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Despite the exponential overhead to describe general multiqubit quantum states and processes, efficient
methods for certain state families and operations have been developed and utilized. The stabilizer formalism and
the Gottesman-Knill theorem, where pure stabilizer or graph states are manipulated by Clifford operations and
Pauli measurements, are prominent examples, and these states play a major role in many applications in quantum
technologies. Here we develop a noisy stabilizer formalism, i.e., a method that allows one to efficiently describe
and follow not only pure states under Clifford operations and Pauli measurements but also Pauli noise processes
acting on such stabilizer states, including uncorrelated and correlated dephasing and single- or multiple-qubit
depolarizing noise. The method scales linearly in the number of qubits of the initial state, but exponentially
in the size of the target state. Thus, whenever a noisy stabilizer state is manipulated by means of local Pauli
measurements such that a multipartite entangled state of a few qubits is generated, one can efficiently describe

the resulting state.
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I. INTRODUCTION

The classical description of compound quantum systems
consisting of multiple components is in general difficult due
to the exponential scaling of the Hilbert space dimension
with the number of systems. This provides a severe hin-
drance to our understanding of large-scale quantum systems
and the classical simulation of multisystem states and pro-
cesses. Nevertheless, several methods to efficiently describe
and simulate certain classes of quantum states, operations, and
measurements have been developed and utilized. Prominent
examples that have found multiple applications in quantum
information theory and quantum technologies are stabilizer or
graph states [1-4] and their manipulation by Clifford opera-
tions and Pauli measurements. Rather than describing the state
vector with its exponentially many coefficients directly, one
specifies the state using its Pauli stabilizers, where only lin-
early many stabilizers are required. One can also update these
stabilizers when performing Clifford operations and Pauli
measurements, leading to the Gottesman-Kanill theorem [5-8]
stating that all quantum computations consisting of such oper-
ations only can be efficiently simulated classically. Stabilizer
states described by Pauli stabilizers are (up to local unitary
operations) equivalent to so-called graph states [3,4], which
have found many applications in measurement-based quantum
computation [9,10], quantum error correction [11,12], secret
sharing [13,14], and quantum metrology [15].

However, in realistic situations, one also must deal with
noise, imperfections, and decoherence and wants to analyze
the performance of protocols under such circumstances. In
these situations, a description of the system in terms of pure
states is not sufficient; one needs to use density matrices to
take errors and noise processes into account. This not only
squares the required number of parameters but also makes the
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description of operations, as well as their action on density
matrices, more complicated and costly. Furthermore, it is of-
ten not clear how to extend a formalism that is valid for pure
states to mixed states.

Here we extend the stabilizer formalism to such realistic
situations and show how to deal with specific noise processes,
namely, (quasi)local noise processes and imperfect measure-
ments that are diagonal in the Pauli basis. The rules used
to update the resulting state after Pauli measurements and
Clifford operations can also be utilized to update Pauli noise
operators that act on such stabilizer states. That is, we follow
each of the noise operators after Pauli measurements and Clif-
ford operations and obtain their effective description on the
final state. This is done in addition to the update of the initial
pure state. To this aim we make use of the following facts:
(1) The action of any Pauli operator on a graph state can be
expressed, up to a phase, in terms of commuting o, operators
only; (ii) any local noise process can be made diagonal in the
Pauli basis and is then described by a constant number of Pauli
noise operators; (iii) updates of noise operators under Clifford
operations and Pauli measurements are efficient and the final
noise operators only act on a system whose size is given by the
number of qubits of the final state. For Pauli diagonal maps, it
suffices to update the maps independently. That is, for a graph
state of size n that is affected by local noise, noisy Clifford
operations, and n — m noisy Pauli measurements, one can
describe the final resulting state of m qubits with an overhead
that is linear in the size of the initial state n but exponential in
m, the size of the target state.

This provides us with a powerful tool to study the influence
of noise and imperfections in the manipulation of graph states.
To illustrate our method, we discuss in detail the example
of generating Bell states from a noisy one-dimensional (1D)
cluster state of arbitrary size, where each qubit is subjected to
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local Pauli noise. This is, for instance, a relevant noise model
when considering imperfect quantum memories in systems
where qubits are distributed among multiple sites, as in, e.g.,
a quantum network scenario. We show, perhaps surprisingly,
that the fidelity of the resulting Bell state depends on the
order in which the intermediate systems are measured. We
also discuss other potential applications of our noisy stabi-
lizer formalism in the context of quantum communication and
computing.

The paper is organized as follows. In Sec. IT we provide
some background information on stabilizer formalism and
graph states and give a brief introduction to single-qubit noise
models applied to graph states. We also settle the notation
we use throughout the article in this section. In Sec. III we
describe a method to efficiently describe the manipulation of
noisy graph states, which we call noisy stabilizer formalism.
In Sec. IV we study the limitations of the use of this formalism
for general noise models and quantum states more general
than graph states. In Sec. V a discussion of the efficiency and
computational application of the noisy stabilizer formalism is
presented. In Sec. VI we make use of the presented method
for a nontrivial example that shows explicitly the advantages
of the formalism. We summarize and discuss our results in
Sec. VII, where we also provide an outlook on additional
possible applications.

II. BACKGROUND

In the following we recall some basic notation and results
concerning stabilizer states, graph states, and single-qubit
noise models which will be used throughout the paper.

A. Stabilizer formalism

The n-qubit Pauli group P, [16] is defined as
P, = {£1, £i} x {1,X,Y, Z}®". (D

An element of the Pauli group is called a Pauli product. An
n-qubit stabilizer group S [16] can be defined as an Abelian
(commutative) subgroup of the n-qubit Pauli group,

SZ{S,} St—1¢SVSl,S]€S, [S,,SJ]:O (2)

An element from S is called a stabilizer operator and the
elements in the maximally independent subset S, of the stabi-
lizer group are called the stabilizer generators. Independence
in this framework means that any stabilizer generator cannot
be expressed as a product of other generators. Then any of the
elements in S can be generated by the product of the stabi-
lizer generators. Thus, a stabilizer group S can be expressed
in terms of its stabilizer generators S, and it is defined by
S = (Sy).

The stabilizer state |/), for a given stabilizer group S, can
be defined as a simultaneous eigenstate with eigenvalue +1 of
all the stabilizer operators in S,

Sily) =¥)VSieS. 3)

It is sufficient if the state is an eigenstate with eigenvalue +1
of the stabilizer generators,

gily) =1¥)Vgi €S, “4)

In general, when talking about a certain stabilizer state
|Y/), one can say that it is stabilized or invariant under the
action of the operators in S. Then all the possible states that
are stabilized by the subgroup S form Vg, the vector space
stabilized by S, and S is said to be the stabilizer of the
space Vs.

B. Clifford operations

The subset of all unitary quantum operations that map
stabilizer states to stabilizer states are the so-called (local)
Clifford operations [17]. A Clifford operation can be defined
as an operation that transforms a Pauli product into another
Pauli product under its conjugation [16]. Consider a Clifford
operation U acting on a stabilizer state |ir), defined by the
stabilizer group S = ({g;}),

Uly) =Ugly) =UgU'Uy) = gUIY), (5)

where g, = Ug;U . This indicates that the state U|v) is sta-
bilized by all g.. Since U is a unitary Clifford operation,
the group {g;} is also an Abelian subgroup of the Pauli
group. Therefore, the state U |v/) is stabilized by the stabilizer

group {g}.

C. Graph states

Graph states [3,4] are a subclass of multiqubit states. These
can be represented as graphs G = (V, E'), where V denotes a
finite set containing the vertices and E is a set whose elements
are the edges between two vertices. The state associated with
this graph G corresponds to the unique +1 eigenstate of the
stabilizers

Ko=XuZn, =X, | | % 6)

beN,

for all a € V, where N, denotes the neighborhood, which is
the set of vertices adjacent to a given vertex, of a. In this work
we will use the notation where Zy, corresponds to the tensor
product of Pauli Z operators on all the qubits in N,, Zy, :=
Mpen, Zp.

Graph states can be manipulated and transformed by cer-
tain quantum operations [3,4]. The most relevant and widely
used properties are presented next.

1. Local complementation

Given a vertex a in the graph G, a local complementation
7, acts by inverting the edges connecting the neighbors of a,
G’ = 1,(G) such that the new neighborhood of any qubit b €
N, is N = (Ny UNg) \ (N, N N,) \ {b}. The graph state after
this operation is

G) = 17(G)) = UJIG) = V=iXa [ [ ViZo|G),  (7)

beN,

where U, is a local Clifford (LC) unitary. Two graph states
are said to be LC equivalent if the corresponding graphs are
related by a sequence of local complementations.
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2. Local Pauli measurements on graph states

Let a be the vertex corresponding to the qubit to be mea-
sured in a Pauli basis. Corresponding to this measurement, the
unitaries are defined

v =1, U®=1]2%. (8)
beN,
v = [=izn'?, v =1z ©)
beN, beN,

and, depending furthermore on a vertex by € N,

vl =) ] 2
beN,—Ni, ~(bo)

v =)' ] % (10)

beNy, —N,—{a}

Now the resulting state vector after the measurement of
qubit a in a Pauli basis, depending on the outcome +1, is given
by

PYIG) =i, £ @ULIG), i=xyz (D

where |i, £)@ is the state of qubit a after the measurement.
This state corresponds to the eigenvector with eigenvalue +1,
depending on the measurement outcome, for the correspond-
ing Pauli basis i = x, y, z. The resulting graph state G’ is given

by
o= {g—gl(}Na,N,,) gg (12)
and for X,
G =GAE(Ny,, N — a)AE(Ny, N Ny, Ny, N N,)
x AE({bo}, Na — {bo}), 13)
where E(A,B)={{a,b}e€E:acA,beB,a#b} and

EAF = (EUF)— (ENF). Essentially, the resulting graph
after a Z measurement is the deletion of all edges incident
to the vertex a. For the Y measurement, the neighborhood
of a is inverted and then all edges incident to a are deleted.
Finally, for the X measurement, the local unitary depends on
the choice of by. However, the resulting graph states arising
from different choices of by and b, will be equivalent up to
the local unitary Ubfz) U,,- Moreover, the resulting graph is the
result of first inverting the neighborhood of by and then the
same for a, followed by deleting the edges incident on a, and
finally inverting the neighborhood of by. The rules for the X
and Y measurement rules can also be expressed as

P = UH PUL, (14)
P = Ug B (15)

The resulting graph state after a Pauli measurement is up
to a certain unitary that depends on the outcome of the mea-
surement, defined in Eqgs. (8)—(10). For a sequence of local
Pauli measurements, the local unitaries have to be taken into
account if one of the qubits to be measured is affected by
the unitary. For convenience, let us define the manipulation
operator for a local Pauli measurement on a,

L) = (i, £ ® (U P, (16)

¢ e
@ CNOT,_,; b 7 measurement

FIG. 1. Graphical illustration of the merging procedure.

where i = x, y, z denotes the basis of the measurement. The
action of such an operator is |G’) = Lf“j)E |G).

3. Merging graph states

To merge two graph states [18,19], a controlled-NOT
(CNOT) gate is applied between two vertices, each from a
different graph. One of the qubits is denoted by s, meaning
it is the source, and the other one by #, meaning it is the
target. This operation introduces new edges in the resulting
graph state between the source qubit and the neighborhood
of the target qubit. Moreover, if the target qubit of the CNOT
gate is measured in the Z basis, the neighborhood of the target
qubit is moved to the neighborhood source qubit. Therefore,
the merging operation is defined by the operator Lgi_LCNOTAH ‘-
Figure 1 depicts the action of the merging procedure.

Furthermore, in order to not leave any of the merging
qubits in the final graph state, one can measure s in the ¥ basis.
This manipulation, defined by L}(,‘,YLLXQCNOTSH,, is referred
to as the full merging procedure, whose action is graphically
represented in Fig. 2. Notice that this procedure is very similar
to a Bell measurement [1]. In the latter, the source qubit is
measured in the X basis. However, from Eq. (15) one can
see that the resulting graph state from the full merging is LC
equivalent to the one resulting from the Bell measurement.

D. Action of noise maps on graph states
1. Single-qubit Pauli noise channels

A single-qubit Pauli noise channel is described as
gap = rlaply + MXapXa + YooYy + A3Z,07Z,,  (17)

where ) ", A; = 1. Consider that each qubit in an n-qubit graph
state is subject to a Pauli noise channel. Then Eq. (17) is ap-
plied for all @ € V and p = |G)(G| defines the density matrix
of the n-qubit graph state. The total noisy state is £,&; - - - &, 0.

A depolarizing channel is a particular instance of the
single-qubit Pauli channel, where with probability p the state
remains unchanged, while with 1 — p the qubit is depolar-
ized, meaning that the qubit has the completely mixed state
1/2. Thus, Ao = (1 +3p)/4 and 1y = A, = A3 = (1 — p)/4.
Importantly, in [20] it was shown that a depolarizing channel
acting on a graph state can be equivalently described by a map
M, whose Kraus operators only contain products of Z and 1,
where Z may act on qubit a and its neighborhood. This follows

s 1
oo Sle e @ w--e——«
Merging

FIG. 2. Graphical illustration of the full merging procedure.

)
i@; Y measurement
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from the fact that if one considers a graph state |G) and an X
error on qubit a, then

Xi|G) = XoK,|G) = Zy,|G). (18)

Thus, an X error on a certain qubit in a graph state can be
translated to Z errors on its neighbors. Analogously, a Y error
on a is such that

Yo|G) = —iZyZy,|G), 19)

so that it translates into a Z error on a and its neighbors with
a —i phase.

This can be further generalized for a Pauli noise channel
such that it can be rewritten as a map with Pauli noise op-
erators of the form Z(‘j‘Z,’\S,“, where « and B can take values 0
and 1. Therefore, the noise channel described in Eq. (17) is
equivalent to the noise map

3
Map =Y 0i(220Z50) p(220ZE?). (20)
i=0
where o(0) = a(1) =B(0) =83) =0 and a¢(2) =a3) =
B(1) = B(2) = 1. For such Pauli channels, the order in which
the maps are applied to the graph state is irrelevant and thus
they can be studied separately.

2. Multiqubit Pauli channels

Similarly, one can consider multiqubit Pauli channels act-
ing on a graph state |G),

4k

Eaar-ap = Y AjNjpN}. 1)
j=1

Noise operators N; are all combinations of tensor products
of Pauli operators, N; = a}l‘") ®c@ .. .g;k“k), where only di-
agonal terms appear. We use the shorthand notation og = 1,
oy =X, 0p =Y, and o3 = Z. Note that any channel can be
brought to a Pauli diagonal form without changing the diago-
nal elements by a depolarization procedure, i.e., by applying
random unitary operations before and after the application of
the channel [21].

For such Pauli diagonal channels, one can replace for each
qubit the operators X, by Zy, and Y, by Z,Zy,. Note that
phases +i do not matter for diagonal terms N;pN;.

Note that some care is required when considering gen-
eral noise channels that also include off-diagonal terms when
written in the Pauli basis, as phases that appear from the
Y noise operators matter and additional phases due to Pauli
commutation relations occur. Then a simple replacement is no
longer sufficient, as we discuss in more detail in Appendix B.

III. NOISY STABILIZER FORMALISM

Our goal is to find an efficient method to describe the ma-
nipulation of noisy graph states. The straightforward approach
would be to take the noisy n-qubit graph state £,& -« - &,p
and apply the operators describing manipulations of graph
states, such as the ones presented in Sec. Il C. Nevertheless,
this is rather hard to compute for relatively large systems as
we need to keep track of and operate on a 2" x 2" density
matrix. For Pauli channels, the density operators are reduced

to matrices that are diagonal in the graph state basis; however,
one still needs to operate with 2" x 2" matrices, i.e., exponen-
tially many elements. The approach we present in this work
is based on how the Pauli noise operators of the noise maps
change or are affected by the operations of the manipulations.
We update not only the pure graph state according to known
efficient rules, but also the noise operators. The goal is to
be able to update the noise maps after each manipulation
such that in the end there is a series of maps that act on the
noiseless manipulated graph state. We refer to this approach as
the noisy stabilizer formalism. This approach is equivalent to
the straightforward one. Importantly, our approach allows for
the analytical study of any kind of graph state and it poses an
important advantage if the size of the final state is small. This
is because the final updated noise maps are formed by Pauli
noise operators of the size of the manipulated state. Moreover,
there will be 2™ possible Pauli noise operators, where m is the
number of qubits of the manipulated state.

All the manipulation operations have been previously de-
scribed in Sec. II C. In addition, we constantly make use of the
fact that the action of all Pauli noise operators on a graph state
can be equivalently described by products of Pauli Z opera-
tors. Moreover, in this section |G) denotes an arbitrary n-qubit
graph state and its density matrix p = |G)(G]|; |G’) denotes the
resulting graph state after a sequence of manipulations of m
qubits and its density matrix is represented by p’ = |G')(G'].

A. Commutation relations

Consider a manipulation operator O, which can be any of
the ones described in Sec. II C, and the Pauli noise operator
N, which is of the shape Z‘;‘Zﬁ/_ with o, 8 =0,1and j e V.
Note that the phase factor is disregarded as it is irrelevant
for Pauli diagonal noise channels that we consider through-
out this work. We apply the manipulation on the noisy state
ON|G). Thus, we are interested in the commutation relation
ON = NO such that ON|G) = NO|G) = N|G'), where N is
in the Pauli group and denotes the updated noise operator that
acts on the noiseless manipulated graph state, which can be
written again with only Pauli Z operators. Therefore, to update
the Pauli noise operators of the noise maps, we compute the
commutation relations between noise operators and manipu-
lation operators.

In Table I, the results of the update of noise operators after a
certain manipulation are presented. The detailed computations
of the results are presented in Appendix A, in which the
examples for single-qubit Pauli noise and depolarizing noise
are also included. Importantly, one can see from Table I that
some noise operators of the qubits not directly involved in the
manipulations change such that their structure is the same, but
with the corresponding neighborhood after the manipulation.
This is such that the overall noise pattern is not modified.
However, the noise operators for the involved qubits have a
more substantial change such that the noise pattern is not
maintained. This leads to the fact that sequential manipula-
tions on neighboring qubits on a noisy graph state do not
commute, meaning that the order in which certain manipu-
lations are performed is relevant for the final overall noise
pattern if they are performed in neighboring qubits. Note that
this order relevance does not affect the Pauli Z measurement.
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TABLE 1. Update rules for noise operators of the form N =
Z;?‘Z,ﬁ/_ with «, B = 0, 1. The left column specifies the manipulation
operator O (local complementation, Pauli measurements, and merg-
ing), while the right column shows the updated noise operators N.
This noise corresponds to the one after the manipulation O on a graph
state with initial noise operator N < Z;’Zf,! witha, B = 0, 1 such that
NO = ON.Here N; * (N;) denotes the neighborhood of j after (before)
the manipulation. Recall that 7} = I; and similarly ZI%, = Iy,. Update
rules disregard phase factors, as they are irrelevant for Pauh diagonal
noise channels that we consider throughout this work.

Manipulation O Noise N
Ur zezyt? for j=a
Ur Z‘”ﬁzﬂ for j=beN,
Ur zazﬁ for j#ab
LY z[j“ for j=a
L 7078, for j#a
L}(“i Z]"\‘,:‘s/ for j=a
LY Z”ﬂzf‘ for j=beN,
LY z7zNﬂ, for j#ab
LY, z ZX‘,’) for j=a
LY zfozg, for ji=bho
LY, z;zﬁ, for j#a, b
LY, ceNor,, Z;?‘Z,ﬁ for j=t
LY, eNot, Z}’Z,{j/_ for j=s
LY, eNor, 7078, for j#t.s

J

It is crucial to see that this property affects directly manipu-
lation protocols widely used in entanglement-based quantum
networks, e.g., creating bipartite entanglement from a large
cluster [20,22-25], which requires sequential Pauli ¥ or X
measurements of neighboring qubits. In Sec. VI, a simple
example is presented to show this property and its importance
explicitly. In Figs. 3 and 4 we graphically show how the dif-
ferent Pauli noise operators on a qubit change after local Pauli
measurements in the ¥ and X bases on it, correspondingly. In

i ;Pauli X noise /\ /'Pauli Y noise { Pauli Z noise
FIG. 3. Graphical representation of a local Pauli measurement in
the Y basis on a qubit subject to Pauli noise X, Y, or Z.

(2 Pauli Z noise

/Pauh Y noise

Pauh X noise *
FIG. 4. Graphical representation of a local Pauli measurement in
the X basis on a qubit subject to Pauli noise X, Y, or Z.

Appendix A we present the graphical representation of the up-
date of noise operators under the remaining manipulations.

B. Methodology

Consider an n-qubit graph state p = |G) (G|, where each
qubit is subjected to single-qubit Pauli noise. Then this noisy
graph state is manipulated by & different operations, e.g., local
complementations or Pauli measurements, where operations
act on a set of qubits (by, ..., by). Thus, the final state is given
by
Elp)O}L(bl) o OZ(}’U. (22)

0/(<bk) . Ogbl)(gn .

Using the noisy stabilizer formalism, this can be equivalently
described as

Il & b b (1) (br)
gn...gl(olik)...oi I)POI ! Oz ‘), (23)
b be) . .
where p’:olibk) 0"p 0'( v -OZ( Y is the noiseless

manipulated state p’ = |G')(G’| and &; are the updated noise
channels. Each of the noise channels is updated independently
of each other as they all commute with each other when
applied to graph states due to the fact that they can all be ex-
pressed as Eq. (20). In Table II we present a guided procedure
on how to make use of the noisy stabilizer formalism for a set
of manipulations on the same graph state. Note that the graph
state changes after each manipulation and so do the Pauli
noise operators, so each manipulation depends on the previous
one to update both the graph state and the Pauli noise oper-
ators. Moreover, at each manipulation, we update each Pauli
noise operator from each map independently, which is allowed
because all Pauli noise operators and noise maps commute
with each other. After applying the procedure described in
Table II, the Pauli noise operators have been updated k times
such that

]Vi(j) O(Ihl)"'olibk) i\‘fi(j)’ (24)
where j=1,...,n and i =0, 1,2,3. Thus, all the noise
maps can be finally updated using the updated noise operators
such that

0“’” 0”’“

M;p ——Z M;p' (25)
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TABLE II. Step-by-step guide on how to use the noisy stabilizer
formalism to update the Pauli noise operators under the action of a
series of manipulations. The mentioned update rules can be found in
Table I.

First manipulation. Take each Pauli noise operator of each
noise map
Ni(j) x Z;?t(i)zleji)’
where j = 1,...,nand i =0, 1, 2, 3. Update them using the
update rules O,N” = N0,
oy .
Ni(./) AN ]Vi(J).
The updated noise operators are a product of Pauli Z operators.
Second manipulation. Update each Pauli noise operator of each
noise map using the update rules
Loty L
1\“[i(1) 2 Ni(J)7
where j =1,...,nandi =0, 1, 2, 3. Once again, the updated
noise operators are a product of Pauli Z operators.

Last manipulation Oy. Update each Pauli noise operator of each
noise map using the update rules

S i
N[_(J) k ]vi(j) — N[(J)’

where j =1,...,nand i =0, 1, 2, 3. Once again, the updated

noise operators are a product of Pauli Z operators.

for j =1,...,n, where M p corresponds to Eq. (20) and

3
Mp' = Z 2N o DT, (26)

i=0

Finally, one can apply all the final noise maps {./ﬁ j} to the
final noiseless graph state o’ to retrieve the final noisy graph
state. Hence, the size of the final graph state directly impacts
the size of the final Pauli noise operators as they should be
of the same size. Furthermore, in [20,26] it was stated that
noise maps M, only act nontrivially on a and its neighbors.
A manipulation can divide the initial graph states into several
graphs. In [20,26] it was mentioned that the noise of these
resulting states can be obtained by considering only the (re-
duced) action of the noise maps that act nontrivially on the
reduced graph state. Therefore, one does not need to update
all the noise operators in the system, just the ones that act
nontrivially.

IV. GENERALIZATION OF THE METHOD

In Sec. IIT we presented an efficient formalism to describe
single-qubit Pauli noise on graph states that are manipulated
by Pauli measurements or Clifford operations. Now we ex-
plore generalizations of the method and discuss limitations by
studying its use on more general quantum systems and noise
models.

A. General noise models

Consider a general noise model described by a completely
positive map (CPM) £ that acts on n qubits of a graph state

FIG. 5. Graphical representation of the use of the noisy stabilizer
formalism for general diagonal Pauli noise modes. The top represents
a graph state subject to several Pauli diagonal noise maps denoted by
&;, which is then manipulated by operators O; on the corresponding
qubits [as described in Eq. (27)]. If the manipulations are performed
it is equivalent to having the noiseless manipulated state subject to
the updated noise maps denoted by E’, [as described in Eq. (28)].

corresponding to a graph G, £|G)(G|. Consider that this gen-
eral channel can be decomposed in &; - - - £, where each CPM
acts on a subset of qubits, which in the simplest case would
be single-qubit channels. Whenever these noise maps are of
multiqubit Pauli diagonal form, we can generalize our noisy
stabilizer formalism to update the corresponding maps and
provide an efficient description. Note that the range of the
maps, i.e., the systems on which they act, do not need to be
distinct; qubits might be affected by multiple maps.

We consider now the situation where the initial noisy graph
state is manipulated by k different operations, where opera-
tions act on a set of qubits (b4, ..., by). Thus, the final state is
described by

OI((bk) . OEbl)(gl . E],O)OI(bl) o Oz(bk). 27)
Now each of the noise channels & can be updated using the
noisy stabilizer formalism independently. For this, it is crucial
that maps are Pauli diagonal. Therefore, the final state can be
also expressed as

‘SN‘I ...g-l(Ol(cbk)._.Ogbl)po-]y(hl)”.OZ(bk))’ (28)
where p’ = 0,((b“) e OYJI),OOT(bI) e Q;(bk) is the noiseless
manipulated state, o’ = |G’)(G’|, and &; are the updated noise
channels. This transformation of the noise maps is also
described graphically in Fig. 5. The overall effort and com-
putational complexity are determined by the number of terms
in the noise channels £, when written in the Pauli basis. If the
noise channels have few terms each, the update is efficient.
This is the case whenever each noise channel is diagonal in
the Pauli basis and acts on a few qubits only or if only a
few terms appear as is, e.g., the case for correlated noise, as
detailed below.

Correlated noise models

A correlated Pauli noise channel can be expressed as
Ep=pp+U-pops®, (29)

where 0i®k acts on all the qubits in the system or a particular
subset of them. Note that these noise operators can also be
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expressed in terms of only Pauli Z operators when they are
applied to graph states. Therefore, the commutation relations
presented in Table I can be used to update these correlated
noise operators. In particular, one has to compute the update
of o; on each qubit that the correlated operator acts on; thus
a total of k updates have to be computed for Eq. (29). These
statements are also true for any correlated Pauli noise channel.
However, this formalism is not suited to analyze true corre-
lated noise models such that Ep = [ déte™ % pe™®' | where
H=Y,Z.

In [27] a method to deterministically generate an arbitrary
photonic graph state was proposed. From this one can see that
the noise arising from the graph state generation would be a
correlated noise model with noise operators that do not act
always on the entire graph state. Nonetheless, it is important
to remember that one only needs to update the noise operators
that act nontrivially on the qubits that will be manipulated
and their neighborhoods, which might decrease the number of
noise operators to update. In general, the overall effort is the
same as for the noncorrelated noise models, as the bottleneck
is determined by the size of the manipulated graph state.

B. Stabilizer states

The use of this formalism can be further expanded to any
stabilizer state. This is due to the fact that a stabilizer state
is equivalent to a graph state under local Clifford operations
[28]. Consider Pauli noise acting on a stabilizer state. Next
the local Clifford operation to transform it to a graph state is
applied to the noisy stabilizer state. Then, if the commutation
between the Pauli noise operators and the local Clifford oper-
ation is computed, one has a new set of Pauli noise operators
that act on a graph state that corresponds to a certain stabilizer
state [17]. These new noise operators can be studied and
treated as seen in the presented noisy stabilizer formalism, as
they are Pauli noise operators acting on a graph state.

In this way, also manipulation by Clifford operations and
Pauli measurements on general stabilizer states can be taken
into account, thereby extending the stabilizer formalism and
the Gottesman-Knill theorem also to noisy scenarios.

V. EFFICIENCY OF THE METHOD

As one can see in Table II, in the most general case we need
to compute the total update of each Pauli noise operator per
each qubit, that is, 4n total updates for an n-qubit graph state.
However, for some particular noise models, the update of not
all Pauli noise operators has to be computed. The correlated
noise model presented in Eq. (29) is an example of this, as all
qubits involved are subject to the same kind of Pauli noise.

Besides computing a maximum of 4n updates, one needs
to consider that an effort has to be made for each term for all
noise maps acting on the system. This effort is not in terms of
computation difficulty but in terms of memory. Therefore, the
total number of terms of all maps establishes an overhead for
the use of this formalism.

Nevertheless, the main bottleneck to the use of this formal-
ism is the size of the final manipulated graph states, since the
final updated noise operators for each noise map are of the
size of the final graph state. Moreover, if all maps are applied,

it results in a maximum of 2> possible terms acting on the
final m-qubit graph state.

VI. APPLICATION OF THE METHOD

In this section we illustrate the application of the method
and show explicitly the advantages and results of the presented
noisy stabilizer formalism via a simple example. As the initial
graph state, we take an N-qubit 1D cluster, where each qubit is
labeled by a number from 1 to N. The target state we want to
achieve is a two-qubit graph state between qubits 1 and N. The
manipulation that needs to be done is the Pauli Y measurement
of all qubits but 1 and N.

We consider that all the qubits in the initial graph state are
subject to depolarizing noise. Therefore, the noise maps can
be computed following Eq. (20) and are of the form

1=P o ;
Map = pp +—= O;O(za Zy)0(Z5Zy).  (0)

Using the updating rules of Table I, one can see that the final
noise maps of the target pair qubits are described as

1
I-p
Mtarget)ol = p,O/ + T Z Z?Zﬁp/Z?ZZ{;,. 31D
a,p=0

Moreover, the noise maps of the qubits that have been mea-
sured in a Pauli basis can take one of the forms

1-— /

Mqp" = pp' + Tp(p/ +Zi1Zyp'ZiZy),  (32)
, / 1 - P, /

Mgp' = pp’ + T(p +7Z10'Zy), (33)
’r_ / l1—p ’ /

M, p = pp' + T(P +Znp Zn). (34)

It is convenient to define a vector w = (wy, wg, w,, ), where
w; denotes the weight of the final noise map M; with i =
o, B, y. We refer to this vector w as the weight vector. As
shown in Sec. III, the order of consecutive Pauli Y measure-
ments in a noisy graph state is relevant for the final noise
pattern and thus different measurement patterns will lead to
different weight vectors. However, the qubits that are fully
merged do not have this shape; instead, their noise maps
have the same form as the noise maps of the target qubits,
defined in Eq. (31). We define the parameter ¢ as the number
of full merging operations, which involve two qubits each, in
a certain manipulation.

Note that the final noiseless state is a Bell state in the
graph state basis and that the action of the nonidentity Kraus
operators changes it to another Bell state (in the graph basis).
Therefore, only the part where the Kraus operators are identi-
ties will have a nonzero contribution to the total fidelity. Thus,
one can compute the fidelity given a certain weight vector w
and the number of full merges ¢ and is

F(P, w, t) — % 1 + p2+2t Z pwi+wj . (35)

i,j=a.p.y
i#j

032424-7



MARIA FLORS MOR-RUIZ AND WOLFGANG DUR

PHYSICAL REVIEW A 107, 032424 (2023)

1 2 3 4 5

1 2 3 4 5

Il I
e ee e e e e—e—e
2 2
|24 |t
e e e
3 3
12 |t
«——%¢ ©—we
4 4
RO
. . ¢ .

"~
| ‘,'Pauli X noise /\ /'Pauli Y noise

Pauli Z noise

FIG. 6. Graphical representation of a five-qubit 1D cluster, where
qubits 2, 3, and 4 are measured sequentially in the Y basis. The
evolution or updating of a certain noise operator in the cluster is rep-
resented during the considered measurements: (a) qubit 2 is subject
to Pauli X noise and (b) qubit 3 is subject to Pauli ¥ noise.

Moreover, from Eq. (35) one can see that the contribution of
each noise map of the measured qubits to the fidelity is the
same, meaning that the order of the components in the weight
vector does not matter. Note that in this example, only local
Pauli measurements in the Y basis are performed; thus ¢ = 0.
In Fig. 6 we show the evolution of a certain noise operator
on an instance with a five-qubit 1D cluster. In particular, in
Fig. 6(a) we consider Pauli X noise on the second qubit and we
show how it evolves under each local Pauli ¥ measurement.
Similarly, in Fig. 6(b) we consider Pauli ¥ noise on the third
qubit. Note that Fig. 6 does not include all the noise operators
and their evolution considered in this example.

Note that if one considers any other initial graph state
that is manipulated into a Bell pair, as in this example, the
(reduced) noise maps of the manipulated qubits that act on
the (reduced) Bell pair take the forms described above. Thus,
the description using w and ¢ and the fidelity described in
Eq. (35) are valid as long as the final (reduced) graph state
is a Bell pair.

A. Measuring strategies

We have analyzed three different strategies to perform the
Pauli Y measurements in the initial 1D cluster.

1. Side-to-side strategy

This strategy consists in measuring the qubits consecu-
tively, one by one, from one end of the cluster to the other.
The weight vector for this strategy is

. (” +gn) = n— g(n))
w= ,0, ,

> > (36)

where n =N — 2 is the number of measured qubits and
g(n) =[1 — (—1)"]/2. The proof of this expression can be
found in Appendix C.

2. Every-second-qubit strategy

This strategy allows for simultaneous measurements as
one would first measure all even (or odd) qubits, which is
allowed as they are nonconsecutive qubits. Then one would
keep measuring every second qubit until all measurements are
performed. The weight vector for this strategy is

(Z,1,1) forn = 3/
w=3,1,I+1) forn =31+ 1 (37)
A, 1+1,1+1) forn=31+2,

where [ € ZT and n = N — 2. This weight vector can only be
used for n > 2. However, if n = 0, 1, 2 one can use Eq. (36),
as the two strategies are the same for these values of n.

3. Pair strategy

The last strategy consists in measuring two qubits in each
step from the outside to the inside, only if they are noncon-
secutive. First, qubits 2 and N — 1 are measured, then 3 and
N — 2, and so on. The corresponding weight vector is

(.1,21 = 1) forn =4 — 1
)@, L2 forn =4/
W= 20+ 1) forn=4/+1  G%
(A I+1,2041) forn=4l+2,

where [ € Zt and n = N — 2. This weight vector can only be
used for n > 2. However, if n = 0, 1, 2 one can use Eq. (36),
as the two strategies are the same for these values of n.

B. Comparison between strategies

Using the weight vectors presented above and the expres-
sion for the fidelity in Eq. (35), we compute the fidelity
for each strategy in Appendix D. For some values of n, the
every-second-qubit and pair strategies have the same fidelity.
Nevertheless, in general, the side-to-side strategy has a higher
fidelity in terms of p, whereas the every-second-qubit strategy
has the worst one. However, the differences between them
are small. To see this, we show in Fig. 7 the relative change
of the fidelity in percentage between the side-to-side and
every-second-qubit strategies for a fixed size of the initial
cluster N = n + 2. Notice that for larger N the relative change
increases. Moreover, the relative change is more relevant as
the probability of noise increases. Nonetheless, for values
of fidelity slightly above 0.5, the relative change goes from
roughly 0.3% to 2.7%.

VII. CONCLUSION AND OUTLOOK

In this paper we have generalized the stabilizer formalism
for pure states to a noisy one, which can also treat the action of
Pauli diagonal noise processes on stabilizer states efficiently.
The key observation is that for stabilizer or graph states, the
action of Pauli noise operators on such states can be efficiently
described and updated whenever Clifford operations or local
Pauli measurements are performed. This implies that for any
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FIG. 7. Linear plot of the relative change of the fidelity in per-
centage between two strategies (every-second-qubit and side-to-side)
to achieve a two-qubit graph state obtained from an N-qubit 1D
cluster subject to depolarizing noise with probability 1 — p. The y
axis corresponds to AF/Fy, where F is the fidelity of the every-
second-qubit strategy and AF corresponds to the difference between
the fidelity for the side-to-side strategy and the every-second-qubit
strategy. Note that the latter corresponds to the best and the worst
strategies in terms of fidelity. Only the regime where F; is above 0.5
is plotted, restricting the regime of the x axis. Each line corresponds
to a different size of the initial 1D cluster.

such process, the influence of (quasi)local noise on the result-
ing state can be determined efficiently.

Given the fact that many relevant protocols and methods
in quantum information processing are based on graph states,
Clifford operations, and Pauli measurements and that local
Pauli noise is a generic and relevant error model to describe
the influence of noise, imperfections, and decoherence on
such systems, this provides a widely applicable and pow-
erful method to study noisy protocols. Protocols based on
graph states and their manipulation by Clifford operations
include quantum error correction schemes [1,2], entanglement
purification [29-32], and the transformation of multipartite
entangled resource states to some target states. Similarly,
also measurement-based quantum computation of Clifford
circuits [9,10] falls into this category. While we have only
illustrated our method by a simple example of generating
a Bell state from a 1D cluster state, we believe that the
formalism we developed can also be applied to the analy-
sis of the influence of noise in entanglement-based quantum
networks [11,18,33,34], which we will report on a separate
work [35]. In the latter, this formalism is directly employed
to obtain the fidelity of a target state, e.g., a Bell pair or a
three-qubit Greenberger-Horne-Zeilinger state, achieved from
a certain resource state that ranges from a large multidimen-
sional cluster to a collection of smaller states, for instance,
Bell pairs. Further applications in the context of error anal-
ysis for fault-tolerant computation, quantum error correction
codes, or bipartite and multipartite entanglement purification
protocols acting on multiple copies are conceivable.

Nonetheless, the method is limited to graph states and
diagonal noise processes in the Pauli basis. The treatment of
generic noise processes seems to involve further difficulties,
as phases for nondiagonal Pauli noise terms do not cancel

TABLE III. Elements of the noise map of a before, M,p, and
after, M,p' = U (M,p)(UF)', alocal complementation on a.

Elements of M,p Elements of /ﬁap’
p - o

XopXa = Zn,pZn, g Zy,p'Zy,
YapYa = ZaZNa pZaZNg - Zap/Za

Za pZa - Ztl ZNa IO/ZaZN“

and independent treatment of noise maps seems to be impos-
sible. Furthermore, to explicitly evaluate the resulting state
and, e.g., determine state or process fidelities, it seems that
at some point one needs to switch to an explicit description
and actually compute the action of noise maps on the state,
i.e., work with density matrices, which involves an effort that
scales exponentially in the size of the final state. This is true
even though the description of the states and noise maps them-
selves is efficient, as they scale linearly in the total number
of systems involved. Nevertheless, as long as target states are
small, i.e., consist only of a few qubits, the formalism provides
a powerful tool to describe the influence of noise and study
noisy quantum information processing protocols.
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APPENDIX A: UPDATE RULES FOR NOISE OPERATORS

In this Appendix we provide the detailed computations of
the commutations presented in Table I. Moreover, we also
show the noise maps for the case of single-qubit depolarizing
noise on all qubits in a graph state.

1. Local complementation

In Eq. (7), the graph state after the local complementation
on a is presented. Note that for the noise operator Z; when
J#a,[Z;,U;]1=0. For j = a, the noise operator Z, does
not commute with the manipulation operator. To understand
how the noise operator impacts the manipulation, we com-
pute the commutation between U; and Z,. Then U] Z,|G) =
—Y,U]|G), so Y, is acting on the manipulated graph state.
Remember that ¥, is the same as Z on a and its neighbors with
a phase —i. Recall that the effect of local complementation on
a alters the neighborhood of the neighbors of a, but not the
neighborhood of a. Thus,

U, Z.|G) = iZ.Zy,|G'). (AD)

Therefore, when there is noise on the qubit where the local
complementation is applied, this noise is spread to its neigh-
bors. With only these commutation relations of Z noise on any
qubit on the state, we can know how any noise operator of a
noise map is transformed since we can express the action of a
map by only Pauli Z operators.
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(o

. Pauli Z noise

s Pauli Y noise

1'Pauh X noise *
FIG. 8. Graphical representation of a local complementation on
a qubit subject to Pauli noise X, Y, or Z.

Table III shows the transformation of the elements of the
noise map of the qubit where the local complementation is
applied. Moreover, in Fig. 8 we graphically show how the
different Pauli noise operators on a qubit change after local
complementation.

For any qubit b € N,, the elements of their noise maps
change as

Z 78 0732, — 73025, 02y 75,

(A2)

where o, 8 =0,1 and NJ( denotes the neighborhood of j
after the manipulation. For any qubit j # a and j ¢ N,, the
elements of their noise maps do not change and thus
2378 282 — 252} p' 237 (A3)
where o, 8 =0, 1 and N; denotes the neighborhood before
the manipulation, as the neighborhood of qubit j does not
change after a local complementation on a, N; = N;.
Notably, if depolarizing noise is considered, the noise
maps of the graph state are transformed such that
UF(M;p)UF)" = M;p for all j € V. In other words, they
are the same as if we would write them after the manipulation.
This is because all the nonidentity Kraus operators have the
same weight and the depolarizing map can be equivalently
written in any (updated) basis.

2. Local Pauli measurements

As seen in Sec. IIC, local Pauli measurements are de-
scribed by Eq. (8)—(13). Importantly, from [3] we make use
of the commutation relations

P27, = Z,P\%, (Ad)
P97, =7Z,P%, (AS5)
P47, =7,P%. (A6)

Additionally, the noiseless graph state after a local Pauli mea-
surement is

G = L4IG) = (i, £ ® U PLG), (A7)
where i = x, y, z denotes the basis of the measurement and

L{“) is described in Eq. (16).

TABLE _IV. Elements of the noise map of a before, M,p,
and after, /\/lap = L(") (Map)(L< ), a local Pauli Z measurement
ona.

Elements of M, p Elements of M, el
0 — o

XapXa = Zn,PZN, - Zy,0'Zy,
YooY, = ZaZNl, P ZaZNa - ZNa P /ZNH
Z,0Z, - o

a. Pauli Z measurement

The noise operator Z; commutes with L;”l for j %+ a. How-
ever, the noise operator Z, commutes with (U, )‘P(i and

acts on (z, |® by adding a general phase to the mampulated
state depending on the measurement outcome such that

L7, = +L. (A8)

From Eq. (A8) we get the results of Table IV, which show
the transformations of the elements of the noise map of the
measured qubit a. Moreover, in Fig. 9 we graphically show
how the different Pauli noise operators on a qubit change after
the local Pauli Z measurement on it.

For any other qubit j # a, the elements of their noise maps
change as

g g § p
Z325 07527y, — Z3 2 0' 2

(A9)

where «, 8 = 0, 1. Note that the noise operators now act on
the graph state corresponding to G’ after the measurement and
N J’ denotes the neighborhood after the Z measurement.

Notably, the depolarizing maps for j # a will be the same
as if we would write them after the measurement. However,
the depolarizing noise map for a results in

~ 1— )
Map' = po' + Tp(p/ + Zn, 0 Zy,). (A10)

. 'Pauh X noise /\ \/Pauli Y noise {:”.:_':Pauli Z noise

FIG. 9. Graphical representation of a local Pauli measurement in
the Z basis on a qubit subject to Pauli noise X, Y, or Z.
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TAB~LE V. Elements of the noise map of a before, M,p, and
after, M,p' = L}(f'i(/\/la,o)(L}(,f’i)T, a local Pauli Y measurement
on a.

TABLE~VI. Elements of the noise map of a before, M,p,
and after, M,p’ = L\ (M,p)(L{".)", a local Pauli X measurement
on a.

Elements of M, p Elements of Map’ Elements of M,p Elements of /ﬁap’
2 - o o - o
XopXa = Zn,pZn, - Zy,0'Zy, XopXa = Zn,PZN, - o
YooY, = ZaZNa IOZaZN,, g )0/ YooY, = ZaZNl, IOZaZNH - ZhOZNbO IO/ZhQZNbO
Z.0Z, — Zn,p'Zy, Z.0Z, — Zp, ZNbO p’ZbOZNbO
b. Pauli Y measurement
. . . a and of by correspondingly. Moreover, in Figs. 4 and 10 we
The noise operator Z; commutes with L(ai for j # a. How- 0 p gy n e
ever. the noise operator Z. does not. as » graphically show how the different Pauli noise operators of
’ P @ i a and by change after the local Pauli X measurement on a,
L9z, = l—[ (FiZ,)L“). (A11)  correspondingly. For any other qubit j 7 a, b, the elements
Y, v

beN,

Therefore, applying a local Pauli Y measurement on a noisy
qubit results in the noise expansion to its neighbors with a
phase. From Eq. (A11) we get the results presented in Ta-
ble V, which show the transformations of the elements of the
noise map of the measured qubit a. Moreover, in Fig. 3 we
graphically show how the different Pauli noise operators on a
qubit change after the local Pauli ¥ measurement on it. For
any qubit b € N,, the elements of their noise maps change
following Eq. (A2). For any qubits j # a and j ¢ N,, the
elements of their noise maps do not change as described in
Eq. (A3). Note that the neighborhood of these qubits j does
not change after a local Pauli Y measurement on a. In general,
the noise operators now act on the graph state corresponding
to the resulting graph G’ after the measurement.

Notably, the depolarizing maps for j # a will be the same
as if we would write them after the measurement. However,
the depolarizing noise map for a results in Eq. (A10).

As stated in Sec. II C, when performing several consecutive
Pauli measurements the local unitaries have to be taken into
account. Because the local unitaries of Uy(“zz and the local noise
operator Z, do not commute, the noise spreads to the neigh-
borhood of a changing the noise pattern. Then if a following
Y measurement is performed on any of the neighborhood
qubits, this is applied on top of some additional noise (Pauli Z)
which, once again, does not commute with the local unitary.
Therefore, we conclude that in a noisy graph state the order in
which consecutive local Pauli Y measurements are performed
matters. As a consequence, different patterns of measurements
will lead to different noise patterns.

c. Pauli X measurement

The noise operator Z; commutes with L)(Caj)t for j # a, by.

However, the noise operator Z, does not, as

L7, = ZyZy, LY. (A12)

Similarly, the noise operator Z,, does not commute either,

(A13)

X, x

L'z, = ZNAOL(f‘i,

where N, denotes the neighborhood of by after the measure-
ment (N’0 = N, \ {bo}). From Eqgs. (A12) and (A13) we get
the results of Tables VI and VII, which show the transforma-
tions of the elements of the noise map of the measured qubit

of their noise maps change following Eq. (A9), where N ]’

denotes the neighborhood after the Pauli X measurement.

Notably, the depolarizing maps for j # a will be the same

as if we would write them after the measurement. However,
the depolarizing noise map for a results in
YN ’ 1— P, /

Map" =pp' + 0 Loy, P Zi2y,,)- (A4

As for the local Pauli Y measurement, the order of consec-

utive X measurements matters, as the noise will not spread in

the same manner depending on the order. This also holds for
a combination of Pauli measurements in the X and Y bases.

3. Merging

As described in Sec. II C 3, the merging of two graphs is
done via a CNOT gate between a source and a target and a Z
measurement on the target. Let us first analyze the entangling
operation. The noise operator Z; commutes with CNOT;_,, for
J # t. However, the noise operator Z, does not such that

CNOTy_,;Z; = Z;Z;CNOT,_,;. (A15)

Thus, Z;, noise spreads to the source qubit. Now the target
qubit is measured in the Z basis; using Eq. (A8) we get

(A16)

From Eq. (A16) we get the results in Table VIII, which show
the transformation of the elements of the noise map of the tar-
get qubit . Moreover, in Fig. 11 we graphically show how the
different Pauli noise operators of ¢ change after the merging.
Importantly, the noise operators for s are not altered after the
manipulation. For any qubit such that j # s, ¢, the elements of

L;fgtCNOTS%tzz = :l:ZSL;l:gtCNOTS*)t .

TABLE VII. Elements of the noise map of by before, M, o, and
after, My, p' = Lfﬁ(./\/lh0 p)(Lffl)*, a local Pauli X measurement
on a.

Elements of M, p Elements of M bl
0 - o

KXo 0Xpy = Zn,, PZn,, - Zpyp'Zp,

Yoo 0Yo, = ZyZn,, 0ZoyZn,, —> Zp, ZN,;O P'Zy, ZN,;O
Zpy pZp, - ZN};O p'Z "
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. /Pauli X noise /\ yPauli Y noise ¢

Pauli Z noise

FIG. 10. Graphical representation of a local Pauli measurement
in the X basis on a noiseless qubit but the special qubit b, is subject
to Pauli noise X, Y, or Z.

their noise maps change following Eq. (A9), where N j’ denotes
the neighborhood after the merging operation.

Notably, the depolarizing maps for j # ¢, s will be the
same as if we would write them after the merging. However,
the depolarizing noise map for ¢ results in

MZIO/ ZPP/‘F 14_p(p, + ZSIO/ZS + ZN,/O/ZN, + ZsZN, p,ZsZN, )
(A17)
and the depolarizing map for s is not altered.
As described in Sec. I C 3, the full merging of two graphs
is done via a CNOT gate between a source and a target, a
Z measurement on the target, and a ¥ measurement on the
source. To analyze the noise of this operation one just needs
to use the already studied results for the merging and the Pauli
Y measurement. Thus, the noise operators of # change as

7078 — Z8 7t (A18)
and for s,
o 7B o 7o+
7075 — Z8 7yt (A19)

For any qubit b in the neighborhood of s after the simple
merging operation, b € (N, UN,;)\ (N N N;) \ {s} \ {t}, the
elements of their noise maps change following Eq. (A2). For
any other qubit, the elements of their noise maps do not
change as described in Eq. (A3).

Notably, the depolarizing maps for j # ¢, s will be the
same as if we would write them after the merging. However,

TABLE~VIII. Elements of the noise map of ¢ before, M,p,
and after, M, p’ = L\, cNOT, ., (M, p)(L!"} ) (cNOT,, )T, a merging
between two graph states using qubits s and 7.

Elements of M, p Elements of M, p’

’

P - P
XipX, = Zn, pZy, - Zy,p'Zy,
Y, oY, = Z,Zn, 0Z, Zy, — Z,Zy, p'ZZy,
Z,pZ, — Z,p'Z,

@5 L st

e e e @
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i Pauli X noise - JPauli Y noise i :Pauli Z noise

FIG. 11. Graphical representation of a merge operation between
two graphs, where the target qubit is subject to Pauli noise X, Y,
orZ.

the depolarizing noise map for ¢ and s results in
~ ~ 1—
M, p' =Mp' = pp’ + Tp(p/ + ZNJP/ZN: + ZN,/O/ZN,

+ ZN;ZN, p/ZMZM ) (A20)

APPENDIX B: REMARKS ON GENERAL NOISE MAPS

Here we comment on general noise maps and the limita-
tions of the noisy stabilizer formalism. A general multiqubit
noise channel acting on systems aja; - - - a; can always be
written in the Pauli basis, i.e., is of the form

4k
Eaarap = Y _ MijNipN], (B1)
ij=1
where the noise operators are given by tensor products of Pauli
operators N; = 0, ® 0,” ® - -+ ® 5.

While we have shown that for diagonal Pauli channels act-
ing on graph states a simple replacement of Pauli operators by
commuting Pauli Z operators suffices, the situation is not so
straightforward for arbitrary channels including off-diagonal
elements. In this case, phases +i that appear in the action
of Y on a graph state and additional ones that appear due
to the commutation relation of Pauli operators need to be
considered.

Let us first consider phases due to the action of the
noise operator Y,. While Y,|G) = —iZ,Zy,|G), we have that
(G|Y, = i(G|Z,Zy,. These phases cancel for any Pauli channel
that includes only diagonal terms when written in the Pauli
basis; however, phases in off-diagonal terms remain, e.g.,
Z,\G)(G|Y, = iZ4|G){G|Z,Zy,. There are however additional
phases appearing, which originate from the Pauli commu-
tation relations, when Pauli operators originating from the
action of noise on different qubits act on the same one. These
phases have to be taken into account and computed for each
tensor product of Pauli operators separately. Hence a simple
replacement and update of individual noise maps to commut-
ing Z noise maps are not sufficient in this case, making the
treatment of such noise channels inefficient.

We illustrate this with a simple example. Consider a graph
state of two qubits 1 and 2 that are connected by an edge
(1,2), thatis, Ny = 2 and N, = 1. It follows that ¥; ® ¥>|G) =
1) Q@ DIG) = (1 & HL)—i)Z @ £)|G) =
(=D(=D(Z ® Z)(1 @ )|G) = (=D(=D)(=DIG) = |G).
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The additional (—1) factor compared to simply replacing each
of the Y operators by (—i)Z; ® Z, comes from Y,Z, = —Z,Y,.
For the diagonal term Y; ® Y2|G)(G|Y; ® Y>» = |G)(G], the
phase does not matter. However, the phase is relevant for
off-diagonal elements. Such a situation appears also in the
case when independent noise maps that include off-diagonal
terms act on different qubits. The problem is that one
needs to consider all (exponentially many) combinations
of noise operators from different maps and not just maps
independently.

We however stress again that this is not a severe restriction
of our method. On the one hand, many relevant noise models
are of Pauli diagonal form, including uncorrelated or corre-
lated dephasing, bit-flip noise, and depolarizing noise (white
noise). On the other hand, one can enforce noise to be of such
Pauli diagonal form via the application of random unitary
operations before and after the action of the noise channel
(see [21]), without changing the diagonal elements and the
Choi-Jamiotkowski fidelity of the map.

APPENDIX C: SIDE TO SIDE STRATEGY

In Sec. VI we analyzed the manipulation of an N-qubit 1D
cluster, where each qubit is subject to depolarizing noise, to a
two-qubit graph state between the end qubits. Here we show
the proof of the weight vector in Eq. (36) that describes the
noise pattern for the strategy of measuring side to side.

It is important to note that depending on which direction
the measurements are performed, the noise accumulates on

J

oo

P + SL(p®) + Znp0Z,12)
pp® + FE(p + 21212021 Z,12)  for s odd.

one of the ends of the cluster. For example, if the measure-
ments are performed from 1 to N, the noise accumulates more
on N, meaning that w, = 0. However, as proved before, the
fidelity is not affected by this. Moreover, the proof is done for
the direction 1 — N. The proof for the opposite direction is
completely analogous to the one presented here.

Before stating the proof, we introduce some additional
notation. In this manipulation, n = N — 2 measurements are
performed and s denotes which measurement step has been
done, which is the Pauli ¥ measurement of qubit s+ 1.
Then p® denotes the graph state after the sth measurement
and M) denotes the noise map of qubit m after the sth
measurement.

1. Noise map of qubit 2

First, we will see how the noise map for qubit 2 evolves
after each measurement. This map after the ¥ measurement
of qubit 2 can be computed using Eq. (30) and Table I and is

l1—p
Mo = ppV + (0" + 21230 V2:Z3). - (C1)

Then we perform the second measurement, a Pauli ¥ mea-
surement on qubit 3. Now the noise map of qubit 2 is
updated to

l-p
M = pp? + —= (o + Zp®2s). (D)

We assume the following for any s:

for s even
(C3)

Now we want to prove that these assumptions hold for s + 1, using Table I,

M(szrl)p(H-l) — [

Therefore, after the last measurement s = n,

/
M, p"  forneven

Myp'  fornodd. €5

M(zn)p(n) — {

2. Noise maps of all qubits

Following this structure, we can prove the same for any
other qubit m such that m =2,..., N — 1. If m is even, its
final noise map will be the same as for m = 2 presented in
Eq. (C5). However, if m is odd, its corresponding noise map
will be

Map'
M, p'

for n even

for n odd. (C6)

MD ™ — {

Therefore, if n is even, w, = n/2 and w, = n/2. Moreover,
if nis odd, w, = (n — 1)/2 and wy, = (n + 1)/2. This proves
the weight vector in Eq. (36).

pottD 4 S (U 4 Zy 5 pttHZ )
potth + l;_p(P(‘YH) + Z1Zs3p" V21 Zsy3)  for s odd.

for s even
(C4)

(
APPENDIX D: EXACT FIDELITIES

In this Appendix we provide the exact formulas for the
fidelity of the final two-qubit graph state that results from
manipulating a 1D cluster, which corresponds to the example
described in Sec. VI, via different strategies. We compute the
fidelities using the weight vectors of each strategy presented
in Sec. VI A and the general formula for the fidelity for this
specific scenario in Eq. (35). Recall that for this example
t = 0, the size of the initial cluster is N qubits,andn =N — 2
of them are measured in the Y basis. To have a formula per
strategy we make use of the functions

1— (=1 I+ (1)
) =——7F— [fo=—F— (DD
2 2
For the side-to-side strategy (sts), the exact fidelity is
R[S(nv p) — }1(1 + p2+[n+g(n)]/2 + p2+[n—g(n)]/2 + pn+2)'
(D2)
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For the every-second-qubit strategy (esq), the exact fidelity for
n=23l+pB,wherel € Ztand B =0, 1, 2, is

Fusg(L, B, p)= 111 4 p22(plf ~sB2 1 lB+a®I2 4 )
(D3)

For the pair strategy (pair), the exact fidelity for n = 41 + 8,
wherel € ZT and 8 =0, 1,2, 3, is
Foaie(l. B. p) = 311+ p* 2 (pfPE=D72

4 pIHA-ImfBNB-D/2 | A=y (D)
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