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Quantum pricing-based column-generation framework for hard combinatorial problems
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In this work we present a complete hybrid classical-quantum algorithm involving a quantum sampler based
on neutral-atom platforms. This approach is inspired by classical column-generation frameworks developed in
the field of operations research and shows how quantum procedures can assist classical solvers in addressing
hard combinatorial problems. We benchmark our method on the minimum vertex coloring problem and show
that the proposed hybrid quantum-classical column-generation algorithm can yield good solutions in relatively
few iterations. We compare our results with state-of-the-art classical and quantum approaches.
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I. INTRODUCTION

Combinatorial optimization is at the heart of many real-
world problems. It consists in finding the “best” out of a
finite, but prohibitively large, set of options. Column gener-
ation [1] is an iterative method that was developed to solve
this kind of difficult mathematical problem, such as linear
formulations where the problem may be too large to consider
all options explicitly. In this method, variables are associated
with each option. The algorithm starts by solving the con-
sidered problem with a limited set of variables (or options),
known as the restricted master problem (RMP), and then
iteratively adds variables to improve the objective function.
The generation of new variables is done by an algorithm
specifically tailored to this task: During each iteration, the
related new subproblem to be solved, usually referred to
as a pricing subproblem (PSP), relies on the duality theory
[2] to provide new variables, if any exist, only if they can
improve the current solution of the restricted master prob-
lem. The iterative process stops when new variables cease
to improve the objective function, which is proven mathe-
matically. However, solving the pricing subproblems usually
represents the bottleneck of the column-generation approach
as it amounts to solving several simpler, but still hard, opti-
mization problems. Hence, designing an efficient way to solve
the pricing subproblems is the most important step to ensure
high-quality solutions to the RMP while minimizing time and
resource consumption.

In recent years, both academic and industrial communi-
ties have been putting a great deal of effort into designing
quantum hardware and algorithms that could provide a real
advantage over classical computers. As pointed out in [3],
this advantage can take the form of more accurate results, a
faster convergence, or even lower-energy consumption. Such
quantum algorithms can be used along with state-of-the-art
classical solutions, such as the column-generation algorithm,
to create powerful hybrid classical-quantum frameworks. A
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wide spectrum of quantum computing platforms is currently
being developed, using different kinds of two-level systems as
qubits, including Josephson junctions [4,5], trapped ions [6,7],
photons [8], or neutral atoms [9,10]. Each of these allows for
different quantum processing unit (QPUs) architectures, with
their own advantages and limitations when it comes to the
connectivity of the qubits or the types of operations that are
easily implemented. Extensive knowledge of these platforms
allows for the development of hardware-efficient approaches,
designed specifically for each of them. In particular, this al-
lows for identifying the classical bottlenecks that are best
suited for being replaced by a quantum approach.

In this work we propose a complete hybrid classical-
quantum column-generation framework whose pricing sub-
problems can be efficiently solved in neutral-atom-based
QPUs. Unlike other hybrid approaches such as the quantum
approximate optimization algorithm (QAOA), the core part
of the resolution is here carried out by a classical solver and
the quantum processing unit is used as a sampler to restrict
the search space. Requiring only |V | qubits for a given graph
G = (V, E ), the related pricing subproblems are then solved
by a neutral-atom-based sampler specifically tailored to im-
prove the current solution of the associated master problem.
Compared to classical and quantum greedy approaches, we
show numerically that the proposed hybrid column generation
can improve significantly the quality of the solutions while
reducing the number of iterations on the quantum device.
Finally, by taking advantage of some quantum features, e.g.,
state superposition, we find that the hybrid column-generation
method returns the (near-)optimal solution faster than the clas-
sical one, i.e., where no QPU is involved. Figure 1 summarizes
our proposed approach.

This paper is structured as follows. We first introduce the
main aspects of the graph theory and the related combinatorial
problems in Sec. II. After reviewing related works in Sec. III,
we give a brief introduction to neutral-atom-based quantum
computing in Sec. IV. Section V introduces the main idea
of the column-generation approach. In Sec. VI we present
in depth our proposed hybrid classical-quantum approach to
solving the minimum vertex coloring problem (MVCP), while
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FIG. 1. Workflow of the hybrid classical-quantum column-
generation approach. First, a minimal subset y of variables is
generated in such a way that it ensures a feasible solution for the
reduced master problem (e.g., with only the singletons of the graph).
The RMP is then solved by a classical solver. The next steps are
related to the pricing subproblems, which are solved by considering
the dual values from the solved RMP in order to find more variables
that can potentially improve the current solution of the RMP. If such
variables exist, then the RMP is updated with the new variables and
is solved again. The search for new variables is done by a quantum
sampler specifically tailored to consider different inputs related to
each pricing iteration. These last steps are repeated until no column
is generated by the PSP.

the results of our numerical experiments are discussed in
Sec. VII.

II. BACKGROUND

Combinatorial problems [11] have been extensively stud-
ied by both academic and industrial communities and have
a vast range of applications in real-world systems. Those
problems can naturally be defined on graphs, which are data
structures composed of a set of elements called vertices (also
known as nodes) that can potentially be connected. These
connections are called edges and might potentially encode
different information such as the importance of such connec-
tions (as weights) or the distance between their end points.
Similarly, different labels and weights can also be associated
with vertices in order to differentiate them. Formally, a graph
G = (V, E ) is composed of a set of vertices V and edges
E ∈ V2 representing the existence of a connection between
vertices u and v from V .

Several real-world optimization problems, from a vast
spectrum of fields, can be mapped to graph problems. For
instance, graphs can be used to encode social experiments
[12], telecommunication networks [13], and physical systems
[14]. The related optimization problems typically consist in
selecting a subset of vertices and/or edges optimally satisfy-
ing certain rules. This kind of discrete optimization problem
is highly relevant for quantum computing (QC), particularly
in the case of noisy intermediate-scale quantum-era platforms
[15,16]. In that case, results are typically obtained via repeated
measurements of the final state of the system. The solutions

are then inferred by the selection of the best sampled state
through computationally cheap classical postprocessing.

In the case of neutral-atom QPUs, the spatial arrangement
of qubits can be made such that the Ising Hamiltonian de-
scribing the interactions in the system is closely related to a
given cost function to be minimized. This is what makes this
platform notably well suited to solving graph combinatorial
problems [10,17–19]. As the state of the computational basis
in which the qubits are measured has a direct correspondence
to the solution to the graph problem, this type of QC is partic-
ularly robust to noise (noise can even be an advantage [20]).
For instance, maximum independent set [21] and maximum
cut [3] problems can be efficiently solved by approaching the
ground state of the quantum system with adiabatic annealing
[17,22] or similar methods. In the following, we formally de-
fined some graph problems and show how they can be solved
by quantum-based approaches.

A. Combinatorial problems

In the following, we present the maximum independent set,
which is a fundamental part of the proof of concept of our
hybrid approach. Then we formally define the vertex coloring
problem and present the related mathematical formulation.

1. Maximum independent set problem

An independent set in a graph G = (V, E ) is a subset of
vertices Ṽ ⊂ V such that no pair of elements from Ṽ is con-
nected by an edge. The independent sets of G can formally be
defined as

IG = {Ṽ ⊂ V | Ṽ2 ∩ E = ∅}, (1)

where Ṽ2 are all the possible edges connecting the vertices in
Ṽ . Therefore, the maximum independent set (MIS) M is the
largest set of IG:

M(G) = argmax
Ṽ∈IG

|Ṽ|. (2)

The MIS problems can be alternatively described in terms
of their quadratic unconstrained binary optimization (QUBO)
formulations. Consider a graph G = (V, E ). Let xu be a binary
variable associated with each vertex u ∈ V that is 1 if vertex u
is selected to be in the independent set and 0 otherwise. Hence,
the binary vector x = {x1, . . . , x|V|} can be put in one-to-one
correspondence with partitions Ṽ of the vertex set V via the
identification

Ṽ (x) = {u ∈ V | xu = 1}. (3)

The solution to the maximum (weighted) independent set
problem is then given by

M(G) = argmin
x∈{0,1}|V |

⎛
⎝−

∑
u∈V

wuxu + α
∑

{u,v}∈E
xuxv

⎞
⎠, (4)

where the parameter wu represents the weight associated with
each vertex u ∈ V , while α > 0 is an arbitrary coefficient
to penalize unfeasible solutions. Note that, on unweighted
graphs, all w parameters are set to 1, while the penalty co-
efficient α must hold any value equal to or greater than 2.
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(a) (b)

FIG. 2. Two coloring solutions to the same graph with five ver-
tices, six edges, and X (G) = 3. The set C has five available colors:
green, brown, orange, purple, and yellow. (a) Trivial coloring, where
each color is mapped to exactly one vertex. (b) Optimal solution for
the same instance.

2. Minimum vertex coloring problem

The vertex coloring problem has several applications in
real-world optimization problems such as network design [23]
and task scheduling [24]. A vertex coloring is an assignment
of colors (or labels) to each vertex of a graph such that any two
identically colored vertices are not connected by an edge. The
minimum vertex coloring problem consists then in finding a
feasible coloring while minimizing the number of colors (or
labels) assigned; the minimum number of colors used to color
all vertices of a given graph G is called its chromatic number,
hereafter denoted by X (G). The minimum vertex coloring can
be formally defined as follows.

Definition 1. Let G = (V, E ) be a graph with a set V =
{u1, . . . , u|V|} of vertices and a set E ⊂ V2 of edges. Also, let
C be a set of available colors. The minimum vertex coloring
problem consists in coloring each vertex of G with exactly one
color from C in a such way that the number of used colors is
minimized while ensuring that no two adjacent vertices have
the same color.

Figure 2 shows two possible coloring solutions for the
same graph. By applying a trivial coloring [see Fig. 2(a)],
each color is mapped to exactly one vertex; this simple ap-
proach always gives a feasible solution to the problem. As
shown in Fig. 2(b), however, the related chromatic number,
i.e., the optimal solution, can be reduced to 3. It is worth
noting that, given a feasible solution for the vertex coloring
problem, any subset of vertices colored with the same color is
also an independent set. Hence, finding the minimum subset
of independent sets that cover all vertices of a given graph G
is equivalent to solving the MVCP in the same graph. Finding
the chromatic number of a graph, however, is one of Karp’s
21 NP-complete problems [25].

B. Extended formulation for the minimum
vertex coloring problem

We now present an extended formulation1 for the minimum
vertex coloring problem, which is used within our proposed
hybrid approach. First, let S be a set of all possible indepen-
dent sets in the graph G = (V, E ). Also, let bus be a binary

1Extended formulations are mathematical models in which the
number of variables grows exponentially as the input increases.

parameter that is 1 if the vertex u ∈ V is present in the in-
dependent set s ∈ S and 0 otherwise. Finally, we associate a
binary variable ys with each independent set s ∈ S; it is 1 if the
related independent set is selected and 0 otherwise. Solving
the MVCP then amounts to solving the extended formulation

min
∑
s∈S

ys (5)

such that ∑
s∈S

busys = 1 ∀ u ∈ V, (6)

ys ∈ {0, 1} ∀ s ∈ S, (7)

where (5) is set to minimize the number of selected inde-
pendent sets while ensuring that each vertex of the graph is
present in exactly one of them [see Eq. (7)]. Note that, by con-
sidering each independent set s ∈ S as a color assignment, the
adjacency constraints related to the minimum vertex coloring
problem are automatically respected [see the definition (1)].

The number of all independent sets in a graph, and hence
the number of ys variables, can be extremely large, exponen-
tially growing as the number of vertices in the graph increases.
Hence, as one may anticipate, finding all such sets on a given
graph is a very hard task and can be very time and resource
consuming even for small instances. To overcome the afore-
mentioned limitations, we propose a hybrid classical-quantum
column-generation-based framework to efficiently solve the
proposed extended formulation by enumerating only a small
subset of independent sets. In what follows, we present related
works and discuss how a quantum sampler can be integrated
into classical frameworks.

III. RELATED WORK

Several quantum algorithms have been proposed for
solving graph coloring problems and most of them rely
on a quantum-annealing-based approach. In [26] Kudo
investigated a real-time quantum-dynamics-based quantum-
annealing approach where the related Hamiltonian is designed
to naturally respect all problem-related constraints without
adding penalty terms. Ardelean and Udrescu [27], on the other
hand, proposed a genetic algorithm-based quantum approach
to solve both vertex and edge coloring problems in different
highly configurable circuit-based models. Titiloye and Crispin
[28] compared classical and quantum-annealing approaches
in solving graph coloring problems. According to them, the
path-integral Monte Carlo–based quantum-annealing (QA) al-
gorithm outperforms its classical counterpart.

Silva et al. [29] proposed another approach in which the
problem-related set of constraints is transformed into an en-
ergy minimization problem to output a QUBO formulation,
which is then solved in a quantum-annealer platform. How-
ever, by running various numerical simulations and comparing
results obtained with standard and enhanced circuit-based
QAOAs, Tabi et al. [30] indicated the limitation of the ex-
isting QA hardware solutions for solving the vertex coloring
problem. Also, Kwok and Pudenz [31] compared simulated
and quantum-annealing approaches for solving the proposed
QUBO formulation for the vertex coloring problem. Using
D-Wave 2X as an independent set sampler for a simple greedy
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framework, the authors showed that the proposed quantum
sampler could improve the results with high probability on
small graphs due to hardware limitations.

Fabrikant and Hogg [32] introduced a quantum heuristic
for graph coloring for instances that can be solved with at most
three colors. Using two qubits for each vertex of the graph,
an approximate asymptotic analysis suggests polynomial-time
cost for solving the related three-coloring problem. More-
over, Shimizu and Mori [33] introduced an exponential-space
quantum algorithm to solve the MVCP in O(1.9140|V|) run-
ning time. They proposed a quantum random access memory
framework based on the quantum dynamic programming of
Ambainis et al. [34] with applications of Grover’s search to
branching algorithms. Moreover, Vitali et al. [35] proposed
a greedy quantum algorithm for solving the MVCP by itera-
tively computing the solutions of maximum independent set
problems. By simulating a framework on a classical com-
puter to reproduce the Rydberg blockade phenomenon on
neutral-atom-based QPUs, they showed that their approach
can always find feasible solutions for the problem. More de-
tails about their approach are presented in Appendix A.

Finally, Ossorio-Castillo and Pena-Brage [36] proposed
a quantum-annealing-based method to solve one of the two
pricing subproblems of a column-generation-based approach
for the refinery scheduling problem. They first decomposed
the problem into one master problem and two pricing sub-
problems and formulated one of them as a QUBO model.
While only the QUBO-related pricing subproblem is solved
using a quantum-annealing approach, the master and the other
pricing subproblem are solved with a classical solver. The
quantum system is based on D-Wave’s quantum annealers and
is designed to return only the optimal solution. Due to some
serious limitations related to either the problem size or the
connectivity of its variables, the authors could guarantee high-
quality solutions for only a few instances of small graphs.

Note that, even though those works proposed interesting
approaches to solving combinatorial problems (sometimes
only the decision version), little attention has been given
to hybrid and analog approaches, especially using neutral-
atom-based QPUs. In what follows, we introduce a complete
quantum pricing framework based on neutral-atom QPUs that
can be easily embedded into a column-generation algorithm
to solve hard combinatorial problems, such as graph coloring
problems.

IV. NEUTRAL-ATOM QPUs

In neutral-atom-based QPUs, lasers or microwaves are
used to induce transitions between electronic states of the
valence electron of alkali-metal (typically rubidium) atoms.
Different pairs of electronic levels can be used as qubits.
Here we will solely focus on the case where those two states
are the electronic ground state |g〉 ≡ |0〉 and an s Rydberg
level |r〉 ≡ |1〉. In that case, atoms can be placed arbitrarily
in space, so the effective Hamiltonian of the atoms at time t
can be written as

H (t ) = �(t )
|V|∑
u=1

σ̂ x
u − �(t )

|V|∑
u=1

n̂u +
|V|∑

u<v=1

Uuv n̂un̂v, (8)

where the amplitude (giving the Rabi frequency) �(t ) and
detuning �(t ) of the laser can be controlled over time and
the interaction strength Uuv ∝ |ru − rv|−6 is a function of the
distance between atom u and atom v. Throughout this paper,
we set h̄ = 1. Note that in the present work we consider only
a uniform global laser control over the atoms.

A key property of Rydberg physics is the so-called Ryd-
berg blockade mechanism [9]: The two-body interaction term
in (8) forbids the simultaneous excitation of two atoms that are
closer than a certain distance. Given a set of atoms and their
positions, one can then define a graph such that each atom
corresponds to a vertex and in such a way that two vertices
are connected by an edge if and only if the distance between
the related atoms is shorter than a given threshold. This kind
of graph is known as a unit-disk (UD) graph and it is the
most natural graph to encode in a neutral-atom QPU. For this
graph class, one can ensure that the evolution of the quantum
system is restricted to a subspace of the complete Hilbert
space corresponding to independent sets of the graph. By
setting �(t ) = 0 and adjusting the value of �, one can ensure
that the ground state corresponds to an MIS. Because of these
properties, people have explored quantum annealing as a way
to solve optimization problems on graphs [37]. For non-UD
graphs, however, one can construct alternative approaches,
similar to what is done in the QAOA or variational quantum
eigensolvers [38].

V. PROBLEM DECOMPOSITION

We dedicate this section to fully describing the decom-
position of the proposed extended formulation (5)–(7), a
fundamental step to solve the related combinatorial problem
with a column-generation-based algorithm. The need to apply
such a mathematical strategy comes from the fact that, in
most of cases, generating all elements that will be related
to the variables of an extended formulation is a very hard
task. For instance, enumerating all independent sets of a graph
can be impractical even for small instances. To overcome
the aforementioned issue, we decompose the problem under
consideration into two problems, the RMP and PSP. While
the former has only a small subset of variables needed to find
a solution to the problem, the latter is designed to provide
new elements, e.g., independent sets, that respect all technical
constraints imposed by the RMP. These new elements are
then added as new variables (also seen as columns) to the
mathematical model related to the RMP as they might poten-
tially improve the quality of the solution, e.g., decreasing the
number of colors needed to solve the vertex coloring problem.

Column-generation-based approaches rely on the duality
theory [39], which states that optimization problems can be
addressed from two different perspectives: the primal problem
or its counterpart, the dual problem. The relationship between
these two problems is the following: (i) For each variable
(constraint) in the primal problem, there is a related constraint
(variable) in the dual problem and (ii) the optimization di-
rection, e.g., maximization or minimization, on the dual is
inversely related to its primal counterpart. For each subop-
timal solution that satisfies all the constraints on the primal
problem, there is at least one direction to move in such a
way that the objective function is improved. Such improving
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directions are represented by the vector of dual variables and
optimizing them is equivalent to tightening the bounds of the
primal problem. For an in-depth discussion on the primal-dual
relationship, one may refer to [39]. After solving a linear
model related to a primal problem, one can easily get such
a direction vector, i.e., dual variables, by calling some built-in
function proposed by the solver used in the process.

In order to design an efficient column-generation frame-
work, the PSP is then formulated in such a way to incorporate
the dual information provided by current solutions of the
RMP, which implies solving a different pricing instance each
time the subproblem is called. Hence, by applying the duality
theory, the PSP searches for new variables that can improve
the objective function of the RMP, and once it is mathemat-
ically proven that it is no longer possible to generate such
variables, i.e., new columns, the loop-based procedure stops.
This approach is very powerful when only a few variables
are normally activated, i.e., taking any value other than zero,
in the optimal solution to a given combinatorial problem.
Hence, applying such a technique, only a very small subset
of variables needs to be generated by the pricing routine.

In what follows, we present a decomposition scheme for
solving the proposed extended formulation for the MVCP. The
main idea relies on generating a restricted model with only a
subset of independent sets and iteratively updating it with new
variables, i.e., columns, that have the potential to improve the
current solution.

A. Restricted master problem

Since G has an exponential number of potentially suitable
colorings represented by the related set S of independent sets,
the extended formulation (5)–(7) admits an exponential num-
ber of variables. To overcome the difficulty of generating S,
we propose to generate only a small subset S′ ⊆ S of variables
that are needed to solve the master problem. For instance, a
trivial solution might be initializing S′ with only the single-
tons of the input graph. The reduced model is then hereafter
referred to as the restricted master problem and can be defined
as

min
∑
s∈S′

ys (9)

such that ∑
s∈S′

busys = 1 ∀ u ∈ V, (10)

0 � ys � 1 ∀ s ∈ S′. (11)

Note that, in order to apply the duality theory, we must
solve the linear relaxation on the RMP, meaning the y vari-
ables are no longer binary in this formulation. The RMP is
then solved again with the integrality constraints (7) once it
has all variables needed to provide the optimal solution for
the relaxed RPM, which can be proven mathematically; we
provide this proof in the following section.

B. Pricing subproblems

We present first the dual formulation related to the relaxed
RMP (9)–(11). By associating a dual variable wu with each

constraint in (10), we define the dual problem as

max
∑
u∈V

wu (12)

such that ∑
u∈V

wubus � 1 ∀ s ∈ S′, (13)

wu ∈ R ∀ u ∈ V . (14)

The separation of inequalities (13) represents the pricing
subproblems related to the extended formulation (9)–(11).
The PSP consists then in finding a new coloring set in such
a way that all adjacency constraints would be respected while
improving the solution cost of the RMP, i.e., decreasing the
value of the objective function (9). For this purpose, let w̄u

be the components of the current dual solution of the RMP
related to constraints (10). By setting each dual variable w̄u

as the weight of the related vertex u ∈ V , finding a new inde-
pendent set (IS) under such conditions amounts to solving the
maximum weighted independent set (MWIS) formulation

max
∑
u∈V

w̄uxu (15)

such that

xu + xv � 1 ∀ (u, v) ∈ E, (16)

xu ∈ {0, 1} ∀ u ∈ V, (17)

where xu is a binary variable that is 1 if it is in the independent
set and 0 otherwise. The inequality (16) ensures that the new
independent set respects the adjacency constraints. Note that
the pricing formulation (15)–(17) is an integer programming
(IP) version of the QUBO formulation (4).

The net gain of adding a new variable related to a solution
to the pricing problem is given by the reduced cost. Based on
the separation of inequalities (13), we calculate the reduced
cost rs for any independent set s given by solving the formu-
lation (15)–(17) as follows:

rs = 1 −
∑
u∈V

w̄uxu. (18)

Since we minimize the master problem in the work, any
solution with a negative reduced cost might potentially im-
prove the solution of the RMP. The pricing problem consists
then in finding a new independent set s whose total weight is
strictly greater than 1; the total weight of any independent set
is calculated as in the cost function (15). Hence, any solution
to the formulation (15)–(17) whose cost is greater than 1 can
therefore be added to the subset S′; if such a solution does not
exist, then the solution of the RMP cannot be improved and
hence the optimal solution the relaxed RPM can be achieved
with the current variables related to the subset S′.

VI. SOLVING METHOD

As previously discussed, solving the pricing subproblems
is usually the bottleneck in column-generation-based algo-
rithms since it amounts to solving different instances of a
hard combinatorial problem multiple times. To overcome this
problem, we propose a quantum pricing algorithm that can
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FIG. 3. Interaction between the restricted master problem and the
subproblem.

find the (near-)optimal solution faster than the classical one,
i.e., where no QPU is involved. For this purpose, let us now
describe the column-generation-based framework proposed to
solve the minimum vertex coloring problem, which is summa-
rized in Fig. 3.

First, a minimal subset S′ ⊆ S of independent sets is gen-
erated in such a way that it ensures a feasible solution for
the extended formulation (5)–(7). As previously discussed,
the most trivial way to build the initial set S′ of independent
sets is generating only the singletons in the graph; this simple
approach always provides a solution for the RMP.

The classical part of the proposed hybrid approach is re-
lated to the restricted master. Once the initial set S′ is created,
the RMP is built and then solved in its linear relaxation form
[see the formulation (9)–(11)] by a classical solver, e.g., the
GNU linear programming kit (GLPK). The values of the dual
variables are also given by the classical solver by running a
built routine after solving each version of the RMPs, i.e., with
different subsets of variables.

The next steps are related to the pricing subproblems, in
which the PSP is solved by applying the values of the related
dual variables from the solved RMP. As previously discussed,
this step amounts to finding independent sets whose weight
is strictly greater than 1. If such elements exist, then they
are added to S′. As we detail in the following, we propose
a quantum sampler that is specifically tailored to output mul-
tiple independent sets under the aforementioned conditions.
For each new independent set found by solving the related
pricing subproblem, a new variable is created and added to
the subset S′. Then the RMP is solved again with the new
columns, i.e., independent sets converted into variables. These
last steps are repeated until no column is generated by the PSP.
Finally, the final RMP is solved with all generated variables,
i.e., independent sets, with the integrality constraints (7), as
previously discussed.

A. Worked example

Table I shows a worked example of applying the column-
generation framework on the graph represented in Fig. 4,
where the RMP is solved classically by an IP solver. The first
column shows how many PSPs are solved before reaching the
final solution. The second column depicts the independent sets
selected as the solution for the RMP formulation (9)–(11).

TABLE I. Worked example of applying the column-generation
framework on the graph represented in Fig. 4. Only five independent
sets (out of ten) are generated to find the optimal solution.

Iteration RMP solution Dual solution MWIS

1 [1], [2], [3], [4], [5] [1.0, 1.0, 1.0, 1.0, 1.0] [1, 2, 4]
2 [3], [5], [1, 2, 4] [1.0, 1.0, 1.0, −1.0, 1.0] [2, 3, 5]
3 [3], [5], [1, 2, 4] [1.0, −1.0, 1.0, 1.0, 1.0] [1, 4]
4 [1, 4], [2, 3, 5] [1.0, −1.0, 1.0, 0.0, 1.0] [3, 5]
5 [3, 5], [1, 2, 4] [1.0, 0.0, 1.0, 0.0, 0.0] none

The third column presents the dual solution given by the
variables w [see the dual formulation (12)–(14)]. Finally, the
last column depicts the maximum weighted independent sets
generated after running each PSP, where the w̄ parameters in
the cost function of the formulation (15)–(17) are set to the
values of dual variables w; the generated weighted indepen-
dent set is then added to the set S′ before rerunning the RMP.
The final coloring is represented by the last solution for the
RMP, where one color is given for each selected independent
set.

In this example, we generate all five singletons of the
graph as the first subset S′ of independent sets before solving
the first version of the RMP. As observed, only four more
independent sets (out of the remaining ten to be generated)
are needed to find the best solution. Indeed, even though the
closed loop could be stopped after iteration 4, the optimality is
only proven after the fifth iteration, when no independent set
whose total weight is greater than 1 can be generated (see the
dual solution on the last row, which is used as vertex weights).
Note that the independent set generated in the ith iteration
is likely to be selected in the solutions of the RPM in the
following iteration.

The values of the dual variables can be calculated by
solving the dual formulation (12)–(14), where the cost func-
tion is set to be equal to the solution cost of the RMP in
the same interaction. In this example, the cost function of
the dual formulation is set equal to 5, 3, 3, 2, and 2 in the
first, second, third, fourth, and fifth iterations, respectively.
However, most commercial solvers solve the dual formulation
in parallel in order to prove the optimality of the (RMP)
primal solution. Hence, the final value of the dual variables
can then be easily provided by a built-in solver’s function, e.g.,
solver.get_dual(). Note, however, that only one indepen-
dent set (the most weighted one) is generated by solving the
related pricing formulation (15)–(17) and, due the determin-
istic nature of this approach, the final solution is always the

2

3

1

4

5

FIG. 4. Illustration of a graph with five vertices and three edges;
the set S of all independent sets is composed of the five singletons and
the subsets [1, 2], [1, 4], [2, 3], [2, 4], [2, 5], [3, 5], [4, 5], [1, 2, 4],
[2, 3, 5], and [2, 4, 5].
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TABLE II. Worked example of applying a quantum sampler
to solve the pricing subproblems related to the column-generation
framework. Considering the graph represented in Fig. 4, only three
different pricing subproblems were solved before reaching the final
solution.

Iteration RMP solution Dual solution IS generated

1 [1], [2], [3], [4], [5] [1.0, 1.0, 1.0, 1.0, 1.0] [1, 2, 4], [2, 4, 5]
[2, 3, 5], [1, 2]
[2, 5], [2, 3]
[4, 5], [3, 5]

2 [3, 5], [1, 2, 4] [1.0,−0.5, 1.0, 0.5, 0.0] [1, 4]
3 [1, 4], [2, 3, 5] [1.0, 0.0, 1.0, 0.0, 0.0] none

same if the input, i.e., the graph and vertex weights, does not
change.

Now let us exemplify how a quantum sampler could be
applied to solve the pricing subproblems within the column-
generation framework; Table II shows such a worked example.
As presented in the previous worked example depicted in
Table I, we consider the graph depicted in Fig. 4 to be an
initial subset S′ composed only of singletons. As observed,
only three iterations are needed to find the final solution. In-
deed, sampling more independent sets in each pricing iteration
can considerably improve the performance of the column-
generation algorithm. In this example, nine out of ten possible
independent sets are generated. In fact, due to its stochastic
nature, a quantum sampler can efficiently provide multiple
sets with the same input and hence speed up the convergence
of the RMP to the optimal solution.

In what follows, we present how neutral-atom-based sys-
tems can be designed to take into consideration the dual values
from the RMP to output multiple weighted independent sets
and efficiently solve the related PSPs.

B. Embedding strategy

Embedding random graphs into UD representations has
proven to be an NP-hard problem [40]. Also, not all graphs
have such a realization. For instance, it is not possible to find
a UD representation for any K1n star graph with n > 6 on
a two-dimensional plane. In order to design a near-optimal
register to represent any graph given as an input, we use
the embedding strategy presented in [3], where an algorithm
based on force-directed principles is used to embed graphs
into planes in such a way that two connected (disjoint) vertices
are placed close to (far from) each other, with a minimum
(maximum) distance between them (from the plane’s center).
See Appendix B for more details.

Once the initial register is created as previously discussed,
it has the same number of atoms as the number of vertices on
the initial graph G. However, solving the pricing subproblem
within the column-generation framework might potentially
imply finding one or more independent sets on a subgraph
G ′; this subgraph is generated with only the vertices with
positive weight, i.e., the positive dual value provided by the
solved restricted master problem. The light pattern holding
the atoms in place is created via a spatial light modulator, and

Algorithm 1. Vertex-atom remapping.

Input: A graph G ′, a register R, and vertex weights W
Output: The reduced register R

1: Let V̄ ′ be the list of vertices from G ′ sorted in descending order
by the weight given by W

2: Remove all vertices whose weights are less than or equal to zero
from V̄ ′

3: Map vertex V̄ ′.first to the farthest position from the center of R
4: V̄ ′ ← V̄ ′\V̄ ′.first
5: while V̄ ′ has vertices do
6: Map vertex V̄ ′.first to the farthest position from all vertices

already mapped to an atom in R
7: V̄ ′ ← V̄ ′\V̄ ′.first
8: end while
9: Remove all atoms not mapped to any vertex from register R
10: return register R

determining the right settings for this device demands lengthy
calibrations [19].

Therefore, creating a new register by running the
Fruchterman-Reingold algorithm with the remaining vertices
would be too time consuming. Instead of just removing the
atoms mapped to the vertices that are no longer in the sub-
graph G ′, we propose here a vertex-atom remapping strategy
that takes into consideration the vertices’ weights (dual val-
ues).

Algorithm 1 summarizes the main idea of our proposed
approach: It receives a subgraph G ′ = (V ′, E ′), a register R
composed of atoms and their positions within the QPU, and a
vector W representing the weights for all vertices in V ′. First,
let V̄ ′ be the list of vertices of G ′ sorted in descending order
by the weight given by W . Then remove all vertices whose
weights are less than or equal to zero from V̄ ′ (step 2), map the
most weighted vertex to the atom farther from the register’s
center (step 3), and remove the remapped vertex from V̄ ′ (step
4). Then the most weighted vertex in V̄ ′ is embedded into
the atom position farthest from all atoms already mapped to
a vertex in G ′ and removed from V̄ ′; these steps are done until
all vertices from G ′ are mapped to an atom in the register R.
Finally, as seen in step 9, all atoms not mapped to any vertex
are removed from R. Let us recall that, since the proposed
remapping strategy is applied to solve the PSPs, the weight
vector W is generated with dual values provided by the solu-
tion of the current RMP, as previously mentioned. A worked
example of applying the proposed algorithm is depicted in
Fig. 5.

C. Independent set quantum sampler

We propose an independent set sampler based on current-
generation neutral-atom quantum processing units, which is
inspired by the quantum adiabatic approach described by [41].
In the latter, the main idea is to slowly evolve the system
from an easy-to-prepare ground state to the ground state of
the final cost Hamiltonian HC . By slowly evolving the system,
the atoms stay in the instantaneous ground state [42]. Here
we only aim at keeping the system close to the instantaneous

032426-7



DA SILVA COELHO, HENRIET, AND HENRY PHYSICAL REVIEW A 107, 032426 (2023)

(a) (b)

(c) (d)

FIG. 5. Vertex-atom mapping for a five-vertex graph on a nine-
atom register: (a) graph with five vertices whose weights are to
their indices (e.g., the weights of vertices 1 and 5 are equal to 1
and 5, respectively), (b) register with nine atoms in their positions,
(c) mapping where the most weighted vertices are far from each
other, and (d) final register and the vertices from the subgraph they
represent.

ground state, allowing it to pick up components in the low-
lying states.

In order to have such an evolution, we continuously vary
the detuning δ(t ) and the Rabi frequency �(t ) in time, starting
with �(t0) = 0 and δ(t0) < 0 and ending with �(t f ) = 0 and
δ(t f ) > 0. Hence, the initial ground state of H (t0) is |00000〉,
while the low-energy space of H (t f ) contains that of the cost
Hamiltonian HC . This protocol originally aims at preparing
the ground state and solving the MIS problem. In this work,
we use it to sample independent sets whose total weight is
equal to or close to that of the MWIS.

To ensure that we are not exciting the system to states
that do not form independent sets, we have to estimate the
minimal distance between atoms that are disjoint in the graph
(this yields �d ) and estimate the farthest distance between two
connected atoms, which gives �c. For this purpose, let duv be
the distance between nodes u and v from V , while C6 is the
interaction coefficient related to the quantum device. Then �d

and �c are defined as

�d = argmax
(u,v)/∈E

C6d−6
uv , (19)

�c = argmin
(u,v)∈E

C6d−6
uv , (20)

respectively. In UD graphs, keeping � ∈ [�d ,�c] ensures
that only independent sets appear in the dynamics (provided
the dynamics is not too fast) [37,43]. A large value of � is
desirable to speed up the dynamics of the system and reach
states that are far from the initial state. That is why we set
�max = max(�c,�d ) as the maximum value the Rabi fre-
quency can take during the pulse sequence.

In the case of non-UD graphs, this value of �max is still
a good compromise. Indeed, if � < �c then the effective
graph G ′ that is encoded in the system contains more edges
than the target graph G. The independent sets of G ′ are then
not strictly included in the independent sets of G and the
pricing may then miss some variables. On the other hand, if
� > �d , all edges of G ′ are also edges of G and therefore the

independent sets of G ′ are strictly included in the independent
sets of G. This ensures that the pricing is still able to explore
all independent sets and therefore provide new variables to
improve the current solution of the RMP.

As inputs, the quantum sampler gets an atom register and
the pulse representing the designed Hamiltonian. Then, after
running the proposed neutral-atom-based quantum algorithm,
different outputs are possible.

(i) Return only the largest independent set.
(ii) Return all independent sets.
(iii) Return all independent sets whose weights are greater

than a given threshold.
(iv) Return only the most weighted independent set.
When applying the two last strategies, one must also pro-

vide a weight vector and a cost function as inputs to the
quantum sampler. In this work, we apply the third output case
mentioned above by applying the cost function (15) to qualify
any independent set; note that for unweighted graphs, this cost
function can be applied by setting all weights to 1.

D. Solving the pricing subproblems

Let w̄ be the vector of dual values related to the solved
relaxed RMP as previously discussed. Then we generate the
graph G ′ = (V ′, E ′, w̄) in such a way that V ′ = {u ∈ V | w̄u >

0} and E ′ = {(u, v) ∈ E | w̄uw̄v > 0}. Also, for each vertex
u ∈ V ′, the related weight is given by w̄u ∈ w̄.

We run the quantum algorithm previously described on
the related graph G ′ = (V ′, E ′, w̄), where w̄ is the dual vec-
tor from the current solve solution for the primal problem.
While we keep only the atoms related to the vertices in V ′,
their positions might potentially be permuted as described
in Algorithm 1. Also, the pulse shape might be adjusted to
the new register by calculating the new �max, which is done
by calculating the distance between each pair of qubits, as
previously proposed. By applying the objective function (15)
to qualify each bit string sampled by the QPU, the S′ is then
updated with all sampled weighted independent sets whose
total weight is strictly greater than 1. Let us recall that the
w̄ might potentially be a vector composed of very small val-
ues, i.e., w̄u  1 ∀ u ∈ V ′, including zero and negative values,
meaning that any independent set, including the maximum
one, might have a total weight strictly lower than 1; in this
case, no independent set is added to S′.

E. Stopping criterion

The algorithm stops the inner loop when no column is
generated after solving the related pricing subproblem. This
means that either the current subset S′ is already composed
of all independent sets needed to find the optimal for the
relaxed formulation (9)–(11) (if the PSP is exactly solved) or
the PSP solver does not find any solution under the imposed
constraints (if the PSP is solved heuristically). Once the inner
loop stops, the integer linear program (ILP) version of the final
RMP is solved with all generated columns, i.e., variables or
independent sets, and the integrality constraints (7).

It is important to notice that the final solution given by
the related LP formulation (9)–(11) might not be the same
(or even the optimal one) for the ILP formulation (5)–(7),
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i.e., with the integrality constraints (7). To ensure optimality,
the proposed hybrid column generation should be embedded
into a branch-and-price framework. This approach, however,
is beyond the scope of this work. For more information, one
may refer to [1].

VII. NUMERICAL SIMULATIONS

Let us first describe the setup used in our numerical
simulations. While random graph instances are generated
with the Vladimir-Brandes algorithm [44], which produces
Erdős-Rényi graphs, UD-guaranteed graphs are produced as
proposed in [45]. It is worth mentioning that random graphs
are unlikely to be unit disks. Indeed, the probability of hav-
ing a UD Erdős-Rényi graph quickly approaches zero as the
number of the vertices increases and the density remains sta-
ble. For this reason, this graph class, i.e., random graphs, is
hereafter referred to as non-UD graphs. For each graph class,
we generate 30 instances for three different graph densities
by setting the probability p of connecting any pair of vertices
with an edge to 20%, 50%, and 80%. Also, the optimal solu-
tion of each instance is found by exactly solving the compact
formulation of the minimum vertex coloring problem [46].

We compare our proposed hybrid algorithm to several
state-of-the-art approaches, both classical and quantum. In-
deed, it is possible to solve the pricing problem (15)–(17)
with a classical solver, where G ′ is given as a vertex-weighted
graph. Note, however, that only the optimal weighted inde-
pendent set is generated during each iteration. As previously
discussed, due to the deterministic nature of this approach,
hereafter referred to as classical column generation (CG), the
final solution does not change if the input, i.e., the graph
and vertex weights, remains the same. We also compare our
proposed approach to the classical greedy algorithm described
in Appendix A, where a maximum independent set is provided
by a classical solver in each iteration. We use the GLPK [47]
as the linear solver to solve the (reduced) master problem and
classical pricing subproblems.

In order to compare our neutral-atom-based quantum sam-
pler to other stochastic approaches, we implement a greedy
generator, hereafter referred to as greedy CG, that can ran-
domly generate multiple weighted independent sets. For more
details, see Appendix C. We also compare our approach to a
simulated annealing (SA)–based solver, hereafter referred to
as SA CG, where we minimize the related maximum weighted
independent set QUBO matrix described in (4) with the classi-
cal D-Wave QUBO sampler [48]; the weights are given by the
dual values of the solved RMP in each iteration, while α is set
to the sum of absolute values of weights. For all stochastic
subroutines, the maximum number of tries is set to 1000.
Moreover, several pricing iterations can be done before getting
an improvement on the RPM solution. This is due to the
inherent symmetry of the solution space related to the instance
of the problem, driving the algorithm to generate independent
sets with the same cost. In all CG-based approaches, the
maximum number of pricing iterations allowed without any
improvements in the RMP solution is set to 3. Finally, we also
compare our hybrid approach against a quantum version of
the greedy algorithm described in Appendix A, where only
the largest independent set sampled by the proposed quantum

TABLE III. Noise parameters used in noisy emulations.

SPAM

Bad
preparation

False
positive

False
negative Temperature Laser waist

η ε ε ′ (µK) (µm)

0.005 0.03 0.08 30 148

sampler described in Sec. VI C is returned in each iteration.
This approach is hereafter referred to as quantum greedy and
is based on the work proposed by Vitali et al [35].

The register related to each pricing subproblem is created
by applying the embedding strategy presented in Sec. VI B.
To this end, each atom’s position is found with the spring
layout function from NETWORKX package [49]; we multiply
each position vector by 40 in order to respect the distance
constraints imposed by the device. Moreover, we apply the
Hamiltonian design strategy described in Sec. VI C.

The evolution of the quantum system under the predicted
pulse for a given register is then simulated using PULSER’s
simulation module [50]. Both noiseless and noisy simula-
tions are performed. Noiseless simulations involve solving
the time-dependent Schrödinger equation. The output of a
noiseless simulation is a vector in the Hilbert space that can be
sampled a finite number of times in order to mimic a real ex-
perimental setup with a limited measurement budget. In order
to assess the robustness of our approach against noise, noisy
simulations taking into account the current levels of noise in
these systems [19,51] are also performed. These calculations
are numerically expensive and we restrict our study to state
preparation and measurement (SPAM) errors. These are ex-
pected to be the main source of noise and can be obtained by
postprocessing of noiseless results (for more details, see [38]).
We set here the noise parameters to realistic values based
on current hardware specifications. They are summarized in
Table III. The register and Hamiltonian design are done as
previously presented in Secs. VI B and VI C, respectively.

A. Register and pulse redesign strategies

We first analyze the impact of four different regis-
ters and pulse, i.e., Hamiltonian, redesign strategies on
the performance of our proposed hybrid classical-quantum
column-generation approach; while the atom removal (AR)
strategy only removes the atoms whose related vertex’s weight
is equal to or less than zero, atom index permutation and atom
removal (AIPR) strategy also apply the proposed vertex-atom
remapping algorithm (see Algorithm 1). In addition to these
two strategies, we test the atom removal with Hamiltonian re-
design (AR-HDR), in which the new maximal Rabi frequency
is recalculated after applying the AR strategy. Finally, in atom
index permutation, atom removal, and Hamiltonian redesign
(AIPR-HDR) strategy, the new maximal Rabi frequency can
also be recalculated after applying the AIPR strategy.

Figure 6 shows the average number of pricing iterations
(and the standard deviation with 95% confidence interval)
before reaching the stop criteria on different graph classes
(UD and non-UD), order (from four up to 14 vertices), and
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Number of iterations on the QPU emulator before reaching the stop criteria on different graph classes (UD and non-UD), orders
(from four up to 14 vertices), and densities (20%, 50%, and 80% of all possible connections) and applying different register and Hamiltonian
redesign strategies: only atom removal (AR), atom index permutation and atom removal (AIPR), atom removal with Hamiltonian redesign
(AR-HDR), and AIPR with Hamiltonian redesign (AIPR-HDR). Results are shown on (a)–(c) unit-disk graphs and (d)–(f) non-UD graphs, as
well as on (a) and (d) 20%-density graphs, (b) and (e) 50%-density graphs, and (c) and (f) 80%-density graphs.

densities (20%, 50%, and 80% of all possible connections).
As observed, only a few calls to the quantum sampler, i.e.,
pricing iterations, are needed to reach the best solution of the
relaxed version2 of the master problem related to each graph
instance. Indeed, the average number of iterations on non-UD
(UD) graphs is always less than 6 (3); as seen in Figs. 6(c) and
6(f), only two (three) sampling processes are done on average
to solve UD (non-UD) graphs with four (13) vertices and 80%
density when the AIRP (AR-HDR) strategy is applied. Even
though non-UD graphs seem to be more difficult to solve,
especially those with 50% of density [see Fig. 6(e)], applying
different register and pulse redesign strategies could speed up
the solving process. While we do not observe any significant
impact from redesigning the pulse after only removing useless
atoms from the register (see the blue and green lines related
to AR and AR-HDR strategies, respectively), recalculating
the maximum value of the Rabi frequency after permuting
the atoms’ indices, i.e., applying the AIPR-HDR approach,
could decrease the number of sampling processes by 44% [see
Fig. 6(d)]. Indeed, as seen in Figs. 6(a) and 6(d), this approach
has the best overall performance, having a stronger impact on
sparse graphs.

B. Quantum and classical approaches

We now compare the number of iterations needed to be run
on different graph classes, orders, and densities by applying
different approaches: classical CG, greedy CG, SA CG, noise-

2Recall that the dual variables can be generated only from linear
programs, meaning that the integrality constraints (7) are replaced
by constraints (11).

less quantum CG, classical greedy, and quantum greedy. We
apply the AIPR-HDR strategy for redesigning each pricing
subproblem within the quantum CG framework. While this
indicator refers to how many times the PSP is solved within
both classical and quantum column-generation frameworks
for coloring a given graph, it indicates how many indepen-
dent sets are generated during the while loop in Algorithm2
by using both classical and quantum methods as previously
discussed. Figure 7 shows the average number of iterations
and the standard deviation (with 95% confidence interval) on
30 graphs randomly generated as presented above.

First, we observe that the quantum greedy approach has the
same overall performance as its classical counterpart, showing
that our quantum sampler can solve the maximum indepen-
dent set problem efficiently. Also, both strategies have the
same linear behavior related to the size of the graph, i.e., the
number of edges it contains, being most impacted by dense
graphs [see Figs. 7(c) and 7(f)]. This behavior is expected

Algorithm 2. Greedy algorithm.

Input: A graph G = (V, E ) and a set C of available colors
Output: Color vertex assignment

1: Let G ′ ← G
2: c ← 1
3: while G ′ has vertices do
4: Find a (maximum) independent set I in G ′

5: Assign color c ∈ C to all vertices from I in G
6: Remove all incident edges of each vertex in I from G ′

7: Remove the set I of vertices from G ′

8: c = c + 1
9: end while
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Number of iterations before reaching the stop criteria on different graph classes (UD and non-UD), orders (from four up to 14
vertices), and densities (20%, 50%, and 80% of all possible connections) by applying different approaches: classical column generation (CG),
greedy CG, SA CG, quantum CG, classical greedy, and quantum greedy. Results are shown on (a)–(c) unit-disk graphs and (d)–(f) non-UD
graphs, as well as on (a) and (d) 20%-density graphs, (b) and (e) 50%-density graphs, and (c) and (f) 80%-density graphs.

since the size of each independent set gets smaller as the set
of edges gets larger. Hence, in general, more iterations have
to be done to cover all vertices of a dense graph. Also, while
outperforming the classical CG approach on almost every
graph class (in terms of the number of iterations), both clas-
sical and quantum greedy algorithms have their performance
slightly decreased on UD graphs. Finally, taking advantage of
the related superposition aspect, the proposed quantum CG
outperforms all other approaches on all graph classes. For
instance, while the quantum CG algorithm needs fewer than
four (six) sampling iterations for all sparse and dense (0.5
density) non-UD graphs, quantum and classical greedy ap-
proaches (classical CG algorithm) need up to ten (12) pricing
interactions to solve the same graph class.

Figure 8 shows the average gap3 (and the standard devi-
ation with 95% of confidence interval) between the optimal
solution and the best one found by applying the presented
approaches. First, we observe that our proposed quantum CG
approach has the best overall performance. Indeed, it could
find the optimal solution in almost all instances; as seen in
Fig. 8(f), our approach could not find the best solution only
for some 13-vertex non-UD graphs. Also, unlike all other

3Throughout the paper, the gap is calculated as follows: For a given
problem instance and the value xo of the optimal solution (i.e., the
minimum number of colors needed to color the graph, also known as
the chromatic number of the graph) and the value xm of the solution
(i.e., the number of colors used to color the graph), after running

a given method the gap is given by
xo − xm

xo
. In other words, the

gap represents the distance between a given solution found by any
method from the optimal one.

approaches, the quantum CG is not impacted by the graph
class; while the classical CG could better perform on dense
graphs [see Figs. 8(c) and 8(f)], both classical and quantum
greedy approaches are more stable on UD graphs. Also, as
depicted in Figs. 8(d) and 8(a), the proposed quantum CG
algorithm could reduce the average gap on 12-vertex non-UD
(13-vertex UD) graphs from roughly 19% (11%) to 0% when
compared to the quantum greedy (classical CG) approach.

Our proposed quantum pricing-based approach also out-
performs both stochastic classical approaches in most of the
instances, especially those related to UD and sparse graphs.
Even though the quality of the solutions remains the same
(see Fig. 8), the noiseless quantum CG could reduce by 50%
the number of iterations on sparse graphs when compared to
SA-based pricing, as observed in Figs. 7(a) and 7(d). Even
though the greedy CG has fewer pricing iterations on some
graph classes, as in bigger non-UD graphs with 20% and 50%
of density [see Figs. 7(d) and 7(e)], the average gap could be
reduced by 80% when our proposed quantum CG is applied
on the same graph classes, as we observe in Figs. 8(a) and
8(d). This indicates that random sampling to find independent
sets cannot solve pricing subproblems effectively.

C. Noisy and noiseless simulations

We now present the results from our numerical simulations
wherein emulated noise is added as previously discussed.
Figure 9 depicts the number of iterations before reaching
the stop criteria and the gap between the final solution and
the optimal one on different graph orders (from four up to
14 vertices) by applying different approaches: classical CG,
greedy CG, SA CG, noiseless quantum CG, and noisy quan-
tum CG. The results shown are related to applying a given
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Gap between the best solution found and the optimal one on different graph classes (UD and non-UD), orders (from four up to 14
vertices), and densities (20%, 50%, and 80% of all possible connections) by applying different approaches: classical column generation (CG),
greedy CG, SA CG, noiseless quantum CG, classical greedy, and quantum greedy. Results are shown on (a)–(c) unit-disk graphs and (d)–(f)
non-UD graphs, as well as on (a) and (d) 20%-density graphs, (b) and (e) 50%-density graphs, and (c) and (f) 80%-density graphs.

approach on all graph instances of the same order, regardless
of their density and whether they are unit disks. First, as seen
in Fig. 9(a), no impact is observed when noise is added to
the quantum independent set sampler. Indeed, the overall final
gap is similar to the noiseless model, also outperforming the
classical CG. Finally, as observed in Fig. 9(b) the number of
iterations needed to find the optimal solution of the relaxed
RMP is increased by only 6% on average when the noisy
model is compared to the noiseless one, even on big graphs.

VIII. CONCLUSION

In this study, we demonstrated that it is possible to in-
corporate quantum elements into classical state-of-the-art
algorithms in order to improve their performances. Compared
to the classical column generation, our neutral-atom-based
quantum pricing could reduce by up to 83% the number
of iterations needed to solve the minimum vertex Color-
ing problem. Also, our proposed hybrid approach could
reduce the average gap from 19% to 0% when compared
to both classical and greedy approaches. Moreover, unlike
the deterministic approaches, our quantum pricing-based col-
umn generation is robust to all graph classes, including
non-unit-disk graphs of all tested orders and sizes. This in-
dicates that the proposed hybrid algorithm can efficiently
solve other combinatorial problems, e.g., minimum edge
coloring and minimum clustering problems, after some triv-
ial translation-based preprocessing. The proposed framework
also outperformed other stochastic algorithms, especially on
sparse graphs. Indeed, our quantum pricing-based column
generation could reduce by up to 50% the number of pricing
iterations and by up to 80% the gap of the final solution
on graphs when compared to the simulated-annealing-based

and greedy-based pricing approaches, respectively. Finally,
we observed that our proposed hybrid framework is robust
to noise. Indeed, the quality of the final solutions was not
impacted when compared to the noiseless model, which is
a great indication of how noise resilient the analog mode
of operation can be. Our proposed approach can readily be
implemented on neutral-atom quantum computing hardware.

Let us recall that our proposed algorithm remains a heuris-
tic approach to solving combinatorial problems. Even though
it can provide high-quality solutions to a plurality of instance
classes, embedding this method into a branch-and-pricing
framework is necessary to guarantee optimality to any in-
stance of the problem under consideration. Since providing
the initial subset of variables for the reduced master problem is
an important step in any column-generation-based algorithm,
the proposed quantum sampler can be used as a warm starter
to generate such a subset of elements, e.g., independent sets.
In the case of solving the minimal vertex coloring problem, by
setting all vertex weights to 1, this approach might be useful
in scenarios where QPU resources are limited. Also, this strat-
egy might potentially speed up both classical and quantum
column-generation approaches. Moreover, an optimal control-
based strategy to design pulses to each input instance might
potentially be applied to solve nontrivial pricing subproblems.
Similarly, different register embedding approaches can be de-
veloped to take into consideration different information from
the input data.

Note added. Recently, we became aware of a related work
[52].
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(a)

(b)

FIG. 9. Number of iterations before reaching the stop criteria
and the gap between the final solution and the optimal one on dif-
ferent graph orders (from four up to 14 vertices) applying different
approaches: classical column generation (CG), greedy CG, SA CG,
noiseless quantum CG, and noisy quantum CG. (a) Gap between the
final solution and the optimal one. (b) Number of iterations before
reaching the stop criteria.

APPENDIX A: GREEDY ALGORITHM FOR THE
MINIMUM VERTEX COLORING PROBLEM

We present here a greedy heuristic based on the minimum
vertex coloring framework introduced in [35]. The main idea
relies on interactively solving the maximum independent set
problem with only a subset of the vertices of a given graph.
Algorithm 2 summarizes the proposed approach.

As input, Algorithm 2 receives a graph G = (V, E ) and a
set C of available colors. Note that, to always have a feasi-
ble color assignment, |V| � |C| must hold. First, a copy of
G is made with an auxiliary graph G ′ ≡ G. A variable k is
also created; it keeps the index of the first available color.
Then steps 3–7 are done until no vertex remains in G ′. In
each iteration, a feasible independent set in G ′, potentially
a maximal one, is generated. For instance, a classical solver
can be used to solve the formulation (4) or one may use the
proposed quantum sampler described in Sec. VI C by setting
the algorithm to output only the largest sampled independent
set. Then all vertices of G with the same indices as those in the
found independent set I are colored with the first available

color from C, whose index is given by the variable c. Next
all vertices of I (and the related incident edges) are removed
from G ′ and then the reference of the first available color is
updated (see step 8).

It is worth mentioning that, even though the number of
qubits needed to run this algorithm on a QPU is reduced
when compared to other approaches,4 its performance can be
strongly impacted by the order in which the independent sets
are generated. Also, in the worst case, |V| iterations can be
done on the quantum device (take a complete graph as an
example) before the final solution is found. More details about
its performance are presented in Sec. VII.

APPENDIX B: FORCE-DIRECTED ALGORITHM

As pointed in [3], algorithms based on force-directed prin-
ciples are normally used to embed graphs into planes in such
a way that two connected (disjoint) vertices are placed close
to (far from) each other, with a minimum (maximum) distance
between them (from the plane’s center). In this context, in or-
der to reflect inherent symmetries, Fruchterman and Reingold
[54] also proposed an efficient algorithm to place the vertices
evenly in the plane, making the edges’ lengths uniform. For
this purpose, each edge from the graph is treated as a spring
that holds its end-point vertices close to each other while a
competing repulsive force is applied to push all vertices away
from one another, even though they are not connected by an
edge in the original graph. After enough iterations, the final
system will reach equilibrium, minimizing then the difference
between all attractive and repulsive forces.

The repulsive and attractive forces fr and fa between two
vertices are given by Eqs. (B1) and (B2), respectively. While
k = √

A/|V| is set to be related to the area A of the Euclidean
plane, duv is the distance between the vertices u, v ∈ V . Fi-
nally, the total energy ft of the system is given by adding the
forces between all pairs of vertices, as shown in (B3). There-
fore, ft goes to zero as the system approaches its equilibrium.
This register embedding is hereafter referred to as a spring
layout

fr (u, v) = − k2

ruv

, (B1)

fa(u, v) = d2
uv

k
, (B2)

ft =
∑

u,v∈E
fa(u, v) +

∑
u∈V

∑
v∈V :u �=v

fr (u, v). (B3)

Figure 5(a) depicts a possible embedding by directly ap-
plying the algorithm on a graph with five vertices and seven
edges. For a deep description of the algorithm, one may refer
to [3,54]. If such a realization exists, the graph under consider-
ation is naturally embedded as a UD graph if enough iterations

4While some QUBO formulations for the vertex coloring problem
present |V |2 variables, and hence at least |V |2 qubits are needed
to encode their counterpart [27,53], e.g., when no auxiliary qubit
is used, the greedy algorithm presented in [35] uses at most |V |
variables or qubits.
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Algorithm 3. Random independent set generator.

Input: A graph G = (V, E ), W , a threshold weight wmin, and
the maximum number of tries t

Output: A set of weighted independent sets
1: S ← ∅
2: while the maximum number of tries t is not reached do
3: G ′ ← G
4: I ← ∅
5: whileG ′ has vertices do
6: Randomly select a vertex in G ′

7: Add a selected vertex to I
8: Remove the selected vertex and its neighbors from G ′

9: end while
10: if I was not generated before and its total weight

is greater than wmin then
11: S ← S ∪ I
12: end if
13: end while
14: return S

are allowed, i.e., by iterating until the system reaches equilib-
rium. It is also worth mentioning that, as pointed out in [3],

the proposed embedding strategy is only feasible on neutral-
atom-based QPUs once they respect the device’s technical
constraints, such as maximum distance from the register’s
center and minimum distance between atoms. If any technical
constraint is violated, one might rescale every position vector
by a factor α > 0.

APPENDIX C: CLASSICAL GREEDY
PRICING ALGORITHM

Algorithm 3 summarizes the proposed random weighted
independent set generator. As input, the algorithm receives a
graph G = (V, E,W ), where W is the vertex weighting vector.
First, an auxiliary graph G ′ is created to receive a copy of
the input graph G (step 3). Then a vertex from graph G ′ is
randomly selected and added to the independent set S (see
steps 6 and 7). Next the selected vertex and its neighbors are
removed from G ′ in step 8. Steps 6–8 are repeated until no
vertex remains. The overall cost of the final solution is then
calculated considering the vertex weighting vector W (see step
11). Due to the inherently stochastic nature of the proposed
algorithm, different weighted independent sets might poten-
tially be generated from the same input by running steps 3–11
multiple times (see the condition in step 2).
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