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The Eastin-Knill theorem is a central result of quantum error correction theory and states that a quantum code
cannot correct errors exactly, possess continuous symmetries, and implement a universal set of gates transversely.
As a way to circumvent this result, there are several approaches in which one gives up on either exact error
correction or continuous symmetries. In this context, it is common to employ a complementary measure of
fidelity as a way to quantify quantum state distinguishability and benchmark approximations in error correction.
Despite having useful properties, evaluating fidelity measures stands as a challenging task for quantum states
with a large number of entangled qubits. With that in mind, we address two distance measures based on the sub-
and superfidelities as a way to bound error approximations, which in turn require a lower computational cost.
We model the lack of exact error correction to be equivalent to the action of a single dephasing channel, evaluate
the proposed fidelity-based distances both analytically and numerically, and obtain a closed-form expression for
a general N-qubit quantum state. We illustrate our bounds with two paradigmatic examples, an N-qubit mixed
GHZ state and an N-qubit mixed W state.
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I. INTRODUCTION

Quantum computers are among the most anticipated tech-
nological novelties of the present century. Their expected
applicability ranges from the development of quantum al-
gorithms to solve classically intractable physical problems
[1,2] to the efficient simulation of many-particle quantum
systems [3,4]. However, a quantum computer with many
qubits, i.e., from several dozens to a few hundred in the noisy
intermediate-scale quantum era [5], is subject to interaction
with the environment in such a way that the computations are
unreliable. It is necessary to employ a scheme that allows for
reliable computations, providing fault tolerance [6–8].

Quantum error correction (QEC) arises as a mechanism to
accomplish such a task [9–15]. The idea consists of encod-
ing information by using entanglement in such a way that
the encoded information is protected against noise, yielding
reliable computations. Furthermore, one is interested not only
in maintaining reliable information but also in performing
operations. Hence, despite seeking isolation with respect to
the environment, a QEC scheme should provide ways to al-
low performing operations. In this regard, a convenient way
to guarantee QEC while performing operations comes from
transversal gates in quantum error-correcting codes [16,17].
Transversal gates act independently on each qubit in such a
way that a faulty gate will only compromise single qubits,
which means that errors are not spread out throughout the
computation.

A drawback from error-correcting codes with transver-
sal gates comes from the no-go theorem derived by Eastin
and Knill [18], which states that a quantum error-correcting
code cannot exactly correct errors, possess continuous sym-
metries, and allow the implementation of a universal set of
transversal gates. This result suggests that one must give up

on either continuous symmetries of quantum error-correcting
codes (covariant codes) or exact QEC. Motivated by the wide
variety of phenomena in which covariant codes play a role,
such as quantum reference frames [19,20], resource theories
[21,22], and quantum gravity [23–25] via the anti–de Sitter
(AdS)-conformal field theory (CFT) correspondence [26,27],
we choose to give up on exact error correction. In other words,
throughout the paper, we deal with covariant codes with
transversal gates but that correct errors only approximately.

Lately, there has been a great deal of interest in quantifying
the lack of exactness (i.e., the approximation) in quantum
error correction. In particular, methods ranging from quantum
metrology to quantum resource theories have been employed
in this context [28–40]. Although, in principle, any distin-
guishability measure could be employed as a figure of merit
for the lack of exact QEC, fidelity has several good prop-
erties which make it an attractive choice. Overall, we refer
to “fidelity measures” as an umbrella term that encompasses
several measures that include, for example, Uhlmann’s fidelity
or even the so-called quantum infidelity [41,42]. Nonetheless,
for a large number of entangled qubits, evaluating Uhlmann’s
fidelity is a challenging task, as it requires spectral properties
of density matrices whose dimensions grow exponentially
with the size of the system.

In this work, we address this issue by proposing two mea-
sures based on the sub- and superfidelities [43,44] to bound
the approximation error in quantum error correction. The
proposed measures establish lower and upper bounds to the
typical fidelity error measure, while their evaluation requires a
low computational cost. Since our measures are derived from
the quantum fidelity, they inherit several useful properties. In
particular, the measure based on the superfidelity defines a
bona fide metric in the space of quantum states, and therefore

2469-9926/2023/107(3)/032422(11) 032422-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2390-7823
https://orcid.org/0000-0003-4936-1969
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.032422&domain=pdf&date_stamp=2023-03-24
https://doi.org/10.1103/PhysRevA.107.032422


FIUSA, SOARES-PINTO, AND PIRES PHYSICAL REVIEW A 107, 032422 (2023)

can be employed to study underlying geometric concepts. We
put our bounds to the test by modeling the approximation in
error correction to be an effective dephasing channel. We eval-
uate the bounds for two paradigmatic examples, namely, the
N-qubit mixed GHZ state and the N-qubit mixed W state. We
also provide exact results for any quantum state considering
our setup.

The text is organized as follows. In Sec. II, we discuss the
main properties of covariant codes and approximate quantum
error correction, laying down the fundamental ideas and the
problem we address. In Sec. III, we review the main properties
of fidelity measures, justifying their use and motivating our
proposal. In Sec. IV, we discuss our proposed bounds for
approximate quantum error correction. In Sec. V, we consider
the approximate error in quantum error correction to be mod-
eled by a dephasing channel, and illustrate our proposal by
evaluating the bounds for both the N-qubit mixed GHZ and
W states. To support our predictions, we provide analytical ex-
pressions and numerical simulations accordingly. In Sec. VI,
we summarize our results and present the concluding remarks.

II. COVARIANT CODES AND APPROXIMATE
QUANTUM ERROR CORRECTION

In this section, we briefly review the main concepts con-
cerning the subject of approximate quantum error correction.
A quantum code consists of a physical system A, a logical sys-
tem L, and a completely positive and trace-preserving (CPTP)
map called the encoding channel, which maps the logical sys-
tem into the physical one. Both systems have a corresponding
finite-dimensional Hilbert space, denoted by HA (physical)
and HL (logical). We assume that the physical system consists
of N smaller subsystems such that A = ⊗N

i=1Ai. We denote the
encoding channel as EA←L and say that the code is covariant
if [45]

EA←L ◦ U θ
L = U θ

A ◦ EA←L, (1)

where U θ
L,A implements the unitary symmetry transformation

in the logical, physical subspace. The superscript index θ ∈ G
denotes the group parameter.

Next, a covariant code is error correcting if, given a CPTP
map NA which acts upon the physical system A and models
the noise, there exists another CPTP map RL←A such that
[28,46]

RL←A ◦ NA ◦ EA←L = idL, (2)

that is, for an initial state ρ ∈ L1(HL ), with L1(H) = {ρ ∈
H | ρ† = ρ, ρ � 0, Tr(ρ) = 1} being the convex set of Her-
mitian, positive semidefinite, and trace-one quantum states,
the action of the quantum channels in the left-hand side of
Eq. (2) yield a final state ρ equal to the initial one.

In practice, the Eastin-Knill theorem forbids the existence
of such codes and this is precisely the manifestation of
approximate quantum error correction [18]. Instead of recov-
ering the identity channel of the logical subspace in Eq. (2),
we have

RL←A ◦ NA ◦ EA←L = IL �= idL. (3)

This means that the lack of exact error correction can be
thought of as an effective channel IL acting upon an arbitrary

quantum state ρ [28–30]. In this scenario, the final recovered
state will differ from the initial state. Hereafter, the effective
quantum channel which models the approximate error correc-
tion is taken to be a global dephasing channel acting on an
arbitrary number of qubits, each at its respective subspace.

In this context, the natural further step is to quantify how
distinguishable the recovered quantum state is from the in-
put state, in other words, to answer what is the difference
between the effective quantum channel IL and the logical
identity channel idL. Overall, the current literature employs
fidelity measures as useful information-theoretic quantifiers
to characterize the distinguishability between the initial ρ

and final IL(ρ) quantum states [28–30,47]. In principle, any
distinguishability measure should suffice; however, as we will
see, fidelity measures have interesting properties which justify
their use.

III. FIDELITIES, SUB- AND SUPERFIDELITIES

Fidelity is a measure of distinguishability between quan-
tum states. As such, it is defined as [48–52]

F (ρ, σ ) = [Tr(
√√

ρσ
√

ρ )]2. (4)

As a way of distinguishing quantum states, fidelity
measures have several desirable properties that motivate
their use as a figure of merit in our context. In
detail, for all quantum states {ρl}l=1,...,4 ∈ L1(H), it
satisfies (i) positivity, 0 � F (ρ1, ρ2) � 1; (ii) symmetry,
F (ρ1, ρ2) = F (ρ2, ρ1); (iii) unitary invariance, F (ρ1, ρ2) =
F (V ρ1V †,V ρ2V †), for any unitary V † = V −1; (iv) concavity,
F (ρ1, μρ2 + (1 − μ)ρ3) � μF (ρ1, ρ2) + (1 − μ)F (ρ1, ρ3),
with 0 � μ � 1; (v) multiplicativity, F (ρ1 ⊗ ρ2, ρ3 ⊗ ρ4) =
F (ρ1, ρ3)F (ρ2, ρ4); and (vi) monotonicity under CPTP
maps, F (ρ, σ ) � F (E (ρ), E (σ )), ∀ E (•) ∈ L(H), with L(H)
denoting the set of linear bounded operators on H.

In what we call the standard approach, the error related to
the approximation in quantum error correction is defined in
terms of the so-called Bures distance as follows [42,53]:

ε(IL, idL ) :=
√

1 − F (IL, idL ), (5)

that is, one calculates the square root of the infidelity between
the code IL(•) and the logical identity idL(•) acting implicitly
on a quantum state. If the code recovers precisely the logical
identity, it means that the error correction is exact and thus the
approximation error in Eq. (5) is zero. On the other hand, if the
code has orthogonal support concerning the logical identity,
the fidelity is zero and the approximation error is maximum.

We point out that, although fidelity stands as a useful dis-
tinguishability measure within the subject of quantum error
correction, it exhibits drawbacks that hinder its applicabil-
ity scope. The definition of fidelity in Eq. (4) requires prior
knowledge of the spectral properties of the input and output
N-qubit states described by density matrices whose dimension
scales exponentially with the system size. As a result, evalu-
ating fidelity for higher-dimensional systems is a challenging
task, which means that the standard approach of defining the
error approximation is of limited use when considering many
qubits.
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From now on, we make use of two information-theoretic
quantifiers originally proposed in Refs. [43,44], namely, the
so-called subfidelity defined as

E (ρ, σ ) := Tr(ρσ ) +
√

2[Tr(ρσ )]2 − 2Tr(ρσρσ ), (6)

and also the superfidelity, given by

G(ρ, σ ) := Tr(ρσ ) +
√

[1 − Tr(ρ2)][1 − Tr(σ 2)]. (7)

In particular, the superfidelity for quantum states ρ, σ is
lower bounded in terms of the trace distance as G(ρ, σ ) �
1 − (1/2)‖ρ − σ‖1, with ‖A‖1 = Tr(

√
A†A) being the Schat-

ten 1-norm [54]. Furthermore, it has been proved that the
sub- and superfidelities impose lower and upper bounds to the
fidelity, respectively, written as [43,44]

E (ρ, σ ) � F (ρ, σ ) � G(ρ, σ ). (8)

In addition, for all quantum states {ρl}l=1,...,4 ∈ L1(H), it
can be proved that the sub- and superfidelities exhibit the
following properties: (i) positivity, 0 � E (ρ1, ρ2) � 1 and
0 � G(ρ1, ρ2) � 1; (ii) symmetry, E (ρ1, ρ2) = E (ρ2, ρ1) and
G(ρ1, ρ2) = G(ρ2, ρ1); (iii) unitary invariance, E (ρ1, ρ2) =
E (V ρ1V †,V ρ2V †) and G(ρ1, ρ2) = G(V ρ1V †,V ρ2V †), for
any unitary V † = V −1; (iv) concavity, E (ρ1, μρ2 + (1 −
μ)ρ3) � E (ρ1, ρ2) + (1 − μ)E (ρ1, ρ3), and G(ρ1, μρ2 +
(1 − μ)ρ3) � G(ρ1, ρ2) + (1 − μ)G(ρ1, ρ3), with 0 � μ �
1; (v) subfidelity is submultiplicative, i.e., E (ρ1 ⊗ ρ2, ρ3 ⊗
ρ4) � E (ρ1, ρ2)E (ρ3, ρ4); and (vi) superfidelity is supermul-
tiplicative, i.e., G(ρ1 ⊗ ρ2, ρ3 ⊗ ρ4) � G(ρ1, ρ2)G(ρ3, ρ4).
Some remarks are now in order, and we are ready to address
our proposal of fidelity-based distance measures useful to
quantify approximations in quantum error correction.

IV. BOUNDS FOR APPROXIMATE QUANTUM
ERROR CORRECTION

In the following, we consider the two fidelity-based
distance measures related to the sub- and superfidelities,
respectively,

Dsub(IL, idL ) :=
√

1 − E (IL, idL ) (9)

and

Dsuper(IL, idL ) :=
√

1 − G(IL, idL ), (10)

where the quantum channels act upon some implicit quan-
tum state and IL = RL←A ◦ NA ◦ EA←L. The relation between
Eqs. (9) and (10) and the standard approach error approxima-
tion [see Eq. (5)] comes from their definitions and the fidelity
inequalities in Eq. (8), which yield

Dsuper(IL, idL ) � ε(IL, idL ) � Dsub(IL, idL ). (11)

Therefore, the distance measures based on the sub- and the
superfidelities are upper and lower bounds, respectively. The
inequalities are saturated when the sub- and the superfi-
delity recover the fidelity. This happens if at least one of
the states is pure, or if one considers single-qubit states. In
error-correction applications, none of these conditions is fully
satisfied.

Interestingly, it has been shown that the superfidelity-
based distance defines a genuine metric [43,44]. Indeed,

for arbitrary quantum states ρ j ∈ L1(H), with j = {1, 2, 3},
it satisfies (i) semidefinite positiveness, Dsuper(ρ1, ρ2) � 0
and Dsuper(ρ1, ρ2) = 0 if and only if ρ1 = ρ2; (ii) symmetry,
Dsuper(ρ1, ρ2) = Dsuper(ρ2, ρ1); and (iii) triangle inequality,
Dsuper(ρ1, ρ3) � Dsuper(ρ1, ρ2) + Dsuper(ρ2, ρ3) [44]. The dis-
tance based on the subfidelity does not define a genuine metric
because it is not positive semidefinite. More concretely, we
put the bounds to the test by evaluating them while modeling
the approximate error in quantum error correction as a dephas-
ing channel acting on an N-qubit state.

V. APPLICATION: EFFECTIVE DEPHASING CHANNEL

To illustrate the usefulness of the fidelity-based distance
measures in Eqs. (9) and (10), and also the chain of inequali-
ties in Eq. (11), we model the lack of exact error correction as
an effective quantum channel. To do so, we consider Eq. (3)
and set the quantum channel IL(•) to be a dephasing channel
Edeph(•). In addition, we consider the channel acting globally
over a given N-qubit quantum state, which in turn can be
written in terms of the Kraus representation as

E (ρ) =
∑

j1,..., jN

(Kj1 ⊗ · · · ⊗ KjN )ρ(K†
j1

⊗ · · · ⊗ K†
jN

), (12)

for j� = {0, 1}, where � = {1, 2, . . ., N}, with the Kraus oper-
ators K0 = |0〉〈0| + √

1 − p|1〉〈1| and K1 = √
p|1〉〈1|, while

0 � p � 1 stands as the probability of noise being injected
into the system. In the following, we address the issue of
approximate error correction by employing the subfidelity and
superfidelity distance measures by means of two paradigmatic
probe states: the N-qubit GHZ mixed state, and the N-qubit W
mixed state. In the Appendix, we present general, closed-form
results for the sub- and superfidelities with respect to any
given N-qubit quantum state that undergoes the action of the
dephasing quantum operation. This can be accomplished by
recasting the general N-qubit state in terms of the so-called
Fano form [42], and exploiting algebraic properties of Pauli
matrices.

A. GHZ state

In the first example, we consider the initial mixed state to
be

ρGHZ =
(

1 − λ

2N

)
I + λ |GHZN 〉〈GHZN |, (13)

with 0 � λ � 1 being the mixing parameter, and |GHZN 〉
denoting the GHZ state of N particles defined as [55]

|GHZN 〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (14)

The sub- and superfidelity distances for the states ρGHZ and
E (ρGHZ) are given by

Dsub(ρGHZ, E (ρGHZ)) =
√

1 − E (ρGHZ, E (ρGHZ)) (15)

and

Dsuper(ρGHZ, E (ρGHZ)) =
√

1 − G(ρGHZ, E (ρGHZ)), (16)

where the information-theoretic quantifiers E (x, y) and
G(x, y) are given in Eqs. (6) and (7), respectively. By
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considering the GHZ mixed state in Eq. (13), it can be verified
that its purity becomes

Tr(ρ2
GHZ) = 1

2N
(1 + (2N − 1)λ2), (17)

while the purity of the respective dephased state E (ρGHZ) [see
Eq. (12)] yields

Tr[E (ρGHZ)2] = 1

2N
(1 + (2N−1 − 1 + 2N−1(1 − p)N )λ2).

(18)

We point out that, for p = 0, Eq. (18) recovers Eq. (17) as a
particular case. Next, the relative purity involving the density
matrices ρGHZ and E (ρGHZ) is written as follows:

Tr[ρGHZE (ρGHZ)] =

= 1

2N
(1 + (2N−1 − 1 + 2N−1(1 − p)N/2)λ2). (19)

We emphasize that Eq. (17) is also recovered from Eq. (19)
by setting the parameter p = 0, which means that the relative
purity collapses into the purity in this limiting case. We find
that Eqs. (17), (18), and (19) behave quadratically respective
to the mixing parameter λ, while Eqs. (18) and (19) exhibit
an N th-order polynomial dependence on the probability p.
Finally, by performing lengthy calculations, one can verify the
result

Tr[ρGHZE (ρGHZ)ρGHZE (ρGHZ)]

= 1

23N
{1 + 2N−1((2 + (1 − p)N/2)2 + 3 (1 − 22−N ))λ2

+ 2N (2N−1 − 1)((2 + (1 − p)N/2)2 − 1 − 23−N )λ3

+ 2N−1[22N−2(1 − p)N + (2N−1 − 1)2

× (2 + (1 − p)N/2)2 − (1 − 21−N )(22N−1 − 3)]λ4}.
(20)

In the following, we numerically investigate the behavior
of both fidelity-based distance measures in Eqs. (15) and (16)
by using the aforementioned analytical results in Eqs. (17)–
(20). Figure 1 shows the plot of the distances based on
subfidelity [see Eqs. (15), (19), and (20)] and superfidelity
[see Eqs. (16)–(19)] respective to the initial N-qubit mixed
GHZ state, for different system sizes N . In Figs. 1(a) and 1(c),
by setting the parameter λ = 0.7, one varies the parameter
0 � p � 1. We find that the bounds increase as p increases;
i.e., the error approximation gets higher as we take larger
values of p. This is precisely what one would expect from a
practical point of view, as the more likely errors are to occur,
the more likely the final and initial states will be distinct,
which implies a larger error approximation (i.e., smaller sub-
and superfidelities). In Figs. 1(b) and 1(d), one sets the pa-
rameter p = 0.2 and varies the mixing parameter 0 � λ � 1.
As λ increases, the bounds become tighter; this behavior is
expected because as the purity of the state increases, the sub-
and superfidelities get closer to the fidelity, which in turn
makes the upper and lower bounds to the error approximation
closer.

Next, Fig. 2 illustrates the behavior of both the sub- and
superfidelity distances for the case of a probe N-qubit pure

FIG. 1. Plot of the sub- and superfidelity-based distance mea-
sures for the mixed N-qubit GHZ state ρGHZ [see Eq. (13)] and
the respective dephased density matrix E (ρGHZ), for several system
sizes N . [(a), (c)] Plots of the quantities Dsub,super(ρGHZ, E (ρGHZ))
as a function of the probability 0 � p � 1, and choosing the mix-
ing parameter value λ = 0.7. [(b), (d)] Fidelity-based distances
Dsub,super(ρGHZ, E (ρGHZ)) as a function of the mixing parameter
0 � λ � 1, for a fixed value p = 0.2.

GHZ state, as a function of the parameter 0 � p � 1. In this
regard, for λ = 1, Eqs. (17)–(20) imply that both the fidelity-
based distance measures saturate to the Uhlmann fidelity as

FIG. 2. Plot of the sub- and superfidelity-based distance mea-
sures for the pure N-qubit GHZ state ρGHZ [see Eq. (14)] and
the respective dephased density matrix E (ρGHZ) as a function of the
probability p. Note that both the distance measures approach the
limiting value 1/

√
2 for N → ∞.
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FIG. 3. Plot of the sub- and superfidelity-based distance mea-
sures for the mixed N-qubit GHZ state ρGHZ [see Eq. (13)] and
the respective dephased density matrix E (ρGHZ) as a function of the
mixing parameter λ. Here we consider the case N → ∞.

follows:

Dsub,super(ρGHZ, E (ρGHZ)) =
√

1 − (1 − p)N/2

2
. (21)

Note that the range of possible values for the error approx-
imation is influenced by the value of the probability. In this
sense, smaller p allows for a range of smaller values of the
fidelity-based distance measures. However, for p → 1, the
allowed values increase, as it is more likely that errors oc-
cur, resulting in overall higher approximations. In particular,
Eq. (21) implies that Dsub,super(ρGHZ, E (ρGHZ)) = 1/

√
2 for

N → ∞, regardless of the probability 0 � p � 1. In Fig. 2,
this asymptotic behavior is observed by setting larger system
sizes N .

In Fig. 3, we present the plots of both fidelity-based dis-
tance measures for the case of a multiparticle mixed GHZ
state, as a function of the parameter 0 � λ � 1, for N → ∞.
In this case, with the help of Eqs. (17)–(20), it can be verified
that the subfidelity in Eq. (15) approaches the asymptotic
value

lim
N→∞

Dsub(ρGHZ, E (ρGHZ)) =
√

1 − λ2

2
, (22)

while the superfidelity in Eq. (16) becomes

lim
N→∞

Dsuper(ρGHZ, E (ρGHZ))

=
√

1 − λ2

2
−

√
(1 − λ2)(2 − λ2)

2
. (23)

We point out that, for N → ∞, Eqs. (22) and (23) are com-
pletely independent of the probability 0 � p � 1 related to the
dephasing channel. Figure 3 shows that, for small values of λ,
the initial state is close to being maximally mixed, implying
that the bounds are not very restrictive. In addition, as λ → 1,
the initial state becomes purer, to the point where it becomes
a completely pure GHZ state for λ = 1. As a consequence,
the sub- and the superfidelity become the fidelity, and the two
bounds converge to the same value, given by the Uhlmann
fidelity.

B. W state

The second example we consider is the initial mixed state
given by

ρW =
(

1 − λ

2N

)
I + λ |W 〉〈W |, (24)

with 0 � λ � 1, and |W 〉 denotes the W state of N particles
given by [56]

|W 〉 = 1√
N

N∑
l=1

|0〉⊗l−1 ⊗ |1〉l ⊗ |0〉⊗N−l . (25)

The fidelity-based distance measures given by the subfidelity
and superfidelity for both states ρW and E (ρW ) are given as

Dsub(ρW , E (ρW )) =
√

1 − E (ρW , E (ρW )) (26)

and

Dsuper(ρW , E (ρW )) =
√

1 − G(ρW , E (ρW )), (27)

with both the quantities E (x, y) and G(x, y) defined in Eqs. (6)
and (7), respectively. By considering the mixed W state ρW in
Eq. (24), it can be verified that its purity becomes

Tr(ρ2
W ) = 1

2N
(1 + (2N − 1)λ2), (28)

while the purity of the respective dephased state E (ρW ) yields

Tr[E (ρW )2]

= 1

2N

[
1 +

(
2N − 1 − 2N (N − 1)

N
(2 − p)p

)
λ2

]
. (29)

Note that, by setting p = 0, Eq. (29) recovers Eq. (28) as a
particular case. Next, the relative purity involving the density
matrices ρW and E (ρW ) is written as follows:

Tr[ρWE (ρW )]

= 1

2N

[
1 +

(
2N − 1 − 2N (N − 1)

N
p

)
λ2

]
. (30)

We emphasize that Eq. (28) is also recovered from Eq. (30)
by setting the parameter p = 0, which means that the relative
purity collapses into the quantum purity in this limiting case.
We find that Eqs. (28)–(30) behave quadratically respective
to the mixing parameter λ. Finally, by performing lengthy
calculations, one can verify the result

Tr[ρWE (ρW )ρWE (ρW )]

= 1

23N N2
{N2 + N[2N (6N − (N − 1)(6 − p)p) − 6N]λ2

+ 2[4N2 + 22N (2N − (N − 1)p)(N − (N − 1)p)

− 2N N (6N−(N−1)(6−p)p)]λ3+[23N (N − (N − 1)p)2

− 22N+1(2N − (N − 1)p)(N − (N − 1)p) − 3N2

+ 2N N (6N − (N − 1)(6 − p)p)]λ4}. (31)

Next, by applying Eqs. (28)–(31), we present numerical
simulations for the aforementioned fidelity-based distance
measures. In Fig. 4, we plot the quantifiers Dsub(ρW , E (ρW ))
[see Eqs. (26), (30), and (31)] and Dsuper(ρW , E (ρW )) [see
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FIG. 4. Plot of the sub- and superfidelity-based distance mea-
sures for the mixed N-qubit W state ρW [see Eq. (13)] and
the respective dephased density matrix E (ρW ), for several system
sizes N . [(a), (c)] Plots of the quantities Dsub,super(ρW , E (ρW )) as
a function of the probability 0 � p � 1, and choosing the mix-
ing parameter value λ = 0.7. [(b), (d)] Fidelity-based distances
Dsub,super(ρW , E (ρW )) as a function of the mixing parameter 0 � λ �
1, for a fixed value p = 0.2.

Eqs. (27)–(30)] with respect to the initial mixed N-qubit W
state, for different system sizes. In Figs. 4(a) and 4(c), we
set the parameter λ = 0.7, and consider the range 0 � p � 1.
We find that Dsub,super(ρW , E (ρW )) increases as p increases,
with the superfidelity-based distance approaching small val-
ues for small p. In Figs. 4(b) and 4(d), one sets the probability
p = 0.2 while varying the mixing parameter 0 � λ � 1. We
find that the subfidelity-based (superfidelity-based) distance
decreases (increases) as λ increases. In other words, the
bounds become tighter as expected when the purity of the
initial state increases. On the one hand, for small values of
p, we find that Dsub(ρW , E (ρW )) approaches unity as one
increases the system size N . On the other hand, note that
Dsuper(ρW , E (ρW )) becomes zero as p approaches zero.

Figure 5 shows the plot of the fidelity-based distance
Dsub,super(ρW , E (ρW )) respective to the initial pure W state
of N particles, as a function of the probability 0 � p � 1,
for different values of system sizes N . In detail, by setting
λ = 1, one finds that both the distance-based subfidelity and
superfidelity saturate to the fidelity-based distance measure,
yielding

Dsub,super(ρW , E (ρW )) =
√

(N − 1)p

N
, (32)

FIG. 5. Plot of the fidelity-based distance measures
Dsub,super(ρW , E (ρW )) [see Eq. (32)] related to the N-qubit
pure W state ρW and the respective dephased density matrix E (ρW ),
as a function of the probability p. In particular, for very large N ,
note that both distance measures approach the asymptotic value

√
p.

which in turn holds for all 0 � p � 1. On the one hand,
we find that the fidelity-based distance measure vanishes for
small values of p, regardless of the system size N (see Fig. 5).
On the other hand, for p → 1, note that Dsub,super(ρW , E (ρW ))
approaches unity for larger system sizes. We point out that,
for the case N → ∞, the fidelity-based distance in Eq. (32)
approaches the asymptotic value

√
p, with 0 � p � 1. This

is shown in Fig. 5, where Dsub,super(ρW , E (ρW )) smoothly
approaches the value

√
p for larger N .

Next, Fig. 6 shows both subfidelity and superfidelity dis-
tances in the limiting case N → ∞, for a given probe N-qubit
mixed W state with 0 � λ � 1. We find that the distance
measure based on subfidelity in Eq. (26) approaches the
asymptotic value

lim
N→∞

Dsub(ρW , E (ρW ))) =
√

1 − (1 − p)λ2, (33)

FIG. 6. Plot of the sub- and superfidelity-based distance mea-
sures for the N-qubit W state ρW and the respective dephased density
matrix E (ρW ) [see Eqs. (33) and (34)]. Here we consider the case
N → ∞. We consider the asymptotic fidelity-based distance mea-
sures Dsub,super(ρW , E (ρW )) for values (a) p = 0.2 and 0 � λ � 1,
and (b) λ = 0.7 and 0 � p � 1.
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for all 0 � p � 1, while the superfidelity-based distance mea-
sure in Eq. (27) becomes

lim
N→∞

Dsuper(ρW , E (ρW ))

=
√

1 − (1 − p)λ2 −
√

(1 − λ2)(1 − (1 − p)2λ2). (34)

In Fig. 6(a), we set p = 0.2 and plot the fidelity-based distance
measures in Eqs. (33) and (34) as a function of the mixing
parameter 0 � λ � 1. On the one hand, for small values of
λ, we find that Dsuper(ρW , E (ρW )) smoothly vanishes, while
Dsub(ρW , E (ρW )) approaches unity. On the other hand, as
λ → 1, the two quantities provide tighter bounds. In partic-
ular, for λ = 1, both the asymptotic quantities saturate to the
standard fidelity measure. In Fig. 6(b), with λ = 0.7, we show
plots of the aforementioned asymptotic fidelity-based distance
measures as a function of the probability 0 � p � 1. Note
that, for p → 1, the subfidelity-based distance approaches
unity. In Figs. 6(a) and 6(b), the shaded gray region sets the
possible values of the standard fidelity-based distance mea-
sure, and thus the inequality in Eq. (11) is fulfilled for all
0 � λ � 1 and 0 � p � 1.

VI. CONCLUSIONS

In this work, motivated by the hardships of evaluating the
fidelity for general N-qubit states, we provide an approach
to quantify the error approximation in quantum error correc-
tion. We propose two distance measures based on sub- and
superfidelities, and discuss their usefulness to bound the error
approximation. We also provide concrete tests of our bounds.

By considering the approximation in quantum error cor-
rection [see Eq. (3)] to be modeled as a dephasing channel,
we evaluate our bounds for two paradigmatic quantum states,
namely, both the mixed N-qubit GHZ and W quantum states.
We provide analytical results for both the sub- and super-
fidelities, and also present numerical simulations to support
our predictions. In addition, we also provide closed-form ex-
pressions for the fidelity-based distance measures for general
initial N-qubit quantum states undergoing the action of the de-
phasing channel (see the Appendix). We see our bounds as an
important step in characterizing approximate quantum error
correction, mainly because of the fact that the evaluation of
both the sub- and superfidelity requires lower computational
cost in contrast with the typical approach based on Uhlmann’s
fidelity.

For the initial mixed GHZ state, we observe that the prob-
ability parameter p modulates the possible numerical values.
As p increases, the bounds increase accordingly. This behav-
ior is expected because as the noise injection increases, the
distance between the initial and final states also increases. The
bounds become tighter as the mixture parameter λ increases;
in particular, they converge to the same value for a completely
pure initial state. This is a consistency check that our bounds
satisfy, because the sub- and superfidelities recover the fidelity
for pure states. As the number of qubits increases, we observe
that the two bounds converge to limiting values that depend
only on the initial mixture parameter.

Next, for the initial mixed W state, the parameter p also
modulates the numerical values, with the bounds increasing
accordingly. We find that the bounds become more stringent
as the purity of the initial state increases. On the one hand,
for initial pure W states with λ = 1, the bounds saturate to
a value that depends on the square root of p. On the other
hand, for N-qubit mixed W states with larger N , the bounds
reach an asymptotic value that depends on both 0 � λ �
1 and 0 � p � 1, in contrast with the case of the mixed
GHZ states where the bounds depend only on the mixing
parameter.

The theory of quantum error correction is seeing rapid
development, and the study of approximate error correction is
an important aspect of it. For example, recent applications of
approximate error correction address the interplay of metro-
logical bounds and global symmetries in AdS-CFT. Hence,
as the relation between those areas has been a fruitful one,
it would be interesting to further study the usefulness of our
bounds in those contexts. Furthermore, from the fact that the
distance measure based on the superfidelity [see Eq. (10)]
defines a bona fide metric on the space of quantum states
[44], it would be interesting to further reinterpret our results
by exploiting the interplay between the subjects of quantum
error correction and information geometry. Noteworthy recent
studies addressed the link of complexity with efficiency for
designing quantum error-correcting codes within the frame-
work of information geometry [57]. Remarkably, one finds
that the efficiency and the information geometric complexity
are related to the so-called entropic speed for optimal paths
connecting initial and final states for a given physical process
[58–60]. In order to address our results within the viewpoint
of information geometry, we expect to investigate the family
of underlying contractive Riemannian metrics (in a metric
spaces sense) related to the superfidelity distance measure. In-
deed, the so-called Morozova-Čencov-Petz theorem predicts
an infinite family of Riemannian metrics equipping the man-
ifold of quantum states [42,61–63]. Within this perspective,
for example, one can address the link between complexity
and efficiency of quantum correction protocols for different
Riemannian metrics. Finally, one can investigate how the sub-
and superfidelity measures would behave for other quantum
channels, e.g., depolarizing or amplitude damping. We intend
to explore these ideas in further work.
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APPENDIX: GENERAL CASE

In this Appendix, we provide general results for the subfi-
delity and superfidelity distance measures for a given N-qubit
probe state. We begin with the complete set of noncommuting
operators {I0, I+, I−, Iz}, where I0 = (1/

√
2)I, Iz = (1/

√
2)σz,

and I± = (1/2)(σx ± iσy). Note that the normalized operators
Ik and Il are orthogonal to each other respective to the Hilbert-
Schmidt inner product; i.e., one gets that Tr(I†

k Il ) = δk,l , for
all k, l ∈ {0,±, z}. Hence, for a given general N-qubit probe
state ρ, one readily finds that

ρ =
∑

j1,..., jN

a j1,..., jN I j1 ⊗ · · · ⊗ I jN , (A1)

where

a j1,..., jN = Tr[ρ(I j1 ⊗ · · · ⊗ I jN )]. (A2)

We consider the global dephasing map

E (ρ) =
∑

j1,..., jN

a j1,..., jN E1(I j1 ) ⊗ · · · ⊗ EN (I jN ), (A3)

for j� = {0,±, z} and � = {1, 2, . . . , N}, with the operation
sum representation El (I jl ) = ∑

s=0,1KsIjl K
†
s , and the Kraus

operators K0 = |0〉〈0| + √
1 − p|1〉〈1| and K1 = √

p|1〉〈1|,
where 0 � p � 1. In this case, it can be proved that

El (I jl ) = δ jl ,0I0 + δ jl ,zIz +
√

1 − p (δ jl ,+I+ + δ jl ,−I−). (A4)

The purity of the quantum state in Eq. (A1) reads as

Tr(ρ2) =
∑

j1,..., jN

∑
k1,...,kN

a j1,..., jN ak1,...,kN

N∏
l=1

Tr(I jl Ikl ), (A5)

with

Tr(I jl Ikl ) = δ jl ,0δkl ,0 + δ jl ,zδkl ,z + δ jl ,+δkl ,− + δ jl ,−δkl ,+.

(A6)

Next, the purity of the dephased state in Eq. (A3) is given by

Tr[E (ρ)2]

=
∑

j1,..., jN

∑
k1,...,kN

a j1,..., jN ak1,...,kN

N∏
l=1

Tr[E (I jl )E (Ikl )], (A7)

with

Tr[E (I jl )E (Ikl )] = δ jl ,0δkl ,0 + δ jl ,zδkl ,z

+ (1 − p) (δ jl ,+δkl ,− + δ jl ,−δkl ,+). (A8)

The relative purity between the probe state ρ and the dephased
state E (ρ) is written as

Tr[ρE (ρ)]

=
∑

j1,..., jN

∑
k1,...,kN

a j1,..., jN ak1,...,kN

N∏
l=1

Tr[I jlE (Ikl )], (A9)

where

Tr[I jlE (Ikl )] = δ jl ,0δkl ,0 + δ jl ,zδkl ,z

+
√

1 − p (δ jl ,+δkl ,− + δ jl ,−δkl ,+). (A10)

Lastly, we evaluate the quantity

Tr[ρE (ρ)ρE (ρ)]

=
∑

j1,..., jN

∑
k1,...,kN

∑
q1,...,qN

∑
r1,...,rN

a j1,..., jN

× ak1,...,kN aq1,...,qN ar1,...,rN

N∏
l=1

Tr[I jlE (Ikl )IqlE (Irl )],

(A11)

with

Tr[I jlE (Ikl )IqlE (Irl )] = 1

2
δ jl ,0[δkl ,0(δql ,0δrl ,0 +

√
1 − p (δql ,+δrl ,− + δql ,−δrl ,+) + δql ,zδrl ,z )

+
√

1 − p δkl ,+(
√

1 − p (δql ,0 − δql ,z )δrl ,− + δql ,−(δrl ,0 + δrl ,z ))

+
√

1 − p δkl ,−(
√

1 − p (δql ,0 + δql ,z )δrl ,+ + δql ,+(δrl ,0 − δrl ,z ))

+ δkl ,z(δql ,0δrl ,z +
√

1 − p (δql ,+δrl ,− − δql ,−δrl ,+) + δql ,zδrl ,0)]

+ 1

2
δ jl ,+[δkl ,0(

√
1 − p (δql ,0 − δql ,z )δrl ,− + δql ,−(δrl ,0 + δrl ,z ))

+
√

1 − p δkl ,−((δql ,0 + δql ,z )(δrl ,0 + δrl ,z ) + 2
√

1 − p δql ,+δrl ,−)

− δkl ,z(
√

1 − p (δql ,0 − δql ,z )δrl ,− + δql ,−(δrl ,0 + δrl ,z ))]

+ 1

2
δ jl ,−[δkl ,0(

√
1 − p (δql ,0 + δql ,z )δrl ,+ + δql ,+(δrl ,0 − δrl ,z ))

+
√

1 − p δkl ,+((δql ,0 − δql ,z )(δrl ,0 − δrl ,z ) + 2
√

1 − p δql ,−δrl ,+)

+ δkl ,z(
√

1 − p (δql ,0 + δql ,z )δrl ,+ + δql ,+(δrl ,0 − δrl ,z ))]

+ 1

2
δ jl ,z[δkl ,0(δql ,0δrl ,z +

√
1 − p (δql ,+δrl ,− − δql ,−δrl ,+) + δql ,zδrl ,0)

+
√

1 − p δkl ,+(
√

1 − p (δql ,0 − δql ,z )δrl ,− + δql ,−(δrl ,0 + δrl ,z ))

−
√

1 − p δkl ,−(
√

1 − p (δql ,0 + δql ,z )δrl ,+ + δql ,+(δrl ,0 − δrl ,z ))

+ δkl ,z(δql ,0δrl ,0 +
√

1 − p (δql ,+δrl ,− + δql ,−δrl ,+) + δql ,zδrl ,z )]. (A12)
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Finally, by collecting the results in Eqs. (A5), (A7), (A9),
and (A11), one finds analytical expressions for both the subfi-
delity and superfidelity distance measures for a general initial
N-qubit probe state undergoing the action of the dephas-
ing channel. We emphasize that these results solely depend
on prior knowledge of the set of coefficients a j1,..., jN [see
Eq. (A2)], which in turn can be readily obtained by writing
the state ρ in terms of the basis of operators {I0, I+, I−, Iz}.

We remind that the superfidelity distance measure
Dsuper(ρ, E (ρ)) = √

1 − G(ρ, E (ρ)), with G(ρ, E (ρ)) =
Tr[ρE (ρ)] +

√
[1 − Tr(ρ2)][1 − Tr[E (ρ)2]], depends on the

purities Tr(ρ2) [see Eqs. (A5) and (A6)] and Tr[E (ρ)2]
[see Eqs. (A7) and (A8)] of the probe state and the
dephased state, respectively, and also the relative purity
Tr[ρE (ρ)] [see Eqs. (A9) and (A10)] between these
two quantum states. In turn, the subfidelity distance
measure Dsub(ρ, E (ρ)) = √

1 − E (ρ, E (ρ)) stands as
a function of the relative purity, with E (ρ, E (ρ)) =
Tr[ρE (ρ)] +

√
2[Tr[ρE (ρ)]]2 − 2Tr[ρE (ρ)ρE (ρ)], but also

depends on the quantity Tr[ρE (ρ)ρE (ρ)] [see Eqs. (A11) and
(A12)].

In order to further investigate the quantity
Tr[ρE (ρ)ρE (ρ)], we consider the spectral decomposition
of ρ and E (ρ) for a given d-dimensional quantum system.
Let ρ = ∑d

r=1 pr |ψr〉〈ψr | be the spectral decomposition of
the probe state, with the eigenvalues {pr}r=1,...,d satisfying
0 � pr � 1 and

∑d
r=1 pr = 1, and {|ψr〉}r=1,...,d is the set of

eigenstates of ρ, with 〈ψr |ψs〉 = δr,s, and
∑d

r=1|ψr〉〈ψr | = I.
In addition, let E (ρ) = ∑d

k=1 χk|φk〉〈φk| be the spectral
decomposition of the dephased state, with the eigenvalues
{χk}k=1,...,d satisfying 0 � χk � 1 and

∑d
k=1 χk = 1, while

{|φk〉}k=1,...,d stand for the set of eigenstates of E (ρ), such
that 〈φk|φl〉 = δk,l , and

∑d
k=1|φk〉〈φk| = I. Thus, one gets the

following result:

Tr[ρE (ρ)ρE (ρ)]

=
d∑

r,s=1

d∑
k,l=1

pr psχkχl 〈ψr |φk〉 〈ψr |φl〉∗ 〈ψs|φl〉 〈ψs|φk〉∗

=
d∑

r,k=1

p2
rχ

2
k |〈ψr |φk〉|4

+
∑
r �=s

∑
k �=l

pr psχkχl 〈ψr |φk〉 〈ψr |φl〉∗ 〈ψs|φl〉 〈ψs|φk〉∗.

(A13)

Interestingly, note that the square of the relative purity be-
tween the states ρ and E (ρ) is written as follows:

[Tr[ρE (ρ)]]2 =
d∑

r,s=1

d∑
k,l=1

pr psχkχl |〈ψr |φk〉|2 |〈ψs|φl〉|2

=
d∑

r,k=1

p2
rχ

2
k |〈ψr |φk〉|4

+
d∑

r �=s

d∑
k �=l

pr psχkχl |〈ψr |φk〉|2 |〈ψs|φl〉|2.

(A14)

We note that the quantity Tr[ρE (ρ)ρE (ρ)] in Eq. (A13) some-
what resembles the square of the relative purity in Eq. (A14),
but the former exhibits an intricate combination of overlaps
between states |ψm〉 and |φn〉, for all m, n = {1, . . . , d}. In
the particular case of orthogonal vectors |ψm〉 and |φn〉, i.e.,
〈ψm|φn〉 = 0 for all m, n = {1, . . . , d}, one finds that both
Eqs. (A13) and (A14) vanish. We may understand the quantity
Tr[ρE (ρ)ρE (ρ)] as a distinguishability measure of the states
ρ and E (ρ), somewhat similar to the standard relative purity
Tr[ρE (ρ)].

To conclude, we comment on the particular case in which
ρ = |ψ〉〈ψ | is an N-qubit pure state, while E (ρ) = E (|ψ〉〈ψ |)
stands for the dephased mixed state. In this setting, one
gets that Tr[ρE (ρ)ρE (ρ)] = 〈ψ |E (ρ)|ψ〉2 = [Tr[ρE (ρ)]]2,
i.e., one finds that the quantity reduces to the square of the
relative purity between states ρ and E (ρ). For two maximally
distinguishable (orthogonal) states ρ and E (ρ), both quantities
become zero.
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