion of the QFI:

Hμν = (1 − b)
∞∑

n=0

αnK (n)
μν , (9)

where

K (n)
μν = 2Re

(
∂μ〈K0|L(n)

ν |K0〉
)
, (10)

in which Re (Im) denotes the real (imaginary) part of the
quantity that follows it.

A similar substitution into the second of Eqs. (6), followed
by comparing terms of the same power in α on both sides of
the resulting equation, yields the following relations for the
different orders of the SLD operator:

∂ν�0 = 1
2

(
L(0)

ν �0 + H.a.
)− (L(n−1)

ν �B + H.a.
)

= (L(n)
ν �0 + H.a.

)
, n = 1, 2, . . . . (11)

A perturbative term-by-term evaluation of the QFI (9)
starts with solving for the zeroth-order SLD, L(0)

ν , given by
the first of Eqs. (11), which is a Lyapunov matrix equation, in
exponential form [31],

L(0)
ν = 2 lim

η→0+

∫ ∞

0
dx exp(−x�η )∂ν�0 exp(−x�η ), (12)

where �η is a full-rank extension [32] of the rank-1 density
operator �0, which is defined as

�η = (1 − η)�0 + η

D
I, (13)

in which D is the Hilbert space dimensionality and I is
the identity operator in that space. For infinite dimensional
spaces, like the one the imaging photon belongs to in the
present problem, a spatial discretization of the background
disk to which a finite value of D applies may be needed to
justify our analysis. The actual value of D turns out to be
irrelevant, however, for our subsequent analysis.

For the rank-1 SPDO �0 = |K0〉〈K0|, we may evaluate in-
tegral (12) and thus L(0)

ν fully. The second of the relations
(11) has a similar exponential solution, and may also be fully
evaluated for an arbitrary finite-order SLD in terms of the next
lower-order SLD. Details of these evaluations and a perturba-
tive analysis of the QFI matrix elements to quadratic order in
α are presented in Appendix A. To quadratic order, the QFI
matrix elements may be expressed as

Hμν = (1 − b)
(
K (0)

μν + αK (1)
μν + α2K (2)

μν

)
, μ, ν = x, y, (14)

where

K (0)
μν = 4Re∂μ〈K0|∂ν |K0〉,

K (1)
μν = −4Re[∂μ〈K0|∂ν |K0〉〈K0|�B|K0〉 + ∂μ〈K0|�B∂ν |K0〉],

K (2)
μν = 4〈K0|�B|K0〉2Re(∂μ〈K0|∂ν |K0〉)

+ 8〈K0|�B|K0〉Re(∂μ〈K0|�B∂ν |K0〉)

+ 4Re
(
∂μ〈K0|�2

B∂ν |K0〉
)

+ 4Im(∂μ〈K0|�B|K0〉)Im(〈K0|�B∂ν |K0〉)

+ 4Re(∂μ〈K0|�B|K0〉∂ν〈K0|�B|K0〉). (15)

If one of the coordinate axes is chosen to align with the
vector direction of the point source location relative to the cen-
ter of the background disk, then for a clear circular-aperture
imager that we assume here, the invariance of the problem
under reflection about that axis implies that every term on the
right-hand side (r.h.s.) of expressions (15) must vanish unless
μ = ν. The diagonalization of the QFI matrix, as we will see,
is true to all orders in such a coordinate system. Note that
for μ = ν the first-order correction, as given in Eq. (15), is
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FIG. 2. Plot of QFI for estimating the radial distance of the
point source from the background disk center vs the background
brightness parameter b. The solid curves are the numerically exact
results obtained by evaluating Eq. (27), and the dashed curves show
the corresponding numerically calculated values of the second-order
perturbative expression (14).

always negative and thus reduces the zeroth-order QFI as the
background brightness increases, which is physically sensible.

Another important observation about the perturbative re-
sults (14) and (15) is that they do not require the knowledge
of the eigenvalues and eigenstates of the SPDO, and thus can
be readily calculated for arbitrary geometries and brightness
distributions of the background against which the point source
is to be localized. This is particularly advantageous since, as
we will see presently from Figs. 2–5, the perturbative analysis
seems to be quite accurate even out to a 1:1 background-
to-source irradiance ratio in certain cases. We defer further
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FIG. 3. Same as Fig. 2 except that azimuthal-localization QFI is
being plotted on the vertical axis.
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FIG. 4. Plot of QFI for estimating r0 vs r0/R for a moderately
large value of the background brightness parameter, b = 0.5, and
three different values of R, 0.5, 1, and 1.5. The solid curves are the
numerically exact results obtained by evaluating Eq. (27), while the
dashed curves show the corresponding numerically calculated values
of the second-order perturbative expression (14).

discussion of the perturbative results until after we have dis-
cussed a numerically exact calculation of the QFI matrix.

B. A Numerically exact evaluation

In a previous paper [19], we calculated the QFI for es-
timating the radius of a circular disk shaped source by first
computing the full sets of nonzero eigenvalues, {λ1, λ2, . . .},
and the corresponding eigenstates, {|λ1〉, |λ2〉, . . .}, of the
SPDO and then using the following exact expression for the
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FIG. 5. Same as Fig. 4 except that azimuthal-localization QFI is
being plotted on the vertical axis.
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QFI matrix elements:

Hμν=
∑

i

4

λi
Re〈λi|∂μ�∂ν�|λi〉+2

∑
i, j

[
1

λi + λ j
− 1

λi
− 1

λ j

]

× Re(〈λi|∂μ�|λ j〉〈λ j |∂ν�|λi〉), (16)

in which the i and j sums are over only those eigenstates
that have nonzero eigenvalues. The present problem is only
slightly more general in that the scene also contains a point
source located somewhere in the field of the background disk
and one must estimate the source location, rather than the disk
radius. The mathematical approach developed in that paper
to compute the eigenvalues and eigenstates can therefore be
applied here with only slight modifications. Note that other
recent, numerically exact, finite-matrix-based approaches for
computing the QFI that do not require first the diagonalization
of the SPDO into its orthonormal eigenstates [33,34] are of
little value here because the Hilbert space for our problem is
intrinsically infinite dimensional.

We first express SPDO (1) in a fully integral form as

� =
∫

B
dA G(r) |Kr〉〈Kr|, (17)

where G(r) is defined using the 2D Dirac δ function as

G(r)
def= (1 − b)δ(2)(r − r0) + b

πR2
�B(r) (18)

and �B(r) is the indicator function for the background disk.
Each eigenstate of the SPDO may be similarly expressed as a
linear combination of states in the support of �,

|λ〉 =
∫

B
dA G(r)Cλ(r)|Kr〉. (19)

Substituting this expansion into the eigenvalue equation,
�|λ〉 = λ|λ〉, and then comparing coefficients of each state
vector |Kr〉 on both sides of the resulting equation yields the
following integral equation that the coefficient function Cλ(r)
must obey over the disk:∫

B
dA′G(r′)

2J1(2π |r − r′|)
2π |r − r′| Cλ(r′) = λCλ(r). (20)

To arrive at Eq. (20), we used the fact that the inner product
between single-photon states emanating from two different
source points r and r′ and captured by the circular imaging
aperture (of unit scaled radius), is simply

〈Kr|Kr′ 〉 = 2J1(2π |r − r′|)
2π |r − r′| . (21)

Let us now consider the Gegenbauer expansion formula
[19,25],

2J1(2π |r − r′|)
2π |r − r′| = 2

∞∑
m=0

m∑
n=−m,−m+2,...

(m + 1)
Jm+1(2πr)

2πr

× Jm+1(2πr′)
2πr′ exp[in(φ − φ′)], (22)

where ρ, φ and ρ ′, φ′ are the polar coordinates of r and r′,
respectively. Its substitution into the integral equation (20)
immediately shows that the coefficient function, Cλ(r), may

be expressed as the generalized Fourier-Bessel sum

Cλ(r) =
∑
m,n

(m + 1)1/2Cmn
Jm+1(2πr)

2πr
exp[in(φ − φ0)],

(23)
in which the sum over m runs over all nonnegative integers
and that over n runs between −m and m in steps of 2, just as in
Eq. (22). All such double sums henceforth will be understood
to have the same ranges.

By substituting expression (23) for the eigenfunctions
along with expression (18) for G into Eq. (20) and comparing
the two sides of the resulting equation term by term, we
may easily show that the coefficients Cmn obey the eigenvalue
equation ∑

m′,n′
Mmn;m′n′Cm′n′ = λCmn,

m = 0, 1, . . . ; n = −m,−m + 2, . . . , m, (24)

in which the four-dimensional array M, which can be read off
from the resulting area integral over r′, takes the form

Mmn;m′n′ =
√

(m + 1)(m′ + 1)

×
[

2b

π2R2
δnn′

∫ R

0
dr′ Jm+1(2πr′)Jm′+1(2πr′)

r′

+ (1 − b)

π2r2
0

Jm+1(2πr0)Jm′+1(2πr0)]

]
. (25)

Equation (25) becomes a matrix eigenvalue equation if
one regards the two pairs of indices, (m, n) and (m′, n′), as
being mapped lexicographically to two single indices. We
adopt exactly such a vectorization approach to solve this
equation numerically by first truncating the m, m′ sums at a
finite upper cutoff value that is large compared to c = 2πR
beyond which the Bessel functions inside the radial integral in
expression (25) become superexponentially small throughout
the radial range (0, R). Further, the integral involving Bessel
functions in Eq. (25) can be evaluated analytically in closed
form in terms of other Bessel functions, as we showed in
Ref. [19]. We then use the eig routine in Matlab to calculate
the eigenvalues and eigenvectors of the array M and thus
the coefficient functions Cλ(r) defined via relation (23). The
eigenvectors generated by eig have to be properly renormal-
ized to ensure the desired normalization, 〈λ|λ′〉 = δλλ′ . The
convergence of the sum of the eigenvalues to 1, which must
hold for any density operator, provided a check on the validity
of the choice of the upper cutoff of the m, m′ sums and on our
overall calculations.

1. Reality and reflection symmetry of eigenfunctions

Since the integral equation (20) has a real kernel and its
eigenvalues are all real, we may choose the eigenfunctions
Cλ(r) to be real as well. Since expression (25) for the array
elements is invariant under a simultaneous sign change of both
n and n′, the arrays Cmn and Cm,−n, according to Eq. (24), are
degenerate in their eigenvalues. This implies that the arrays
Cmn are, or may be chosen to be, either symmetric or antisym-
metric in their n index,

Cmn = ±Cm,−n, n = −m,−m + 2, . . . , m, (26)
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and thus the eigenfunctions given by the sum (23) chosen to be
real and either even or odd under reflection in the vector join-
ing the point source location to the disk center, i.e., under the
transformation (φ − φ0) → −(φ − φ0). We henceforth call
these eigenfunctions simply even and odd eigenfunctions.

Once we have computed a sufficiently large number of
eigenvalues and eigenstates accurately, we substitute them
into expression (16) for the QFI matrix elements and evalu-
ate the sums numerically. In Appendix B we provide further
details of the simplifications, including some useful identities
and sum rules already established in Ref. [19], that are needed
to perform the numerical evaluations efficiently. We show that
the QFI matrix elements may be expressed as

Hμν = 4(1 − b)2ReH̃μν, (27)

where H̃μν denotes the expression,

H̃μν = 1

1 − b
∂μ〈K0|IN∂ν |K0〉

+
∑
i, j∈S

λiλ jCi(r0)Cj (r0)〈λi|∂μ|K0〉〈λ j |∂ν |K0〉
λi + λ j

+
∑
i, j∈S

λ2
i C

2
i (r0)∂μ〈K0|λ j〉〈λ j |∂ν |K0〉

λi + λ j
, (28)

in which N and S denote the sets of index values that label
the eigenstates in the null and support subspaces, respectively,
of the SPDO. The symbol IN denotes the identity operator in
the null subspace,

IN = I −
∑
i∈S

|λi〉〈λi|. (29)

For a full-rank SPDO, the first term on the r.h.s of Eq. (28)
vanishes identically. Our detailed evaluations of the first term
suggest this to be true to within numerical accuarcy. Thus,
only the two double sums contribute to the QFI. In fact, since
λiC(r0) = 〈λ|K0〉, we see that both these double sums are
over bilinear products of the overlap integrals between the
SPDO eigenstates and the point-source emission state and be-
tween the SPDO eigenstates and appropriate derivatives of the
point-source emission state. Such bilinear products decrease
rapidly with decreasing eigenvalues. Thus, despite the sum of
eigenvalues being in the denominator of each term of these
double sums, the contributions of these terms decrease rapidly
with decreasing eigenvalues.

All expressions in Eq. (28) involve only one class of
nontrivial matrix elements in need of numerical evaluation,
namely, those of form 〈λi|∂μ|K0〉, which, in view of expres-
sion (19) for the eigenstates, may be written as the integral,

〈λi|∂μ|K0〉 =
∫

Ci(r) G(r)〈Kr|∂μ|K0〉dA

= b

πR2

∫
B

Ci(r)〈Kr|∂μ|K0〉dA

= b

πR2

∫
B

Ci(r)∂μ〈Kr|K0〉 dA

= 2b

πR2

∫
B

Ci(r)
J2(2π |r − r0|)

|r − r0|2 (xμ − x0μ) dA.

(30)

In Eq. (30) the fact that the δ function part of G(r), as
defined in Eq. (18), cannot contribute to the integral, since
〈K0|∂μ|K0〉 = 0 for either value of μ, was used to arrive at the
second equality, while the fact that ∂μ operates only on the
state |K0〉 was used to derive the next equality. A subsequent
substitution of the overlap function (21) and use of a simple
Bessel-function derivative identity,

d

dx
[x−nJn(x)] = −x−nJn+1(x), (31)

along with the derivative formula,

∂μ|r − r0| = xμ − x0μ

|r − r0| , (32)

where xμ, x0μ are the μth component of r, r0, led to the final
equality. The area integral (30) over the disk may be calculated
quite efficiently by using Matlab’s built-in integral2 code.
When combined with a highly accurate numerical evaluation
of the eigenvalues and eigenvectors, this allowed us to evalu-
ate the QFI matrix elements (28) quite accurately.

2. Diagonalization and parameter compatibility of the QFI matrix

Note that the QFI matrix is, in general, off-diagonal since
the matrix element (30) does not vanish for either component
of the source location vector r0. It can, however, be diago-
nalized by a proper choice of coordinate axes, specifically if
the x axis is chosen to be along r0 for which φ0 = 0. For this
choice, the matrix element 〈λi|∂μ|K0〉 is nonzero only if either
the eigenfunction Ci(r) is even and μ = 1 or Ci(r) is odd
and μ = 2. That is because for φ0 = 0 the integrand of the
disk-area integral in expression (30) is odd under reflection,
φ → −φ, for the other two possibilities, namely, either even
eigenfunctions and μ = 2 or odd eigenfunctions and μ = 1,
and thus the φ integral over its full, symmetric range, (−π, π ),
vanishes. Further, since odd eigenfunctions vanish for φ = 0,
it follows that Ci(r0) = 0 for an odd eigenfunction. Taken
together, these two results imply that the first double sum in
Eq. (28) can receive contributions only from those i, j index
values that label the even eigenfunctions and thus μ = ν = 1,
while the second double sum there, although not restricted to
even eigenfunctions in its j index, still requires that μ = ν

in order not to vanish identically. In other words, the two
double sums add up to 0 unless μ = ν. The first term on the
r.h.s. of Eq. (28) was already noted to be vanishingly small
to numerical precision. The full QFI matrix is thus diagonal
within this choice of coordinate axes.

Further, since H̃μν given by Eq. (28), whose real part
yields the QFI matrix element Hμν according to Eq. (27),
is already real and vanishing whenever μ 
= ν in the coordi-
nate axes aligned with the radial position vector of the point
source and its orthogonal direction, the radial and azimuthal
location coordinates are compatible parameters [35]. In other
words, these two source position coordinates can be indepen-
dently estimated and the error variances of their estimates can
asymptotically saturate the QCRBs given by the reciprocals
of the diagonal elements of the QFI matrix. As we will see,
this is also true for the second problem discussed later.

Since the diagonalizing axes are oriented along and or-
thogonal to the source position vector, the reciprocals of the
diagonal elements of the diagonal QFI matrix, H(0), are the
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minimum variances of unbiased estimation of the radial dis-
tance, r0, of the point source from the disk center and of its
angular coordinate times r0. If needed, the QFI matrix, H,
with respect to the original pair of coordinate axes, oriented at
angle −φ0 relative to the diagonalizing axes, is easily obtained
by means of a similarity transformation of H(0),

H = R0H(0)RT
0 , (33)

by the rotation matrix, R0, that has the form

R0 =
(

cos φ0 sin φ0

− sin φ0 cos φ0

)
. (34)

3. Numerical results and discussion

We evaluated H(0) by numerically computing the largest
40–50 eigenvalues, associated eigenfunctions, and integrals
of kind (30) for the background disk radius taking values out
to R = 2. We checked for the convergence of the QFI sum
(28) by enlarging the truncated set of eigenvalues to include
progressively lower eigenvalues until we reached to a high
precision of roughly one part in 105. At this stage, the sum
of the eigenvalues checked out to be equal to 1 to within one
part in 109, which was confirmation that we had numerically
exhausted the support space of the SPDO over which the sums
in expression (28) are evaluated and thus of the high precision
of our overall computation.

We next evaluated the perturbative expression (14) of QFI
out to the quadratic order in the background strength pa-
rameter, α, defined by Eq. (7). This required computing the
matrix elements in Eq. (15), which we carried out in the same
coordinate system in which the exact QFI matrix is diagonal.
In view of the background-disk SPDO, �B, given by Eq. (2),
these matrix elements take the following form:

〈K0|�B|K0〉 = 1

π3R2

∫
B

J2
1 (2π |r − r0|)

|r − r0|2 dA,

〈K0|�B∂μ|K0〉 = 2

π2R2

∫
B

J1(2π |r − r0|)J2(2π |r − r0|)
|r − r0|3

× (xμ − x0μ) dA,

∂ν〈K0|�B∂μ|K0〉 = δμν

4

πR2

∫
B

J2
2 (2π |r − r0|)

|r − r0|4
× (xμ − x0μ)2 dA,

∂ν〈K0|�2
B∂μ|K0〉 = δμν

4

π3R4

∫
B

dA
∫

B
dA′ J2(2π |r − r0|)

|r − r0|2

× J2(2π |r′ − r0|)
|r′ − r0|2

J1(2π |r − r′|)
|r − r′|

× (xμ − x0μ)(x′
μ − x0μ), (35)

in which x0μ is equal to r0 for μ = 1 and 0 for μ = 2. To
derive these expressions, we made use of rather similar math-
ematical manipulations to those that led to expression (30)
for the matrix element 〈λi|∂μ|K0〉. Further, the fact that the
last two matrix elements in Eq. (35) are nonvanishing only
if they are diagonal follows from the invariance of both the
background disk and the point source location vector under
reflection in the coordinate axis aligned with that vector.

The single area integrals that determine the first three ma-
trix elements in Eq. (35) were accurately computed using the
integral2 routine as before. The double area integral in the
final matrix element required the use of a multidimensional
integral code [36], which provides excellent computational
accuracy and efficiency for such four-dimensional integrals.

In Fig. 2 we display the variation of the QFI, H11, for
estimating the radial distance of the point source from the
center of the background disk with increasing value of the in-
tegrated background brightness level, b. In the absence of the
background (b = 0), this radial-distance QFI has its maximum
value of 4π2, which we had noted earlier in Ref. [22]. With
increasing value of b, the point source becomes progressively
fainter in the ratio (1 − b) : b relative to the background, re-
sulting in an almost linear decrease of the radial-distance QFI,
particularly for values of R larger than 1. The numerically
exact results, shown by solid curves, are hardly affected by
the actual radial distance, r0, of the point source from the
disk center, as we see for two different values of r0, namely,
0.2R and R corresponding to the source being close to the
center and at the edge of the disk. This is particularly true
for values of R larger than 1. The second-order perturbative
results, which we show by dashed curves, are always quite
accurate for b � 1, but for R smaller than 1, those results
are quite accurate even out to b = 0.5 for which the pertur-
bation parameter, α, is quite large at 1. The departure at even
moderately large values of b from the exact results is quite
pronounced, however, when R is larger than 1, as we see from
the figure for R = 2.

Figure 3 displays the variation of the azimuthal-
localization QFI, H22. Its reciprocal is the minimum possible
variance of unbiased estimation of the azimuthal coordinate,
which we define as r0 times the angle φ0 that the source
location vector makes with respect to the x axis. As expected
for a background disk that is fully rotationally invariant, it
is independent of the actual value of φ0. The trends are
largely identical to those seen in Fig. 2 for the QFI for radial-
distance estimation, except for the big difference, which we
cannot explain, that the second-order perturbative result here
remains accurate even out to b = 0.5 for all values of R
out to 2.

We plot in Figs. 4 and 5 the variation of the radial and
azimuthal QFI with respect to the radial distance, r0, of the
point source for a moderately strong background at b = 0.5,
with the solid lines showing the numerically exact results and
the dashes lines the second-order perturbative results. The
discrepancy between the exact and perturbative results for the
radial QFI plots shown in Fig. 4 is on the whole larger, the
larger R is, reflecting a behavior we have already noted in the
plots of Fig. 2 for R = 2. By contrast, this discrepancy is quite
small for the azimuthal QFI plots shown in Fig. 5, mirroring
the excellent agreement between the two results even for
moderately large values of b that we saw in Fig. 3. We also
note that the exact value of neither the radial nor the azimuthal
QFI varies dramatically with varying r0/R, particularly for the
two larger values of R shown here. The sharper increase of
the QFI with increasing r0/R for the case of a subdiffractive
background disk radius, R = 0.5, is physically sensible, since
at such subdiffractive scales locating a point source at even
smaller distances from the disk center is expected to entail
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larger localization error when the source is closer to the disk
center rather than near the disk boundary.

III. LOCALIZATION OF A TINY HOLE
IN A UNIFORMLY BRIGHT DISK

Consider next photon emission from a uniformly luminous
disk of radius R from which a tiny hole of radius δ0 � R
has been punched out. The problem is one of estimating the
position vector r0 of the hole center relative to the disk center.
The geometry for this problem is the same as for the previous
problem shown in Fig. 1, in which the point source indicated
by a white dot is to be regarded as the brightness hole for the
current problem. Its SPDO may be expressed as

� = 1

π
(
R2 − δ2

0

) ∫
BH

dA|Kr〉〈Kr|, (36)

where the subscript BH denotes integration over the disk with
the hole. By writing the integral over BH as the difference
between the integral over the full disk, B, without holes, and
the integral over the hole, H , we may express the SPDO (36)
as

� = 1

1 − ε
(�B − ε�H ), (37)

in which �B is the SPDO corresponding to the uniform disk,
as given in Eq. (2), and

�H ≈ |K0〉〈K0| (38)

is the SPDO for emission from the hole, were it filled with
material of the same irradiance as the rest of the luminous
disk, and

ε = δ2
0

R2
(39)

denotes the ratio of the hole and disk areas, assumed to be
small compared to 1. Approximation (38), which entails re-
placing

∫
H dA|Kr〉〈Kr| by the area of the hole, πδ2

0 , times the
SPDO corresponding to emission from the center of the hole
at r0, is justified as long as we are not interested in resolving
the small hole or estimating its radius, δ0. Rather, here we only
care to estimate the location of its center, r0, and will thus
regard a photon leaving from any point of the hole in effect as
leaving from its center.

Note the trivial isomorphism between the hole-localization
problem and the previously discussed point-source localiza-
tion problem under the mapping, b → (1 − ε)−1. Note also
that by replacing the hole-to-disk area ratio ε by βε, where
β � 1, we may adapt the SPDO model given by Eq. (37) to
describe a more general problem in which the radiance in the
region of the hole is not zero but a factor (1 − β ) as large as
that of the rest of the uniformly bright disk. Without any loss
of generality, we will henceforth subsume β into the definition
of ε.

For many applications of interest, such as EP detection
[6,8] for which ε varies between 10−3 (for Earth-size planets)
and 10−2 (for Jupiter-size planets), we can safely assume that
ε � 1, which justifies the approximation (38), and a pertur-
bative treatment of the problem to the lowest order in ε will

suffice. Let us expand the SLD in powers of ε as

Lμ = L(0)
μ − εL(1)

μ + ε2L(2)
μ + · · · , (40)

substitute this expansion and the SPDO (37) into Eq. (5) that
defines the SLD to yield the identity,

−ε∂μ�H = 1
2

[(
L(0)

μ − εL(1)
μ + · · · )(�B − ε�H ) + H.a.

]
,

(41)

where the l.h.s. contains only the SPDO of the hole whose
location we are trying to estimate. Equating the two sides of
Eq. (41) power by power in ε yields

0 = L(0)
μ �B + �BL(0)

μ ,

2∂μ�H = (�BL(1)
μ + �HL(0)

μ

)+ (L(1)
μ �B + L(0)

μ �H
)
,

...
...

... . (42)

It follows from the first of the relations in Eq. (42) that L(0)
μ

must vanish identically. This implies the following form for
the QFI matrix elements:

Hμν = Tr(Lμ∂ν�) = ε2

1 − ε
Tr
[
L(1)

μ ∂ν�H + O(ε)
]
, (43)

in which we used once again the fact that only the �H part
of the SPDO (36) contributes to the derivative ∂ν�. We will
include and evaluate only the first term on the right-hand side
of Eq. (43), since we have assumed that ε � 1 and thus excel-
lent accuracy is assured despite an omission of all higher order
terms. In view of expression (38) for �H , we may evaluate the
trace in expression (43) as

Hμν = ε2
(
∂ν〈K0|L(1)

μ |K0〉 + 〈K0|L(1)
μ ∂ν |K0〉

)
= 2ε2Re

(
∂ν〈K0|L(1)

μ |K0〉
)
, (44)

in which in consistency with the neglect of the higher order
terms we have neglected ε from the denominator of the overall
coefficient.

To evaluate the r.h.s. of Eq. (44), we return to the second of
the relations in Eq. (42), with L(0)

μ set to 0, and then transform
it into the Lyapunov solution for L(1)

μ using the approach used
to derive Eq. (12),

L(1)
μ = 2 lim

η→0+

∫ ∞

0
dx exp(−x�η )∂μ�H exp(−x�η ), (45)

in which �η is defined as a full-rank extension of the
background-disk SPDO, analogous to that in Eq. (13),

�η = (1 − η)�B + η

D
I, (46)

with D defined as before. In terms of the sets of eigen-
values, {λi | i = 1, 2, . . .}, and corresponding orthonormal
eigenstates, {|λi〉 | i = 1, 2, . . .}, of �B, we may express the
exponential operator in Eq. (45) as

exp(−x�η ) = exp(−xη/D)
∑

i

exp[−x(1 − η)λi]||λi〉〈λi|,
(47)

and thus the state resulting from the action of L(1)
μ on |K0〉 as

the double sum

L(1)
μ |K0〉 =2

∑
i, j

|λi〉 〈λi|∂μ�H |λ j〉
λi + λ j

〈λ j |K0〉, (48)
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in which it is understood that λi + λ j 
= 0 for all the terms that
are included in the double sum. This latter restriction is neces-
sary in order to apply the limit, η → 0+, after performing the
integral over x in Eq. (45).

By taking the inner product of expression (48) with ∂ν〈K0|
and adding to the resulting inner product its complex con-
jugate, we obtain from Eq. (44), as shown in detail in
Appendix C, the following expression for the QFI matrix
element:

Hμν = 2ε ∂ν〈K0|IN∂μ|K0〉

+ 2ε2

⎡
⎣∑

i, j∈S

λiλ jCi(r0)Cj (r0)∂ν〈K0|λi〉∂μ〈K0|λ j〉
λi + λ j

+
∑
i, j∈S

λ2
jC

2
j (r0)∂ν〈K0|λi〉〈λi|∂μ|K0〉

λi + λ j

⎤
⎦. (49)

The eigenfunctions Ci(r), obeying the following integral
equation over the disk:

1

πR2

∫
B

dA′ 2J1(2π |r − r′|)
2π |r − r′| Ci(r′) = λiCi(r), (50)

have all been chosen to be real. The matrix elements that need
to be evaluated in expression (49) are all of the same type,
namely, 〈λi|∂μ|K0〉, which we have already evaluated as the
disk-area integral (30) involving the eigenfunction Ci(r).

A detailed analysis of the disk SPDO problem, including
the method of numerical computation of its eigenstates and
eigenvalues, was presented in Ref. [19]. We use the results of
that eigenanalysis here to evaluate the QFI matrix elements
of Eq. (49) to complete the perturbative treatment of our
problem of estimating the location of the hole in the otherwise
uniformly luminous, incoherent, disk-shaped background. As
we also noted earlier for the problem of locating a point
source against the disk background, the QFI matrix once again
becomes diagonal when referred to Cartesian coordinate axes
that are parallel and perpendicular to the radial location vector
of the brightness hole.

It is interesting to note that since ε � 1, the first term
on the r.h.s. of expression (49), which is seemingly propor-
tional to ε, might dominate the double-sum terms that are
proportional to ε2. In our numerical evaluations, however,
the opposite turns out to be true, with the first term being
negligibly small or identically zero to the numerical accuracy
of our computations. This seems to support our conjecture
that the SPDO for the uniformly bright disk might be nearly
full-rank, if not exactly so.

In Figs. 6 and 7 we plot the radial and azimuthal QFI, given
by H11 and H22, respectively, vs the fractional radial distance,
r0/R, of the brightness hole from the center of the background
disk. We have scaled the vertical axis by ε, the ratio of the
hole to disk areas, to show that the QFI for both radial and
azimuthal hole-position estimations is essentially inversely
proportional to the disk area, πR2 for values of R greater
than 1, as we clearly see from the closely spaced curves
corresponding to R = 1.5, R = 2 and R,= 3 in both figures.
Equivalently, the quantum Cramér-Rao bounds, given by the
reciprocals 1/H11 and 1/H22, scale proportional to the ratio of
the disk area to the hole area. A heuristic understanding of this
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FIG. 6. Plots of H11/ε for estimating the radial coordinate of the
hole from the background disk center vs the radial distance of the
hole, r0, for five different values of the disk radius.

fact can be gained by recognizing that the problem is one of
determining which specific one of the N = 1/ε contiguously
filling segments of the disk, with each segment being of area
equal to the hole area, contains the actual brightness hole.
The variance of such determination must scale proportional
to that number when the disk brightness is otherwise uniform
everywhere and there is no preferred location of the hole.
Equivalently, only the absence of a photon leaving from the
hole carries any information about its location, so the infor-
mation fundamentally must be proportional to the probability
of such event, which for an otherwise uniformly bright disk
is simply the ratio of the hole area to the disk area, ε. In the
plots, we fixed the radius of the hole at 0.05, so for the five
values of the disk radius shown in these figures, the number
1/ε varies between 100 (for R = 0.5) and 3600 (for R = 3).
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FIG. 7. Plots of H22/ε for estimating the azimuthal coordinate of
the hole from the background disk center vs r0 for the same values
of R as in Fig. 6.
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A second observation relates to the increase of the QFI
for both radial and azimuthal estimation with increasing frac-
tional radial distance of the hole from the disk center, r0/R.
The increase is particularly pronounced for the smallest disk
radius, R = 0.5, which is in the subdiffractive regime. This is
due to the fact that as the hole gets farther out from the center
of a subdiffractive-scale disk, one expects to optically locate
the position of the hole with greater statistical confidence
despite diffraction-induced positional uncertainties. For the
larger disk radii too, the QFI for estimating the hole location
relative to the disk center increases with increasing radial
distance of the hole, particularly as the hole gets closer to the
edge of the disk. For a uniformly bright disk, the probability
of information-bearing photons leaving, for example, from its
outer half area in the radial range, (R/

√
2, R), is the same as

that for photons leaving from its inner half area in the radial
range, (0, R/

√
2), with the two ranges having radial widths in

the ratio of 0.29/0.71, which is considerably smaller than 1.
As a result, the hole if located in the outer annular half of the
disk area has a smaller radial position uncertainty than if it is
located in the inner half. This expectation is confirmed by the
monotonic increase of the QFI with the radial distance of the
hole from the disk center.

IV. WAVEFRONT PROJECTIONS AND SOURCE
AND HOLE LOCALIZATION

We next consider the use of projection of the imaging
wavefront into a set of orthonormal modes [21] as a way
of recovering information at the quantum level about the 2D
location of the point source and of the hole against the disk-
shaped uniform-brightness background. We first evaluate the
Cramér-Rao lower bounds (CRBs) for the source localization
problem for three different sets of modes, namely, the Zernike
(Z) [24], Fourier-Bessel (FB) [25,26], and localized-source
modes. We have already demonstrated the efficacy of the
Zernike modes for estimating the location and separation of
a pair of point sources [22,23], under finite-bandwidth emis-
sion [37], and for estimating the physical size parameters of
extended sources in one and two dimensions [19], including
the radius of a uniformly bright disk.

The FB modes furnish an alternate set of modes which,
like the Zernikes, have been used in a variety of conven-
tional optics applications, e.g., for representing the phase
of a turbulence-degraded wavefront in astronomy [38], for
principal-component analysis of images [39], and for effi-
cient numerical electromagnetics [40]. The final basis that
we consider here consists of a set of orthogonalized modes
constructed from planar wave functions emitted by a set of
30–40 localized fictitious point sources distributed over the
background disk. Under a variety of operating conditions, the
last set, despite its finite cardinality, seems to perform the best
of the three in terms of how closely its CRB approaches the
corresponding QCRB bound for both localization problems.

We may regard conventional clear-aperture imaging as a
variety of wavefront projection into contiguous nonorthogonal
modes, namely, the complex Fourier modes representing a
continuously varying wavefront tilt over a finite aperture. We
can therefore discuss direct imaging in the present section it-
self.

A. Direct imaging

We may regard the point-spread function (PSF), when nor-
malized to have unit area, in a conventional imaging protocol
as the result of projection of a clear (or suitably coded or
apodized) wavefront emitted by a single point source into
contiguous complex exponential Fourier modes that yield
the image at different pixels of the imaging sensor. For a
finite aperture, these Fourier modes are nonorthogonal, but
the corresponding projections onto the sensor pixels yield
image intensities that represent, in a mutually statistically
independent fashion, the probabilities of an imaging photon to
land at different sensor pixels. When the photons are emitted
by a more complex scene, such as the ones of interest here,
namely, a point source or a brightness hole in an otherwise
uniformly bright background, the probabilities of each photon
landing at different sensor pixels are modified by the intensity
distribution of the scene. At the single-photon level, the direct-
imaging (DI) probability of the photon landing at a unit area
centered at the image point r is defined as the expectation
value,

P(r) = π〈Kr|�|Kr〉. (51)

We will assume here that the aperture indicator function
�P(u) in terms of which the aperture-plane representation of
the projection modes |Kr〉 is defined by Eq. (3) is that of an
uncoded clear aperture, but more complicated coded apertures
may be used if necessary for specific applications.

With the probability density (51), which integrates to 1
over the unbounded image plane, we may calculate the μν

element of the FI matrix per photon for estimating the location
of the point source against the background disk in the photon-
counting limit as the area integral [21],

Iμν =
∫

∂μP(r)∂νP(r)

P(r)
dA, (52)

over the full image plane. Note that the probability density
P(r) also represents the mean image intensity per photon,
which may be expressed in terms of the PSF, h(r), as

P(r) = (1 − b)h(r − r0) + b

πR2

∫
B

dA′h(r − r′). (53)

For a circular clear aperture, the unit-area PSF has the Bessel
form,

h(r − r′) = π |〈Kr〉Kr′ |2 = J2
1 (2π |r − r′|)
π |r − r′|2 . (54)

Representing the FI by continuous integrals of form (52) as-
sumes that the image plane is unpixelated and continuous, but
in any practical camera the FI will, in general, have a smaller
value due to the finite size and unavoidable detection noise of
its discrete pixels.

For localizing a hole in the disk background, our second
problem, the probability density, P(r), is readily obtained
from Eq. (53) by recognizing the formal difference between
expressions (1) and (38), entailing merely a replacement of
b by 1/(1 − ε) and 1 − b by −ε/(1 − ε) in Eq. (57). This
being the only difference between the expressions for the
single-photon probability density for the two problems, we
do not discuss them any further here and in the subsequent
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FIG. 8. Surface plots of (a) Z11,+1 (b) Z11,−1, (c) Z20, and
(d) Z22,+1. Vertical bars at the right of each plot indicate the range
of the grayscale.

subsections on the other wavefront projection bases. In view
of such isomorphism between the two problems, we will dis-
play detailed results for direct imaging for the first problem
alone when comparing with other wavefront projection bases.

B. Zernike modes

The Zernike modes, defined to be nonvanishing only over
the unit disk, |u| � 1, are labeled by two nonnegative integer
indices, p and m, with p = 0, 1, 2, . . . and m = p, p − 2, . . .,
and a mirror-reflection-symmetry index σ , taking the values
±1 corresponding to cosine and sine azimuthal-angular de-
pendences. Surface plots of four low-order Zernike modes are
given in Fig. 8.

Of specific interest here is the 2D Fourier transform (FT)
property [19] of the Zernike modes,∫

d2uP(u) exp(−i2πu · r) Zpmσ (u)

=
√

p + 1

π

Jp+1(2πr)

r

×
⎧⎨
⎩

(−1)(p−m)/2(−i)m
√

2 cos mφ, m 
= 0, σ = +1
(−1)(p−m)/2(−i)m

√
2 sin mφ, m 
= 0, σ = −1

(−1)p/2, m = 0.

(55)

In view of the point-source wave functions (3), which are sim-
ply proportional to the complex Fourier exponentials, the FT
property (55) immediately yields the projection probabilities
of a point-source wave function in the Zernike modes to be

|〈Zpmσ 〉Kr|2 = (p + 1)

π2

J2
p+1(2πr)

r2

×
⎧⎨
⎩

2 cos2 mφ, m 
= 0, σ = +1
2 sin2 mφ, m 
= 0, σ = −1
1, m = 0,

(56)

and thus the projection probabilities of the single-photon den-
sity operator (1) in the Zernike modes as

Ppmσ = 〈Zpmσ |�|Zpmσ 〉

= (1 − b)(p + 1)

π2

J2
p+1(2πr0)

r2
0

×
⎧⎨
⎩

2 cos2 mφ0, m 
= 0, σ = +1
2 sin2 mφ0, m 
= 0, σ = −1
1, m = 0.

+ 2b(p + 1)

π2R2

∫ R

0
dr

J2
p+1(2πr)

r
. (57)

FIG. 9. Surface plots of (a) F01 (b) F11,+1, (c) F11,−1, and (d) F02.
Vertical bars at the right of each plot indicate the range of the
grayscale. Each function vanishes at the edge of the circular aperture.

To reach the final term in expression (57), we performed the
integral over the full range (0, 2π ) of the azimuthal angle
over the disk, which simply yields 2π for each of the angular
dependences of form (56). The remaining radial integral over
the disk in the final term can be evaluated exactly as a sum
of squares of Bessel functions of different orders, as shown in
Appendix B of Ref. [19].

The partial derivatives of expression (57) with respect to
r0 and φ0, the polar coordinates of the position of the point
source being estimated, involve only its first term, and are
easily calculated analytically. With expression (57) and its
partial derivatives in hand, we can now calculate the FI for
simultaneously estimating the radial distance, r0, and its az-
imuthal, arc-length coordinate, r0φ0, as the matrix

I =
(

Ir0r0 Ir0φ0/r0

Ir0φ0/r0 Iφ0φ0/r2
0 ,

)
(58)

in which each matrix element is defined by the following sum
over the modes, labeled generically by a single index λ:

Iμν =
∑

λ

∂μPλ ∂νPλ

Pλ

. (59)

C. Fourier-Bessel modes

The Fourier-Bessel (FB) modes, sometimes called disk
harmonics, are defined in their real version as the complete set
of orthonormal functions over the unit disk 0 � u � 1, 0 �
φu < 2π of the form [26]

Fmnσ (u) = Jp(xmnu)√
πJm+1(xmn)

×
⎧⎨
⎩

√
2 cos mφu, m 
= 0, σ = +1√
2 sin mφu, m 
= 0, σ = −1

1, m = 0,

(60)

in which xmn is the nth positive zero of Bessel function
Jm(·) and the mode indices take the values, m = 0, 1, . . ., n =
1, 2, . . ., and σ = ±1. Like the Zernikes, they are normalized
over the unit disk,

〈Fmnσ |Fm′n′σ ′ 〉 =
∫

dA P(u) Fmnσ (u) Fm′n′σ ′ (u)

= δmm′δnn′δσσ ′ . (61)

Surface plots of four low-order FB modes are given in Fig. 9.
The 2D FT of these functions yields their inner product

with the single-photon wave function (3) emitted by a point
source and transmitted to the clear circular aperture of the
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imaging system,

〈Fmnσ |Kr〉 = 1

πJm+1(xmn)

∫
d2u P(u) exp(−i2πu · r)

× Jm(xmnu)

⎧⎨
⎩

√
2 cos mφu, m 
= 0, σ = +1√
2 sin mφu, m 
= 0, σ = −1

1, m = 0

= 2(−i)m

Jm+1(xmn)

∫ 1

0
du u Jm(2πru) Jm(xmnu)

×
⎧⎨
⎩

√
2 cos mφ, m 
= 0, σ = +1√
2 sin mφ, m 
= 0, σ = −1

1, m = 0,

(62)

in which we used the following Bessel integral identity:∫ 2π

0
dφu exp[−iz cos(φ − φu)]

{
cos mφu

sin mφu

= 2π (−i)mJm(z)

{
cos mφ

sin mφ
. (63)

The radial (u) integral in Eq. (62) may be evaluated in closed
form [26] as∫ 1

0
du u Jm(2πru) Jm(xmnu)

= 2πrJm(xmn)J ′
m(2πr) − xmnJ ′

m(xmn) Jm(2πr)

x2
mn − (2πr)2

= xmnJm(2πr) Jm+1(xmn)

x2
mn − (2πr)2

, (64)

in which the prime superscript on a function indicates its
derivative with respect to its argument and the final identity
is obtained on recognizing that xmn is a zero of Jm(·) and at
such a zero, J ′

m(xmn) = −Jm+1(xmn).
Having evaluated the inner product (62) in closed form in

the above manner, we may now calculate the probabilities of
detecting the imaging photon emitted in the state given by the
SPDO (1) in the various FB modes in a manner analogous
to that used for the Zernike modes. The partial derivatives
of these probabilities with respect to the point-source polar
coordinates r0, φ0 are also evaluated analogously. From these
probabilities and their partial derivatives, we may calculate the
FI for estimating the radial and azimuthal coordinates of the
point source and the hole center for our two problems using
expression (59).

D. Localized-source modes

We next considered projection modes that are constructed
out of localized point-source wave functions by a Gram-
Schmidt orthogonalization (GSO) procedure [41,42]. These
sources, which we call projection point sources (PPSs), were
at first chosen to be located on a square grid inside the uni-
formly illuminated background disk at positions [−R + (m −
1/2)a,−R + (n − 1/2)a], with m, n = 1, . . . , Na and a, the
grid spacing along each Cartesian dimension, being equal to
a = 2R/Na, and keeping only those PPSs that are located in-
side the disk. This is shown in Fig. 10 for Na = 7. Let us label
the PPS locations serially by the vector ri, i = 1, . . . , Ns, in

Background Disk

FIG. 10. A diagram showing the locations of PPSs (asterisks)
and six possible locations of the point source (circles and squares)
being localized inside the background disk.

which Ns ∼ N2
a is the total number of PPSs, and the corre-

sponding unit-norm state vectors as |Ki〉, i = 1, . . . , Ns. The
latter are in general nonorthogonal and thus must be orthog-
onalized first by the GSO procedure. This is most efficiently
performed by a Cholesky factorization of the corresponding

Ns × Ns Gram matrix, G, of elements Gi j
def= 〈Ki|Kj〉, into a

product of a lower triangular matrix and its transpose,

G = LLT . (65)

The orthonormalized set of projection modes, {|e j〉| j =
1, . . . , Ns}, are linear combinations of the PPS states that may
be expressed by the matrix relation,⎛

⎜⎜⎝
〈e1|
〈e2|
...

〈eNs |

⎞
⎟⎟⎠ = C

⎛
⎜⎜⎝

〈K1|
〈K2|

...

〈KNs |

⎞
⎟⎟⎠, (66)

in which the coefficient matrix C is a lower triangular matrix.
Multiplying Eq. (66) to its right by its Hermitian adjoint row
vector and noting that the resulting matrix on the LHS is the
identity matrix because of the orthonormality of the sought
states |en〉, while the column-row vector product on the r.h.s.
yields the Gram matrix, with Cholesky factorization (65), we
obtain the relation

CGCT = E,

i.e., CL(CL)T = E, (67)

in which E is the Ns × Ns identity matrix. In other words,
the product, CL, yet another lower triangular matrix, must be
a real orthogonal matrix with orthonormal rows, a fact that
allows for an efficient row-by-row solution for C via Gauss
elimination.

The classical GS orthogonalization via Cholesky factor-
ization that we have presented here becomes numerically
unstable when we include more than 35–40 PPS sources.
More robust, modified GS procedures that more efficiently
mitigate round-off errors may then be needed [42].
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The mode projection probabilities may be expressed as

Pn = 〈en|�|en〉 (68)

=
n∑

i, j=1

Cni〈Ki|�|Kj〉Cn j, (69)

which can be evaluated numerically for the two SPDOs (1)
and (36) we have considered in the paper. By differentiat-
ing these probabilities with respect to r0 and φ0 and using
expression (59), we may then calculate the FI for localizing
the point source or hole for the two problems in the PPS
basis. Note, however, that since the number of PPS modes is
finite, the PPS basis is incomplete. For a correct evaluation
of the FI matrix, we must therefore add to the sum (59) an
extra term of the same form as the summand, corresponding
to all the modes in which a photon is unobserved, which
has the probability P̄ = 1 −∑Ns

n=1 Pn with partial derivatives
∂μP̄ = −∑Ns

n=1 ∂μPn.

E. Cramér-Rao bounds for direct imaging and Zernike,
FB, and localized-mode projections

The diagonal elements of the inverse of the 2 × 2 FI matrix
represent the two CRBs for unbiased estimation of the radial
and arc-length coordinates of either the point source or the
center of the tiny hole in the background disk. We next discuss
the numerically evaluated CRBs for each problem in the three
wavefront projection bases that we have considered here. For
the point-source localization problem, we plot the CRBs for
direct imaging as well and compare them with the correspond-
ing results for the three projection bases, but not for the hole
problem as the comparisons for it are quite similar.

1. A point source in a uniformly illuminated disk

We first display the CRB, as a function of the background-
disk brightness parameter b, for estimating the radial coor-
dinate of the point source using direct imaging with a clear
aperture and each of the three orthogonal projection basis
sets we discussed in the previous three subsections. The PPS
sources were chosen to be located in a regular square array
with the central one of these sources being at the disk center
and separated successively along the two Cartesian axes by a
distance a = R/3.5. That allowed for a total of 37 PPS sources
to be located inside the background disk, with all other sources
that lie outside having been excluded from our projections.
These comprise three central rows of seven sources each, two
rows of five sources each, and two outer rows of three sources,
as shown in Fig. 10. The six possible locations of the point
source being localized, three along the x axis and three along
the radial direction at angle π/8 with respect to the x axis at
distances 0.2R, 0.4R, or 0.6R from the disk center, are shown
by circles and squares on the same plot. In Figs. 11–14 we
show results only for φ0 = π/8, noting that the results for
φ = 0 or any other values of φ0 are unremarkably similar.

Figure 11 displays the CRBs for a subdiffractive disk of
radius R = 0.5, with two different values of the source radial
distance r0, either 0.2R (shown by x’s) or 0.6R (shown by
diamonds). The CRBs for DI and all three wavefront pro-
jection bases approach the quantum CRB (QCRB) given by
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FIG. 11. Plots of CRB for estimating r0 vs b for direct imaging
(solid upper curves) and for each of our three projection bases,
for disk radius R = 0.5 and for two different values of r0/R. The
quantum CRBs are shown by solid lines (lower solid curves).

the corresponding diagonal element of the inverse of the QFI
matrix, in the limit of vanishing background, b → 0. That is
not true for the larger-radius background disk, R = 2, how-
ever, for which the same CRBs are shown in Fig. 12. Only for
r0/R = 0.2 or smaller, for which the source is 0.4 units or less
away from the center, does there seem to be a convergence of
the Zernike-based CRB and QCRB values in this limit. This is
consistent with our previous work [22] on pair superresolution
in which we showed that Zernikes fail to constitute an optimal
basis when the pair separations are not much smaller than the
Raylegh diffraction scale, of order one in the units we have
used. Arguably, the FB and PPS modes are no different in this
respect.

Very similar behaviors are seen for the CRBs for estimating
the orthogonal, azimuthal arc-length coordinate of the source
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FIG. 12. Same as Fig. 11 except that R = 2.
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FIG. 13. Plots of CRB for estimating the azimuthal arc-length
coordinate, r0φ0 vs b for direct imaging (upper solid curves) and each
of our three projection bases, for disk radius R = 0.5 and for two
different values of r0/R. The quantum CRBs are shown by solid lines
(lower solid curves).

position, namely r0φ0, as well, as shown in Figs. 13 and 14.
But estimating the arc-length coordinate of the source en-
tails higher CRB values than estimating its radial coordinate,
particularly at highly subdiffractive scales and b significantly
different from 0, as seen in the highest of the dashed curves
in Fig. 13 for which the point source is only a tenth of a unit
away from the background disk center.

Note that both the radial and azimuthal QCRBs take val-
ues that are essentially indistinguishable, at each value of b,
regardless of the radial distance of the point source, partic-
ularly for the larger-radius disk for which R = 2. Also, all
CRBs, including the QCRBs, rise in value with rising back-
ground level, which is expected since a rising background
strength makes the source localization more noisy, but the
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FIG. 14. Same as Fig. 13 except that R = 2.

gap between the projection-CRB curves for each basis and
the QCRB curves also becomes increasingly larger. All three
projection bases become less and less efficient in estimating
the point-source coordinates with rising background bright-
ness levels. The zoomed-in insets in Figs. 11–14 magnify
the differences between the various CRBs in the midrange
of the values for b for an easier visual comparison between
DI CRBs and the CRBs for the three wavefront projection
bases.

All three mode projections perform rather similarly when
estimating the two coordinates of the point source against a
background disk that has subdiffractive extensions, i.e., for
R < 1, although the PPS modes perform rather uniformly with
respect to changing radial distance of the source, r0, as seen
in the pair of dashed lines tracking each other closely over the
entire range of background brightness level. But for the larger
disk, for which R = 2, two differences may be noted. First,
it is the FB modes that have a more uniform performance
with changing radial distance of the source within that disk.
Second, the PPS modes seem to perform the best, as seen
in the dashed lines being lower, in each case of r0/R = 0.2
and r0/R = 0.6, than the dot-dashed and dotted lines corre-
sponding to the Zernike and FB modes, particularly when the
background is significantly bright with b � 0.4. But the gaps
between the various CRBs and QCRBs remain finite and in-
crease with increasing fractional background level b. None of
the bases is thus an optimal basis at the quantum single-photon
level when the background constitutes a significant fraction of
the overall luminosity.

We note here that any practical implementation of the
Zernike and FB mode projection protocols would employ only
a finite number of modes of the lowest few orders with the rest
of the higher-order modes that complete these bases remain-
ing unobserved. The use of even fewer than ten lower-order
modes of wavefront projection, as we have seen in our numer-
ical computations, tends to achieve a pretty significant fraction
of the total information about the location coordinates attained
by each complete basis, at least in the subdiffractive regime.
We show this result in Figs. 15(a) and 15(b) where we plot for
R = 1 and R = 2, respectively, the radial-localization CRBs
vs the background brightness level, comparing the results for
projections into the six lowest-order Zernike modes, corre-
sponding to p = 0, 1, 2 in Eq. (57), with those obtained when
essentially all Zernike modes (out to orders as high as p = 60)
are included in the projections. For R = 1 there is little gain
when including projections beyond those for which p � 2,
while for R = 2, the differences become quite pronounced
only for the larger radial source distances, as seen here for
r0/R = 0.4 and 0.6. Similar comparisons were obtained for
azimuthal localization and for the FB and PPS projection
bases as well, and were also discussed in our previous work
[19,37] for other parameter-estimation problems.

Figures 11–14 also show that direct imaging CRBs are on
the whole not distinctly worse than the CRBs for the three
wavefront projection bases discussed here. One must remem-
ber, however, that our DI CRB calculations have assumed
observations that are neither pixelated nor suffer from any
readout noise, which is unrealistic. Pixelation, in particular,
will be increasingly more important and limiting of localiza-
tion precision in practice [43], the more subdiffractive the
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FIG. 15. Plots of the CRB for radial localization of the point
source vs the brightness level of the background disk for (a) R = 1
and (b) R = 2, when only modes to quadratic order and when essen-
tially all modes are included.

background disk happens to be. By contrast, the wavefront
projection (WFP) technique could be designed to record the
projection data on single camera pixels, one pixel per mode,
for which only a few pixels would suffice, since, as we have
noted in Figs. 15(a) and 15(b), only a few modes of each
basis are needed for closely approaching the corresponding
complete-basis CRB values. The practical overhead of pix-
elation induced resolution loss and detection noise is thus
expected to be greatly mitigated for the WFP technique.

2. A tiny hole in an otherwise uniformly illuminated disk

We next consider our second problem for which we com-
puted the CRB for estimating the location of the center of a
tiny hole in an otherwise uniformly illuminated disk using
wavefront projections in the same three bases. As for the
source localization problem, we use wavefront projections
into all of the basis functions of the Zernike and FB mode

31 Projection Point Sources

FIG. 16. A diagram showing the locations of all 31 PPS sources
with 21 locations shown by x’s and 10 asterisks.

bases, but only a handful of the PPS modes. For the last basis,
we used two different sets of modes, one with 21 randomly
placed PPS sources inside the background disk and the other
containing ten additional randomly placed sources for a to-
tal of 31 PPS sources, to show how adding more sources
improves the estimation error for localizing the hole. The
locations of these PPS sources are shown in Fig. 16, with
the first 21 marked by x’s and the additional 10 by asterisks.
Note that unlike the use of uniformly distributed PPS sources
for the problem of source localization against the background
disk that we discussed earlier, we have chosen the PPS lo-
cations randomly here. We will see from our results that the
choice of PPS locations is largely immaterial. In fact, the GS
orthogonalization of the PPS wavefunctions delocalizes their
footprint, largely negating any a priori biases that might inad-
vertently be introduced into the estimation by a specific choice
of the PPS locations, as long as there are sufficiently many
of them distributed more or less uniformly over the full disk.
We will not discuss here any comparisons of direct-imaging
CRB values with the wavefront-projection CRB values for the
brightness-hole problem, as they are quite analogous to the
comparisons we discussed earlier for the source-localization
problem.

In Fig. 17 we display the CRB, scaled by the same factor ε

by which the corresponding QFI values were inversely scaled
in Figs. 6 and 7, for estimating the radial distance, r0, of
the hole center from the disk center as a function of r0/R
for two different values of the disk radius, 0.5 and 1.5. Here
the PPS basis contained 21 sources. Figure 18, on the other
hand, presents the similarly scaled CRB for estimating the
azimuthal arc length of the hole position for the same three
projection bases. As we can see, the Zernike (dashed curves)
and FB (dot-dashed curves) mode projections perform rather
similarly and somewhat worse than PPS mode projections,
particularly for the larger disk radius (square markers). The
superiority of the PPS basis is even more pronounced for both
disk radii considered here over much of the r0/R range for
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FIG. 17. Plots of CRB for estimating r0 for the Zernike (dashed
curves), FB (dot-dashed curves), and 21-mode PPS (dotted curves)
basis sets. The CRB has been scaled by factor ε = (δ0/R)2, the ratio
of hole area to the disk area. The similarly scaled quantum CRBs are
shown by solid lines.

azimuthal arc length estimation, as we can see from Fig. 18.
This advantage can be even greater in a practical setting where
only finite numbers of Zernike or FB modes can be included
on any projection protocol.

In Figs. 19 and 20 we demonstrate the improvement of
the CRB for estimating the radial and azimuthal arc length
coordinates of the brightness hole center when we include ten
additional PPS sources into the PPS projection set. We can
see that for all three disk radii considered here, the reduction
of the CRB with additional PPS sources is rather minimal
across the full range of possible radial locations of the hole.
The largest improvement seems to result for either the largest
disk radius (square markers) or for hole locations closer to the
perimeter for the smallest, subdiffractive disk radius of 0.5
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FIG. 18. Same as Fig. 17 except for azimuthal localization.
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FIG. 19. Plots of CRB for estimating r0 of the hole center for the
localized PPS modes, φ0 = 0, and three values of R, with the dashed
lines showing results for 21 PPS sources and dotted lines for 31 PPS
sources, as indicated in parentheses in the legend.

(circle markers). Although we do not show the CRB values
for the case of modes formed from 37 uniformly located PPS
sources in the geometry shown in Fig. 10, they are quite
comparable for both radial and azimuthal CRBs.

The finite gaps between the wavefront-projection CRBs
and the corresponding QCRBs seem to remain, however, re-
gardless of the specifics of the three projection basis. It is quite
possible that QCRBs are either fundamentally unattainable or,
in more practical terms, unattainable with wavefront projec-
tions alone. One may need weaker quantum measurements,
those that are only describable in terms of general Kraus op-
erators and a nonprojective POVM, to be able to fully bridge,
or at least further reduce, the gap between the measurement
CRB and QCRB. But just what sort of quantum processess
and estimators one might need to achieve this remains an open
question.
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FIG. 20. Same as Fig. 19 except for azimuthal localization.
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V. CONCLUDING REMARKS

We calculated the lower bounds on the variance for esti-
mating the 2D location coordinates of two different kinds of
point object in a uniformly bright circular disk of fixed center
and radius, that point object being either a point source or a
brightness hole located somewhere inside the disk. Specifi-
cally, we computed the QFI matrix and its inverse matrix,
the diagonal elements of which yield the lowest possible
variances of any unbiased, simultaneous estimation of these
coordinates, namely, the QCRBs. In the limit that the point
source being localized is relatively bright compared to the
background disk, a perturbative analysis of the SLDs suffices,
as we showed by means of a detailed numerical evaluation of
the exact results, to generate accurate expressions for QFI and
QCRB, In fact, the perturbative treatment was found to main-
tain excellent accuracy even when the integrated brightness of
the background disk was comparable to the brightness of the
point source.

For the hole-in-the-disk problem, the perturbative approach
was all that was needed when the hole is small in size com-
pared to the disk radius, as we assumed, and can thus be
treated as a point brightness deficit in the disk, with the ratio
of the hole and disk areas serving as the small parameter.
Our perturbative approach, nevertheless, required a numeri-
cal evaluation of the eigenvalues and eigenfunctions of the
single-photon density operator of emission from a uniformly
bright disk. Note also that a slight parametric modification
of the contrast parameter, ε → ε(1 − f ), allows one to treat
the problem of localizing a smaller unresolved star against a
larger background star, such as in a binary star system, when
the former is a fraction f as bright per unit area as the latter.

We next considered the attainability of the QCRB by
means of wavefront projections for a variety of operating
conditions for both problems, which included varying the
fractional background disk brightness level, the 2D location of
the source from the disk center, and the disk radius. Three dif-
ferent sets of modes, specifically the Zernike, Fourier-Bessel,
and projection-point-source modes, the last with varying num-
bers of projection point sources, were employed for this
purpose, and their relative efficiency in reaching the ultimate
quantum bound was numerically assessed in detail.

None of these bases was found to be particularly opti-
mal for the source-localization problem, with all three bases
yielding CRBs that only approach the QCRB within a fac-
tor of 1–10 over a wide range of values of the disk radius,
source location, and background levels. A detailed compar-
ison of the WFP based CRBs with DI-based CRBs showed
that wavefront projections are not significantly superior to
direct imaging for source localization, which in the context
of DI is largely a PSF fitting, rather than a superresolution,
problem for which DI can achieve precisions of a few nm
even at optical wavelengths [28]. We expect WFP protocols
to be qualitatively superior to DI, however, when estimating
in the photon-counting limit the pair separation vectors of two
or more closely spaced sources whose brightness centroid is
either known or can be well localized [21,23].

For the hole-in-the-disk problem, the PPS modes per-
formed the best among our three WFP bases, being a factor
2–10 better than the other projection sets in terms of their

respective CRBs. It is quite possible that the QCRB is
unattainable [15] in any strong projective measurement basis,
and a specific weak measurement protocol involving an ancilla
might be needed to yield a CRB that reaches the correspond-
ing QCRB under controlled operating conditions. Or perhaps,
no measurement POVM exists that is efficient in this sense,
that being even more likely to be true when imperfect, noisy
detection [44] further reduces estimation efficiency.
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APPENDIX A: PERTURBATIVE EXPRESSIONS FOR QFI
TO QUADRATIC ORDER

We first note the identity

〈K0|∂ν |K0〉 = ∂ν〈K0|K0〉 = 0 (A1)

that follows readily from the inversion symmetry of the cir-
cular aperture. Further, by expanding the exponential operator
in the Lyapunov solution (12) in a power series and noting
that �n

0 = �0 = |K0〉〈K0| for all n � 1, we may reduce it to the
simpler form

exp(−λ�η ) = exp(−λη/D)

× {IN + exp[−λ(1 − η)]�0}, (A2)

in which

IN = I − �0 (A3)

defines the identity operator in the null space of the rank-1
point-source SPDO, �0.

To evaluate the zeroth-order term, K (0)
μν , in the expression

for the QFI matrix elements given by Eq. (10), we find it sim-
plest to evaluate L(0)

ν first using the Lyapunov solution (12).
Substituting the expansion (A2) for the exponential operators
on either side of ∂ν�0 in Eq. (12) and distributing the product
of operators into four terms, we easily see that two of them
must vanish since

IN∂ν (|K0〉〈K0|)IN = |K0〉〈K0|∂ν (|K0〉〈K0|)|K0〉〈K0| = 0,

(A4)

identities that follow from a substitution of definition (A3)
for IN , the product identity, ∂ν (|K0〉〈K0|) = ∂ν |K0〉〈K0| +
|K0〉∂ν〈K0|, and the symmetry conditions (A1). The remaining
two terms involve simple exponential integrals that can be
done in the limit η → 0+, leading to the result

L(0)
ν = 2(|K0〉∂ν〈K0|IN + IN∂ν |K0〉〈K0|)

= 2(|K0〉∂ν〈K0| + ∂ν |K0〉〈K0|), (A5)

with the second equality following from the fact that
|K0〉∂ν〈K0|IN = |K0〉∂ν〈K0| according to definition (A3) for
IN and identity (A1). Taking the matrix element of expression
(A5) between ∂μ〈K0| and |K0〉 and using identity (A1) once
again generates, according to Eq. (10), the zeroth-order QFI

032427-17



SUDHAKAR PRASAD PHYSICAL REVIEW A 107, 032427 (2023)

matrix elements

K (0)
μν = 4Re∂μ〈K0|∂ν |K0〉. (A6)

Analogous to the Lyapunov solution (12) for the first of the
relations in Eq. (11), the second relation there, for n � 1, may
be cast in the Lyapunov form as

L(n)
ν = − lim

η→0+

∫ ∞

0
dλ exp(−λ�η )

× (L(n−1)
ν �B + �BL(n−1)

ν

)
exp(−λ�η ). (A7)

Let us now substitute expansion (A2) for the pre- and post-
exponential operators in Eq. (A7) and distribute the product
inside the λ integrand into four terms of form

INOIN , INO�0, �0OIN , �0O�0, (A8)

where O = L(n−1)
ν �B + �BL(n−1)

ν . The first of these terms
must vanish identically, since from the second of Eqs. (11)
O is also equal to −(L(n)

ν �0 + �0L(n) ) and �0IN = IN�0 = 0.
The remaining three terms in Eq. (A8) yield simple exponen-
tial integrals over λ that converge in the limit η → 0+ and are
easily calculated, and Eq. (A7) thus reduces to the recursion
relation,

L(n)
ν = − [IN

(
�BL(n−1)

ν + L(n−1)
ν �B

)
�0 + H.a.

]
+ 1

2�0
(
�BL(n−1)

ν + L(n−1)
ν �B

)
�0

= − [(�BL(n−1)
ν + L(n−1)

ν �B
)
�0 + H.a.

]
+ 3

2�0
(
�BL(n−1)

ν + L(n−1)
ν �B

)
�0, (A9)

in which definition (A3) was substituted in the first equality to
reach the second equality.

Taking the matrix element of expression (A9) between
∂μ〈K0| and |K0〉 and using definition (A3) and identity (A1)
to see that

∂ν〈K0|IN = ∂ν〈K0|, ∂ν〈K0|�0 = 0 (A10)

yields, via relation (10), the nth-order correction to the QFI
matrix elements as

K (n)
μν = − 2Re ∂μ〈K0|

[
L(n−1)

ν �B + �BL(n−1)
ν

]|K0〉,
n = 1, 2, . . . . (A11)

The first-order correction to QFI matrix elements follows
immediately from relation (A11), for n = 1, solution (A5),
and identity (A1),

K (1)
μν = − 4Re[∂μ〈K0|∂ν |K0〉〈K0|�B|K0〉

+ ∂μ〈K0|�B∂ν |K0〉]. (A12)

To evaluate the second-order correction, K (2)
μν , we need, as

we see from relation (A11), L(1)
ν |K0〉 and the Hermitian adjoint

of L(1)
ν ∂μ|K0〉. Using solution (A9) for n = 1, we may express

the first of them as

L(1)
ν |K0〉 = − (�BL(0)

ν + L(0)
ν �B

)|K0〉
+ 1

2�0
(
�BL(0)

ν + L(0)
ν �B

)|K0〉
= − 2�B∂ν |K0〉 − L(0)

ν �B|K0〉
+ |K0〉〈K0|�B∂ν |K0〉 + |K0〉∂ν〈K0|�B∂ν |K0〉

= − 2�B∂ν |K0〉 − L(0)
ν �B|K0〉

+ 2|K0〉Re(〈K0|�B∂ν |K0〉), (A13)

in which we used the identities �0L(0)
ν = 2|K0〉∂ν〈K0| and

L(0)
ν |K0〉 = 2∂ν |K0〉 that follow from the solution (A5) in the

first equality to arrive at the second equality and the fact that
z + z∗ = 2Rez, where z = 〈K0|�B∂ν |K0〉, to reach the final
equality. Applying solution (A9) for n = 1 on ∂ν |K0〉, noting
that �0∂ν |K0〉 = 0 according to symmetry condition (A1), and
substituting solution (A5) for L(0)

ν , we may derive the second
quantity we need for K (2)

μν , namely,

L(1)
ν ∂μ|K0〉 = − �0

(
�BL(0)

ν + L(0)
ν �B

)
∂μ|K0〉

= − 2|K0〉〈K0|�B|K0〉∂ν〈K0|∂μ|K0〉
− 2|K0〉∂ν〈K0|�B∂μ|K0〉. (A14)

On using Eq. (A13) and the Hermitian adjoint of Eq. (A14)
in Eq. (A11), with n set equal to 2, we may evaluate K (2)

μν fully
as

K (2)
μν = 4〈K0|�B|K0〉2Re(∂μ〈K0|∂ν |K0〉)

+ 8〈K0|�B|K0〉Re(∂μ〈K0|�B∂ν |K0〉)

+ 4Re
(
∂μ〈K0|�2

B∂ν |K0〉
)

− 4Im(∂μ〈K0|�B|K0〉)Im(∂ν〈K0|�B|K0〉), (A15)

where we combined two identical quantities to obtain
the second term and then used the identity, Re(z1z2) −
Re(z1)Re(z2) = −Im(z1)Im(z2), where z1 = ∂μ〈K0|�B|K0〉
and z2 = ∂ν〈K0|�B|K0〉, to obtain the final term on the r.h.s.

APPENDIX B: QFI EXPRESSIONS FOR LOCALIZING
A POINT SOURCE IN A UNIFORMLY

BRIGHT DISK

Taking the inner product of the eigenvalue equation (19)
with the bra 〈Kr′ | and using relation (21) generates the r.h.s. of
Eq. (20) and thus, since the eigenfunctions Cλ(r) can always
be chosen to be real,

〈Kr′ |λi〉 = 〈λi|Kr′ 〉 = λiCi(r′). (B1)

Multiplying the far left and far right sides of this equation,
each on its right by 〈λi|, adding over all i, and using the
completeness of the full set of orthonormal eigenstates of the
SPDO yields the sum rule,

〈Kr′ | =
∑
i∈S

λiCi(r′)〈λi|, (B2)

in which the sum over all i may be restricted to that only over
the support, S , because of the factor λi in the sum.

Multiplying Eq. (20) for the ith eigenfunction by λiCi(r′′)
on both sides and then summing over all i implies the follow-
ing relation:∫

G(r′)
2J1(2π |r − r′|)

2π |r − r′| I1(r′, r′′)dA′ = I2(r, r′′), (B3)

where In(r, r′) is defined as the sum

In(r, r′) def=
∑

i

λn
i Ci(r)Ci(r′). (B4)
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But from identity (B1) we see that I2(r, r′) is simply the sum
of products 〈Kr〉λi〈λi〉Kr′ over the complete set of orthonor-
mal eigenstates {λi}. Thus, from the completeness relation for
these eigenstates, it follows that

I2(r, r′) = 〈Kr|Kr′ 〉. (B5)

Thus, in view of relation (21), we may then express Eq. (B3)
as∫

G(r′)
2J1(2π |r − r′|)

2π |r − r′| I1(r′, r′′)dA′ = 2J1(2π |r − r′′|)
2π |r − r′′| .

(B6)
By inspection of the two sides of this equation, we immedi-
ately recognize that G(r′) I1(r′, r′′) must be equal to the Dirac
delta function, δ(2)(r − r′′),

I1(r, r′) = δ(2)(r − r′)
G(r)

, (B7)

up to an additive function belonging to the null space of
the kernel function, 2J1(2π |r − r′|)/|r − r′|. Our numerical
calculations indicate no null space for the eigenstates of the
disk SPDO, so we may assume Eq. (B7) to be exact. In the
special case that r = r′ = r0, using the definition (18) for G,
we may reduce this identity to the value

I1(r0, r0) = δ(2)(0)

(1 − b)δ(2)(0) + b/(πR2)

= 1

1 − b + b
(
δ2

0/R2
) δ0→0−→ 1

1 − b
, (B8)

where we used the discretized form of the Dirac δ function
singularity, δ(2)(0), corresponding to the interpretation that
any point source, in practice, has a finite radial extension δ0

to replace δ(2)(0) by 1/(π δ2
0 ).

Using results (B1) and (B7),

∂μ� = (1 − b)[∂μ|K0〉〈K0| + |K0〉∂μ〈K0|], (B9)

〈K0|K0〉 = 1, and identity (A1), we may see that

〈λi|∂μ�|λ j〉 = (1 − b)[λiCi(r0) Qjμ + λ jCj (r0)Qiμ],

〈λi|∂μ� ∂ν�|λi〉 = (1 − b)2[QiμQiν + λ2
i C

2
i (r0) ∂μ〈K0|∂ν |K0〉

]
,

(B10)

in which Qiμ denotes the real matrix element that we have
already evaluated in Eq. (30),

Qiμ
def= 〈λi|∂μ|K0〉 = ∂μ〈K0|λi〉 = Qμi. (B11)

Dividing the second of the relations (B10) by λi and summing
over all i yields the following expression for the first of the
terms in expression (16):∑

i∈S

1

λi
〈λi|∂μ� ∂ν�|λi〉 = (1 − b)2[∂ν〈K0|�(+)∂μ|K0〉

+ I1(r0, r0)∂μ〈K0|∂ν |K0〉], (B12)

in which �(+) is the Moore-Penrose pseudo-inverse of the
SPDO,

�(+) =
∑
i∈S

1

λi
|λi〉〈λi|. (B13)

Next, we use the first of the relations (B10) in the prod-
uct of the matrix elements in the symmetric double sum in
Eq. (16), distribute out the resulting product into four terms,
and subsequently interchange the i and j indices on two of the
four terms, which makes them equal, pairwise, to the other
two terms. We may thus express that symmetric double sum
as∑
i, j∈S

(
1

λi + λ j
− 1

λi
− 1

λ j

)
Re[〈λi|∂μ�|λ j〉〈λ j |∂ν�|λi〉]

= 2(1 − b)2
∑
i, j∈S

(
1

λi + λ j
− 1

λi
− 1

λ j

)

× [λiλ jCi(r0)Cj (r0)QiμQjν + λ2
i C

2
i (r0)QjνQjμ

]
= 2(1 − b)2

×
[ ∑

i, j∈S

λiλ jCi(r0)Cj (r0)QiμQjν + λ2
i C

2
i (r0)QjνQjμ

λi + λ j

−
∑
i∈S

Ci(r0)Qiμ

∑
j∈S

λ jCj (r0)Qjν−I1(r0, r0)
∑
j∈S

QjνQjμ

−
∑
j∈S

Cj (r0)Qjν

∑
i∈S

λiCi(r0)Qiμ −
∑
j∈S

QjνQjμ

λ j

]
,

(B14)

where we used the definition (B4) for n = 1, 2 and the identity
(B5), for the special case of r = r′ = r0 for which it is simply
equal to 1, to arrive at the final expression. We next note three
identities,∑

j∈S
λ jCj (r0)Qjν =

∑
j∈S

λ jCj (r0)〈λ j |∂ν |K0〉

= 〈K0|∂μ|K0〉 = 0,∑
j∈S

QjνQjμ = ∂ν〈K0|
∑
j∈S

|λ j〉〈λ j |∂μ|K0〉

= ∂ν〈K0|IS∂μ|K0〉,∑
j∈S

QjνQjμ

λ j
=∂ν〈K0|

∑
j∈S

|λ j〉〈λ j |
λ j

∂μ|K0〉

= ∂ν〈K0|�(+)∂μ|K0〉, (B15)

where we used the sum rule (B2) to reach the second line of
the first identity, which vanishes due to relation (A1), and the
reality condition (B11) on Qjν to write it as ∂ν〈K0〉λ j to reach
the first equality in the last two identities, the symbol

IS =
∑
i∈S

|λi〉〈λi| (B16)

for the identity operator in the support subspace of �, and
definition (B13) to reach the final equalities in these two latter
identities. Substituting relations (B15) into Eq. (B14) greatly
simplifies it with the result∑

i, j∈S

(
1

λi + λ j
− 1

λi
− 1

λ j

)
Re[〈λi|∂μ�|λ j〉〈λ j |∂ν�|λi〉]

= 2(1 − b)2
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×
[ ∑

i, j∈S

λiλ jCi(r0)Cj (r0)QiμQjν + λ2
i C

2
i (r0)QjνQjμ

λi + λ j

− I1(r0, r0)∂ν〈K0|IS∂μ|K0〉 − ∂ν〈K0|�(+)∂μ|K0〉
]
.

(B17)

When we substitute expressions (B12) and (B17) into
Eq. (16) and perform some cancellations, we obtain the fol-
lowing final expression for the QFI matrix elements:

Hμν = 4(1 − b)2

[
1

1 − b
∂ν〈K0|IN∂μ|K0〉

+
∑
i, j∈S

λiλ jCi(r0)Cj (r0)QiμQjν+λ2
i C

2
i (r0)QjνQjμ

λi + λ j

]
,

(B18)

in which the symbol IN defines the identity operator in the
null subspace of the SPDO,

IN =
∑
i∈N

|λi〉〈λi| = I − IS, (B19)

and we used the value (B8) for I1(r0, r0). As we have noted
earlier, the point-source-background-disk SPDO that we are
analyzing here appears to be full-rank, with the first term on
the r.h.s. of Eq. (B18) vanishing in our numerical calculations
to an accuracy of roughly one part in 105. But for the sake of
generality, we do not make this approximation in Eq. (B18).

APPENDIX C: QFI EXPRESSIONS FOR LOCALIZING
A HOLE IN A UNIFORMLY BRIGHT DISK

Let us first recall certain identities from Ref. [19] involving
the eigenvalues and eigenstates of the uniformly bright disk
problem, which we need here:

〈Kr|λ j〉 = λ jCj (r),
∑

j

λ jCj (r)Cj (r′) = πR2δ(2)(r − r′).

(C1)

Using the identity

∂ν�H = ∂μ|K0〉〈K0| + |K0〉∂μ〈K0|, (C2)

in Eq. (48), then taking the inner product of the latter with the
bra ∂ν〈K0| and applying the first of identities (C1) repeatedly,
and finally substituting the result into Eq. (44) yields the
following expression for the QFI matrix elements:

Hμν = 4ε2Re
∑
i, j

λ jCj (r0)∂ν〈K0|λi〉
λi + λ j

× [〈λi|∂μ|K0〉λ jCj (r0) + λiCi(r0)∂μ〈K0|λ j〉]. (C3)

Note that because of the factor λ j in the numerator, the sum
over j is automatically restricted to being over eigenstates in
the support of the disk SPDO. This allows the sum over i to be
over all states, including those that span the null space of the
SPDO, indexed by i ∈ N , and those that are over its support,
i ∈ S . The double sum in Eq. (C3) when restricted to the null
subspace for the i sum for which λi = 0, reduces to the value

∂ν〈K0|
∑
i∈N

|λi〉〈λi|∂μ|K0〉
∑

j

λ jC
2
j (r0)

= πR2δ(2)(0)∂ν〈K0|IN∂μ|K0〉, (C4)

where we used the first of the identities (C1) and the null-
subspace identity operator, IN , given by Eq. (B19), to arrive
at the latter expression. Adding to this contribution the contri-
bution from the support subspace of the SPDO for both the i
and j sums in Eq. (C3) then yields

Hμν = 2ε Re∂ν〈K0|IN∂μ|K0〉

+ 4ε2Re
∑
i, j∈S

λ jCj (r0)∂ν〈K0|λi〉
λi + λ j

× [〈λi|∂μ|K0〉λ jCj (r0) + λiCi(r0)∂μ〈K0|λ j〉, (C5)

in which we regularized the divergent δ(2)(0) as simply 1/AH ,
with AH = πδ2

0 being the area of the hole.
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[15] R. Demkowicz-Dobrzański et al., Multi-parameter estimation
beyond quantum Fisher information, J. Phys. A: Math. Theor.
53, 363001 (2020).

[16] S. Prasad, Quantum limited super-resolution of an unequal-
brightness source pair in three dimensions, Phys. Scr. 95,
054004 (2020).

[17] Z. Huang and C. Lupo, Quantum Hypothesis Testing
for Exoplanet Detection, Phys. Rev. Lett. 127, 130502
(2021).

[18] U. Zanforlin, C. Lupo, P. W. R. Connolly, P. Kok, G. S. Buller,
and Z. Huang, Optical quantum super-resolution imaging and
hypothesis testing, Nat. Commun. 13, 5373 (2022).

[19] S. Prasad, Quantum limited superresolution of extended sources
in one and two dimensions, Phys. Rev. A 102, 063719
(2020).

[20] S. Prasad, J. Owens, J. Bray, and V. Neculaes, Quantum limited
Superresolution: Imaging beyond the Rayleigh diffraction limit,
Proc. SPIE 12016, 120160K (2022).

[21] M. Tsang, R. Nair, and X.-M. Lu, Quantum Theory of Super-
resolution for Two Incoherent Optical Point Sources, Phys. Rev.
X 6, 031033 (2016).

[22] Z. Yu and S. Prasad, Quantum Limited Superresolution of an
Incoherent Source Pair in Three Dimensions, Phys. Rev. Lett.
121, 180504 (2018).

[23] S. Prasad and Z. Yu, Quantum limited super-localization and
super-resolution of a source pair in three dimensions, Phys. Rev.
A 99, 022116 (2019).

[24] R. Noll, Zernike polynomials and atmospheric turbulence, J.
Opt. Soc. Am. 66, 207 (1976). The normalization chosen by
Noll, 〈Zi|Zj〉 = πδi j , is different from the unit normalization
used here.

[25] G. Watson, A Treatise on the Theory of Bessel Functions (Cam-
bridge, 1995).

[26] N. Lebedev, Special Functions and Their Applications (Dover,
1972), Sec. 5.14, p. 128.

[27] S. Kay, Fundamentals of Statistical Signal Processing: I. Esti-
mation Theory (Prentice Hall, 1993), Chap. 3.

[28] A. Yildiz et al., Myosin V walks hand-over-hand: Single fluo-
rophore imaging with 1.5-nm localization, Science 300, 2061
(2003).

[29] C. Cabriel et al., Combining 3D single molecule localization
strategies for reproducible bioimaging, Nat. Commun. 10, 1980
(2019).

[30] M. Grace and S. Guha, Perturbation theory for quantum infor-
mation, IEEE Information Theory Workshop (ITW), Mumbai,
India (IEEE, New York, 2022), pp. 500–;505.

[31] R. Bellman, Introduction to Matrix Analysis, 2nd ed. (Society
for Industrial and Applied Mathematics, Philadelphia, 1997),
Chap. 12.

[32] D. Šafránek, Discontinuities of the quantum Fisher information
and the Bures metric, Phys. Rev. A 95, 052320 (2017).

[33] D. Šafránek, Simple expression for the quantum Fisher infor-
mation matrix, Phys. Rev. A 97, 042322 (2018).

[34] L. J. Fiderer, T. Tufarelli, S. Piano, and G. Adesso, General
expressions for the quantum Fisher information matrix with ap-
plications to discrete quantum imaging, Phys. Rev. X Quantum
2, 020308 (2021).

[35] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Erratum:
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